
Storage Basics

P. J. Denning
For CS471/571

© 2001, P. J. Denning

© 2001, P. J. Denning 2

• All computers have memory hierarchies
– computational store (e.g., RAM, cache)
– long-term store (e.g., disks, CDs, tapes)

• Why?
– Speed and cost tradeoffs
– Different types of storage media
– Removable and portable storage media
– Volatility of RAM, persistence of disk
– Multiprogramming for greater efficiency of

resource usage

© 2001, P. J. Denning 3

Multiprogramming

• Partition main memory among active “jobs”
• Fixed or variable partition?
• Fragmentation? (Checkerboarding)
• Hardware address translation?
• Hardware memory protection?

© 2001, P. J. Denning 4

unused4321

four blocks compacted
together occupying a
multiprogrammed memory;
unused portion at end

4321

same blocks scattered;
unused space is fragmented
and cannot permit loading the
new block.

new
block

yes

no

© 2001, P. J. Denning 5

Implications for Programmers

• Overlay problem
– Divide program into blocks
– Divide program time into phases
– Identify blocks that need to be present in each

phase (subject to memory limit)
– Schedule fetches and replacements

• 40-50% of programming time on this

© 2001, P. J. Denning 6

space (segments)

time
(phases)

����

����

���� ����

����

����

����

���� ����

����

����

LOCALITY DIAGRAM

© 2001, P. J. Denning 7

• Blocks needing to be present: locality set of a phase.
• Fetch: insert instruction to bring block from disk to

RAM
– Pre-fetch? Demand fetch?

• Replace: insert instruction to copy block from RAM
to disk
– Pre-replace? Demand replace?

• Overlay sequence depends on memory size limit

© 2001, P. J. Denning 8

Paging

• Invented 1959 on Atlas Computer at
University of Manchester

• Divide programs and data into fixed size
blocks called pages

• Divide memory into fixed size (same) blocks
called frames

© 2001, P. J. Denning 9

Paging 2

• No (external) fragmentation
• Fetch on demand (cheaper than error-prone

pre-fetching)
• Map address space to memory space

© 2001, P. J. Denning 10

Paging 3

address
space

artificial
contiguity

logical
partitioning

pages

frames

© 2001, P. J. Denning 11

page no i line no x

24 8

frame no f line no x

PT

88

page table

© 2001, P. J. Denning 12

page no i line no x

24 8

frame no f line no x

PT

88

224 pages 28 bytes/page

28 frames

© 2001, P. J. Denning 13

page no i line no x

24 8

frame no f line no x

PT

88

VIRTUAL
ADDRESS

REAL
ADDRESS

MAP

© 2001, P. J. Denning 14

PT[d]

P fi AM U

d = domain number

each process has a domain

i = page number

P = presence bit

M = modified bit

U = used bit

A = access code

f = frame number

© 2001, P. J. Denning 15

ddom

CPU RAM

(i,x)addr

i

PT[d]

f

x

downup

© 2001, P. J. Denning 16

• CPU generates address (i,x)
• Objective: map to (f,x) in memory
• PT for CPU’s domain d in RAM
• Copy of entire address space in file on disk

(the “swap file” or “cache file”)

© 2001, P. J. Denning 17

ddom

CPU RAM

i

MMU

PT[d]

f

x
(f,x)

page
fault

downup

(i,x)addr

© 2001, P. J. Denning 18

Memory Mapping Unit (in CPU)
translates microcommands (RW, i,x)

On (RW,i,x) do
 E = PT[d,i]
 if not (E.A allows RW) then ACCESS FAULT
 if E.P=0 then PAGE FAULT
 (E.U, E.M) = (1, if RW=r then 0 else 1)
 PT[d,i]=E
 generate (PT.f, x)

© 2001, P. J. Denning 19

ddom

CPU RAM

i

MMU

PT[d]

TLB

(i,f)

f

x
(f,x)

page
fault

downup

(i,x)addr

© 2001, P. J. Denning 20

• Translation Look Aside Buffer (TLB) is cache of most
recent address paths

• Holds most recent (i,f) pairs
– (Actually (M,i,f) triplets.)

• Bypass a PT lookup if a “hit” occurs.
• Hit ratio h. Miss ratio (1-h).
• Average mapping time:

– T = h*TLB + (1-h)*RAM
– Easy to get below 3% with a few hundred TLB entries

© 2001, P. J. Denning 21

ddom

CPU RAM

i

MMU

PT[d]

TLB

(i,f)

f

x
(f,x)

page
fault

downup

PFH

(i,x)addr

© 2001, P. J. Denning 22

• Page Fault Handler (PFH) resolves missing page
exceptions (i,x) for CPU in domain d:
– Using replacement policy: select frame (f); if frame modified,

copy its occupying page to its disk home -- a “down” move.
– Load missing page (i) into that frame (f) -- an “up” move.
– Update PT[d,i]=(1,0,0,A,f)
– Return to interrupted process; it retries address and now

succeeds

• Structure PFH to eliminate as many of the swaps as
possible.

© 2001, P. J. Denning 23

• Paging Manager contains the PFH routine
and two daemons:
– Replace Daemon identifies pages to replace,

marks them P=0, and signals WriteBack Daemon
for pages with M=1.

– Replace Daemon targets to keep pool at a given
minimum size.

– WriteBack Daemon copies (P,M)=(0,1) pages to
disk, then sets M=0.

