
Synchronization

Peter J. Denning

CS471/CS571

© Copyright 2001, by Peter Denning

©2001 by Peter J. Denning 2

What is synchronization?

• Requirement that one process stop to wait to pass a
point until another process sends a signal.

• The waiting point represents a condition that must be
true for subsequent execution to be valid.

• The signal represents the event of the condition
becoming true.

• Semaphores directly implement the requirement.

©2001 by Peter J. Denning 3

Common Examples

• Process ordering

• Mutual exclusion

• Pool control

• Producer-consumer

• Readers-writers

• Private semaphore and I/O signalling

• Monitors

©2001 by Peter J. Denning 4

Process Ordering

• Precedence ordering: one process cannot begin
execution until another has finished.

• Terminate the first process with a signal semaphore
to the second.

P2sem: init c 0

P1: actions
 signal(p2sem)

P2: wait(p2sem)
 actions

©2001 by Peter J. Denning 5

Mutual Exclusion

• Allow only one of several processes in a critical
section at the same time

• Prevent race conditions with shared data processed
by the critical section.

mutex: init c 1

P1: wait(mutex)
 critical section
 signal(mutex)

P2: wait(mutex)
 critical section
 signal(mutex)

©2001 by Peter J. Denning 6

Pool Control

• Set of identical resource units

• h = GetUnit() -- wait until unit free

• ReturnUnit(h) -- allow waiter to go

GetUnit
wait(pool)
...
return h

GetUnit
wait(pool)
...
return h

ReturnUnit(h)
...
signal(pool)
return

ReturnUnit(h)
...
signal(pool)
return

I(pool)=NI(pool)=N

©2001 by Peter J. Denning 7

Producer-Consumer

• Process P produces sequence of items
x1,x2,x3,....

• Items stored in order in a buffer

• Consumer C consumes items from the buffer
in the same order, once each

• Correct operation: output of C identical to
output of P (no duplicates, no losses)

©2001 by Peter J. Denning 8

Producer-Consumer
• Buffer is bounded, can hold up to N items.

• Stop P when buffer full.

• Stop C when buffer empty.

• Semaphores:
– empty: counts number of empty buffer slots, initially N

– full: counts number of full buffer slots, initially 0

• Stop P: wait(empty)

• Stop C: wait(full)

• After insert: P says signal(full)

• After removal: C says signal (empty)

©2001 by Peter J. Denning 9

P Cbuffer
x1,x2,x3,... x1,x2,x3,...

©2001 by Peter J. Denning 10

P Cbuffer
x1,x2,x3,... x1,x2,x3,...

wait(empty)
insert
signal(full)

wait(full)
insert
signal(empty)

©2001 by Peter J. Denning 11

Readers-Writers

• Shared file

• Multiple readers and writers

• Writers exclude readers and other writers

• Readers exclude writers but not other readers

• Preventing starvation under load
– priority to readers?

– priority to writers?

– alternating?

©2001 by Peter J. Denning 12

Dining Philosophers

• Five philosophers, round table, five plates,
five forks alternating (Dijkstra 1965)

• Philosopher comes to assigned place, eats,
and departs at random times

• Philosopher needs left and right forks to eat

• All philosophers follow the same program

• How to prevent deadlock?

• Must monitor global “table state”

©2001 by Peter J. Denning 13

Private Semaphore

• Semaphore reserved for private waiting-use by a
process

• Reserve semaphore indices j=1,...,N for private
semaphores. Then j=N+1,...,M are sharable
semaphores.

• Only process i is allowed to call wait(i)

• Private semaphores useful for synchronizing
processes simulating procedure calls where process
must wait for a return

©2001 by Peter J. Denning 14

Private Semaphore

• Example of a disk driver process serving block-move
requests from user processes

• Work queue on disk driver collects user requests,
driver serves them one at a time

• driver uses STARTIO to pass task to disk

• disk uses completion interrupt to signal done

• disk interrupt handler signals driver to restart

• driver signals user process to restart

©2001 by Peter J. Denning 15

Pi:

...
PutMsg(DD,pid,a,b,r,sz)
wait(pid)
...

DD: repeat {
 (i,a,b,rw,sz) = GetMsg()
 STARTIO(a,b,rw,sz)
 wait(pid)
 signal(i)
 }

disk

IH[disk]:
 signal(DD)
 return

©2001 by Peter J. Denning 16

Pi:

...
PutMsg(DD,pid,a,b,r,sz)
wait(pid)
...

DD: repeat {
 (i,a,b,rw,sz) = GetMsg()
 STARTIO(a,b,rw,sz)
 wait(pid)
 signal(i)
 }

disk

IH[disk]:
 signal(DD)
 return

1

2

3

45

©2001 by Peter J. Denning 17

Monitors

• A high level language synchronization
structure (Hoare 1978)

• Compiler translates monitor into proper
semaphore patterns

• Much improved programming reliability

©2001 by Peter J. Denning 18

Monitors

• High level view: monitor is a package of
procedures (and data structures); when
process enters by calling one of the
procedures, the entire monitor is locked to
entry by other processes.

• Provides mutually indivisible set of
operations on common data.

©2001 by Peter J. Denning 19

processes waiting
for entry

monitor
procedures

process inside
monitor, executing
a procedure

MONITOR

©2001 by Peter J. Denning 20

Monitors

• What if process inside needs to stop and wait?
– Ex: Pool manager monitor, process executes GetUnit when

pool empty?

• How to release monitor exclusion and permit another
process to enter and free the waiting one?
– Ex: another process returns a unit, making it possible for

waiting process to proceed.

©2001 by Peter J. Denning 21

Monitors

• Condition variable x: denotes a boolean condition

• x.wait -- stop and wait until the condition becomes
true

• x.signal -- let a waiting process (if one exists) know
that the condition is true

©2001 by Peter J. Denning 22

P

processes waiting
for entry

P inside
monitor, waiting
for condition X

MONITOR

X

Q

Q inside monitor,
making condition X
come true;

on X.signal, Q suspends
while P resumes, acts
on X’s being true before
Q can change X again

©2001 by Peter J. Denning 23

monitor poolmgr

condition nonempty

GetUnit:{
 if poolsize=0 then nonempty.wait
 h = “remove unit from pool”
 return h }

ReturnUnit(h):{
 “link h back into pool”
 poolsize++
 if poolsize=1 then nonempty.signal
 return }

end monitor

