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• Four meanings of “virtual machines”
– Exact replica of hardware within a partition of

memory (IBM VMS)
– Simulation of one machine on another (Virtual PC)
– Abstract machines (level structured OS)
– Standard form for program-in-execution (Unix)

• We focus on the fourth meaning.
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What is a virtual machine?

• A simulated computational environment for a
program, consisting of
– An IN and OUT port
– A thread running a program
– A list of arguments (args)
– An address space holding code, data, stack
– Parent, children, and sibling pointers
– A current directory pointer (and path)
– A count of undone children
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IN OUT
vmh

This handle is
a name for

the vm object.

The object itself is
represented by the

object control block
(template).
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Virtual Machine Manager
• A subsystem that manages all VMs
• System gives each VM a handle on creation
• Handles stored in user workspace
• Users present handles (to VMM) with

requests to perform operations on the VMs
named by the handles

• Only the external operations offered by the
VMM can be invoked
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VMM

vm1
vm2
vm3

vm4
vm5

User 1

User 2

?



© 2001, P. J. Denning 8

Operations

• CREATE
vmh = create_vm(specs for all fields)

• DELETE
delete_vm(vmh)

• COMPUTE
compute

• EXIT
exit
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Execution Model

• Parent creates one or more children VMs, all initially in
a wait state

• Parent interconnects VMs with pipes or attaches open
files to their IN/OUT ports

• Parent issues COMPUTE command, which starts all
children, sets UNDONE = children count, and puts
parent to sleep

• Each child completes with EXIT, which deducts 1 from
UNDONE count of parent and awakens parent when
UNDONE = 0
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• This model ensures that parent and
children (as group) are mutually
excluded in their executions

• No race conditions between children
and parent for use of parent’s standard
IN and OUT



© 2001, P. J. Denning 11

Command Interpreter (Shell)

• Listen for user to type line of text
• Decompose text into substrings, each corresponding to

command component (parser)
• Create action script that tells OS how to create a VM

structure to execute the command (parser)
• With COMPUTE command initiate the VM structure;

wait for all its children processes to EXIT
• Clean up
• Generate command prompt and repeat
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vm3
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cat < testfile | sort -d
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cat < testfile | sort -d
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Recursive Shell

• “shell” is an allowable command --- creates a
new shell VM as child to the issuer

• “login” is an allowable command; logs out
old session (entire subtree from the login) and
starts over
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Parser

• Component of command interpreter.
• Scans text strings to identify syntactic

components according to a grammar
• Issues actions that tell OS to create execution

components (VMs, pipes, open files) for a
command.

• See separate slide set for more detail.


