
Virtual Machine Basics

P. J. Denning
For CS471/CS571

© 2001, P. J. Denning



© 2001, P. J. Denning 2

• Four meanings of “virtual machines”
– Exact replica of hardware within a partition of

memory (IBM VMS)
– Simulation of one machine on another (Virtual PC)
– Abstract machines (level structured OS)
– Standard form for program-in-execution (Unix)

• We focus on the fourth meaning.



© 2001, P. J. Denning 3

What is a virtual machine?

• A simulated computational environment for a
program, consisting of
– An IN and OUT port
– A thread running a program
– A list of arguments (args)
– An address space holding code, data, stack
– Parent, children, and sibling pointers
– A current directory pointer (and path)
– A count of undone children



© 2001, P. J. Denning 4

IN OUT

args

thread

P, C, S

addrsp

cd, path

undone

vmh



© 2001, P. J. Denning 5

IN OUT
vmh

This handle is
a name for

the vm object.

The object itself is
represented by the

object control block
(template).

args

thread

P, C, S

addrsp

cd, path

undone



© 2001, P. J. Denning 6

Virtual Machine Manager
• A subsystem that manages all VMs
• System gives each VM a handle on creation
• Handles stored in user workspace
• Users present handles (to VMM) with

requests to perform operations on the VMs
named by the handles

• Only the external operations offered by the
VMM can be invoked



© 2001, P. J. Denning 7

VMM

vm1
vm2
vm3

vm4
vm5

User 1

User 2

?



© 2001, P. J. Denning 8

Operations

• CREATE
vmh = create_vm(specs for all fields)

• DELETE
delete_vm(vmh)

• COMPUTE
compute

• EXIT
exit



© 2001, P. J. Denning 9

Execution Model

• Parent creates one or more children VMs, all initially in
a wait state

• Parent interconnects VMs with pipes or attaches open
files to their IN/OUT ports

• Parent issues COMPUTE command, which starts all
children, sets UNDONE = children count, and puts
parent to sleep

• Each child completes with EXIT, which deducts 1 from
UNDONE count of parent and awakens parent when
UNDONE = 0



© 2001, P. J. Denning 10

• This model ensures that parent and
children (as group) are mutually
excluded in their executions

• No race conditions between children
and parent for use of parent’s standard
IN and OUT



© 2001, P. J. Denning 11

Command Interpreter (Shell)

• Listen for user to type line of text
• Decompose text into substrings, each corresponding to

command component (parser)
• Create action script that tells OS how to create a VM

structure to execute the command (parser)
• With COMPUTE command initiate the VM structure;

wait for all its children processes to EXIT
• Clean up
• Generate command prompt and repeat



© 2001, P. J. Denning 12

date

keyboard display

“date”

vm3



© 2001, P. J. Denning 13

cat < testfile | sort -d

keyboard display

“cat”

vm3

testfile

p1 vm4

“sort”

“-d”



© 2001, P. J. Denning 14

cat < testfile | sort -d

keyboard display

“cat”

vm3

testfile

p1 vm4

vm1

“sort”

“-d”

“shell”



© 2001, P. J. Denning 15

cat < testfile | sort -d

keyboard display

“cat”

vm3

testfile

p1 vm4

vm1

“sort”

“-d”

child

sibling

“shell”



© 2001, P. J. Denning 16

cat < testfile | sort -d

keyboard display

“cat”

vm3

testfile

p1 vm4

vm1

“sort”

“-d”

parent
parent

child

sibling

“shell”



© 2001, P. J. Denning 17

keyboard display

“cat”

vm3

testfile

p1 vm4

vm1

“sort”

“-d”

“shell”

“login”

parent

child

vm0



© 2001, P. J. Denning 18

keyboard display

vm1

“shell”

“login”

vm0

vm2

“shell”



© 2001, P. J. Denning 19

Recursive Shell

• “shell” is an allowable command --- creates a
new shell VM as child to the issuer

• “login” is an allowable command; logs out
old session (entire subtree from the login) and
starts over



© 2001, P. J. Denning 20

Parser

• Component of command interpreter.
• Scans text strings to identify syntactic

components according to a grammar
• Issues actions that tell OS to create execution

components (VMs, pipes, open files) for a
command.

• See separate slide set for more detail.


