
Time Sharing Basics

P. J. Denning

For CS471

© 2001, P. J. Denning

© 2001, P. J. Denning 2

• Time sharing depends on the
multiplexing of CPU among many user
jobs

• Multiplexing depends on clock
interrupts that switch CPU at regular
intervals

• Begin with review of how interrupts
affect execution of a job

© 2001, P. J. Denning 3

Interrupt Operation

• Event i triggers interrupt

• Interrupt hardware calls IH[i]

• IH[i] gets its own stack frame -- on stack of
currently running process

• IH[i] executes, with lower-priority
interrupts disabled

• IH[i] returns, restoring control to the
interrupted process

© 2001, P. J. Denning 4

IMPORTANT

• Interrupt handler “borrows” stack of running process

• Looks like “unexpected procedure call”

• Much faster response than a context switch to a
system process for dealing with condition

• Effect of handler execution:

– if invoked by error in the running process: either
correct error and let process retry, or abort process

– if invoked by device signal: no effect on current
process

© 2001, P. J. Denning 5

Time Sharing

• Create abstraction process (thread) -- sequence
of statewords of a user’s program in execution.

• Allow multiple processes with one CPU

• Processes run autonomously, unpredictable
speeds

• All processes progress together; average speed
less than the CPU speed

• Process synchronization explicit

© 2001, P. J. Denning 6

CPU RAM
sw

© 2001, P. J. Denning 7

CPU RAM

ip workspace

code

data

sw

© 2001, P. J. Denning 8

CPU RAM

alarm

pid sw Process Control Blocks

0

1

2

3

4

© 2001, P. J. Denning 9

CPU RAM

alarm

pid

2

10

sw PCBs

0

1

2

3

4

© 2001, P. J. Denning 10

CPU RAM

alarm

pid

2

0

InitiateInitiate
ContextContext
SwitchSwitch

sw PCBs

0

1

2

3

4

© 2001, P. J. Denning 11

CPU RAM

alarm

pid

2

0

sw PCBs

0

1

2

3

4

© 2001, P. J. Denning 12

CPU RAM

alarm

pid

2

0

sw PCBs

0

1

2

3

4

© 2001, P. J. Denning 13

CPU RAM

alarm

pid

4

0

sw PCBs

0

1

2

3

4

© 2001, P. J. Denning 14

CPU RAM

alarm

pid

4

0

sw PCBs

0

1

2

3

4

© 2001, P. J. Denning 15

CPU RAM

alarm

pid

4

10

sw PCBs

0

1

2

3

4

How did 4How did 4
come nextcome next
after 2?after 2?

© 2001, P. J. Denning 16

PCBs

0

1

2

3

4

CPU RAM

alarm

pid

2

10

34
Ready Listsw

3

0

1

© 2001, P. J. Denning 17

CPU

alarm

pid

2

0

sw PCBs

0

1

2

3

4

RAM

3

0

34
Ready List

1

InitiateInitiate
ContextContext
SwitchSwitch

© 2001, P. J. Denning 18

CPU

alarm

pid

4

10

sw PCBs

0

1

2

3

4

RAM

3

0

2

21
Ready List

1

© 2001, P. J. Denning 19

Context Switching

• SAVESW: copy the sw from CPU to
PCB[pid].

• LOADSW: transfer RL.h to pid register in
CPU (and make successor of pid the new
RL.h); then copy PCB[pid].sw to CPU.

© 2001, P. J. Denning 20

Simple Scheduling (Round Robin)

• Clock interrupt switches CPU to next ready
process

• Q = time quantum = max time for CPU to
run in one process

• Clock interrupt handler: disable
SAVESW
link pid to RL tail
set alarm clock = Q
LOADSW
enable
return

© 2001, P. J. Denning 21

Process 0

• Use the process index 0 to denote the end of
the RL -- i.e., PCB[RL.t].LINK = 0

• If the RL ever becomes empty, LOADSW will
always load process 0 next.

• Process 0 is an IDLE PROCESS that runs a
continuous no-op loop, screen saver, etc.

• Operations that make a process stop waiting
(discussed later) will displace process 0 from
CPU in favor the new ready process.

© 2001, P. J. Denning 22

Creating and Deleting Processes

• Link all unused PCB’s together on free list,
with descriptor FL = (h,t) just like RL.

• h = create_process(init sw) -- return first
free PCB index and initialize sw in PCB[h]
(return 0 means all PCB’s taken)

• delete_process(h) -- put PCB[h] on tail of
FL, clear sw in PCB[h]

© 2001, P. J. Denning 23

Process Parentage

• Process A creates B -- A is “parent” of B.

• Keep track of parents and children by
additional links in the PCB.

• Certain operations, such as
delete_process, make_ready, and
make_waiting, can only be performed
by a parent on its children.

© 2001, P. J. Denning 24

Making Processes Wait 1.0

• Define a third process state, WAITING
(along with READY and RUNNING),
and a descriptor WL = (h,t) linking all
the waiting processes together.

• Make_wait(h) -- unlinks PCB[h] from
RL or CPU and adds to WL

• Make_ready(h) -- unlinks PCB[h] from
WL and adds to tail of RL

© 2001, P. J. Denning 25

• This waiting mechanism is clumsy -- it does
not keep track of the reason that a process is
waiting.

• Can define all wait’s to be relative to
conditions---e.g.,

– Wait for page of memory

– Wait for buffer

– Wait for signal from process 17

• Define SEMAPHORE = object denoting
waiting for a specific condition

© 2001, P. J. Denning 26

• Semaphore = (c, h, t) -- a count, and a queue
represented by (h,t) descriptor

• Count can be positive or negative

– c > 0: no one is waiting, and the next c processes
that ask for condition can proceed without waiting

– c ≤ 0: |c| processes are waiting

• Queue is all processes waiting for the condition

© 2001, P. J. Denning 27

• Allow semaphores 1,2,…,M

• Semaphore list = series of semaphore control blocks,
each containing (c,h,t) descriptor of a semaphore and
the pid of its creator process.

• The queue of SCB[j] is linked through the PCB link
fields as with RL and FL lists.

• j = create_semaphore(init c≥0) -- get free SCB from
semaphore free list, set its count to c, return index j

• delete_semaphore(j) -- return semaphore block SCB[j]
to semaphore free list (allowed only of process that
created the semaphore)

© 2001, P. J. Denning 28

• Wait(j) -- subtract 1 from c (of semaphore j).
– If result is less than 0, add pid to tail of SCB[j] queue and

switch to next ready process.

– If result is 0 or larger, return immediately to caller

• Signal(j) -- add 1 to c (of semaphore j).
– If result is 0 or less, transfer head process of queue to tail of

ready list

– If results is larger than 0, no action.

– Always return immediately to caller.

© 2001, P. J. Denning 29

Making Processes Wait 2.0

• Use semaphores for waiting.

• Powerful programming aid
– Process ordering

– Mutual exclusion

– Pool control

– Producer-consumer

– etc. (see AOSC)

P2sem: init c 0
P1: actions
 signal(p2sem)
P2: wait(p2sem)
 actions

mutex: init c 1
P1: wait(mutex)
 critical section
 signal(mutex)
P2: wait(mutex)
 critical section
 signal(mutex)