© 2001, P. J. Denning 24

• Because many processes can encounter page
faults in parallel, the PFH gets pages from a
semaphore-protected pool and notifies
Replace Daemon for each withdrawal.

• Replace Daemon may replace multiple pages
to replenish pool. When it replaces a
modified page, it notifies WriteBack Daemon.

• WriteBack Daemon copies each page back to
disk and then puts it in the pool.

© 2001, P. J. Denning 25

d i linkf

FRAMES

h t

h t

h t

h t

SETS

(0,0)

(0,1)

(1,0)

(1,1)

Paging Manager maintains a FRAMES table
telling what page occupies each frame. Each
frame linked to one of four sets according
to their (P,M) values.

A missing page can be reclaimed without
swap if FRAMES[PT[d,i].F]=(d,i).

© 2001, P. J. Denning 26

d i linkf

FRAMES

h t

h t

h t

h t

SETS

(0,0)

(0,1)

(1,0)

(1,1)

PM also maintains a DISKMAP that tells
the disk address of every page.

(d,i) DA

DISKMAP

© 2001, P. J. Denning 27

(0,0) (1,0)

(1,1)(0,1)

POOL page fetch / reclaim

reclaim

replacement

replacement

page
write

write
back

Frames are divided into
sets by (P,M) combinations.
Paging Manager manages the
state transitions. The reclaim
action occurs on a page fault when
page is reclaimable; it simply sets P=1.

The POOL contains all
frames that are
available to receive
the next incoming page.

© 2001, P. J. Denning 28

WAIT(pool)
if FRAMES[f=PT[d,i].f]=(d,i)
 then {PT[d,i].P = 1; unlink f from SET[0,0]}
 else {
 f = unlink first frame of SET[0,0]
 enter (self-pid, r, f, DISKMAP[d,i]) in Disk Work Queue
 WAIT(self-sem)
 PT[d,i] = (1,0,0,A,f)
 poolsize--
 SIGNAL(replace)
 }
link f to SET[1,0]
return

WAIT(pool)
if FRAMES[f=PT[d,i].f]=(d,i)
 then {PT[d,i].P = 1; unlink f from SET[0,0]}
 else {
 f = unlink first frame of SET[0,0]
 enter (self-pid, r, f, DISKMAP[d,i]) in Disk Work Queue
 WAIT(self-sem)
 PT[d,i] = (1,0,0,A,f)
 poolsize--
 SIGNAL(replace)
 }
link f to SET[1,0]
return

PFH(d,i):

Disk Driver protocol: enter request (self-pid, rw, a, b)
in Disk Work Queue and wait on self-pid's private
semaphore. Parameter a in caller's address space
and b is a disk address.

When Disk Driver done, it signals the private semaphore.

© 2001, P. J. Denning 29

1: WAIT(replace)
 while poolsize < threshold do {
 use replacement rule to unlink frame f from SET(1,-)
 PT[FRAMES[f]].P=0
 if PT[FRAMES[f]].M = 1
 then sendmsg(WriteBack, f)
 else {link f to SET[0,0]; poolsize++; SIGNAL(pool)}
 }
 goto 1

1: WAIT(replace)
 while poolsize < threshold do {
 use replacement rule to unlink frame f from SET(1,-)
 PT[FRAMES[f]].P=0
 if PT[FRAMES[f]].M = 1
 then sendmsg(WriteBack, f)
 else {link f to SET[0,0]; poolsize++; SIGNAL(pool)}
 }
 goto 1

Replace Daemon:

The system call sendmsg(p,m) places
message m in the inbox of process p.

The system call m=getmsg() in process p
returns the message; or waits if the inbox
is empty.

© 2001, P. J. Denning 30

1: f = getmsg()
 enter (self-pid, w, f, DISKMAP[FRAMES[f]]) in Disk Work Queue
 WAIT(self-sem)
 PT[FRAMES[f]].M = 0
 link f to SET[0,0]
 poolsize++
 SIGNAL(pool)
 goto 1

1: f = getmsg()
 enter (self-pid, w, f, DISKMAP[FRAMES[f]]) in Disk Work Queue
 WAIT(self-sem)
 PT[FRAMES[f]].M = 0
 link f to SET[0,0]
 poolsize++
 SIGNAL(pool)
 goto 1

WriteBack Daemon:

The frame f had been marked not
present by ReplaceDaemon. When
copy back to disk is complete, f can
be linked to the POOL.

© 2001, P. J. Denning 31

The Paging Manager is free of deadlock because
every WAIT is followed by a SIGNAL that replenishes
the count of the semaphore.

In the PFH, the WAIT(pool) is followed by SIGNAL(replace);
the Replace Daemon SIGNAL(pool) for an unmodified replacement
page and WriteBack Daemon SIGNAL(pool) for a modified page.

This structure gives parallelism between satisfying a fault,
replenishing the pool, and writing a page back to disk. This increases
the probability the pool is nonempty at the time of a fault.

© 2001, P. J. Denning 32

OTHER MAPPING METHODS

• Paging
• Segmentation
• Segmentation and paging
• Capability addressing

© 2001, P. J. Denning 33

Paging

• Address space linear -- all addresses integers from 0
to a max.

• Memory space also linear.
• Both address and memory space divided into equal

size blocks -- pages in address space, frames in
memory space.

• Pages and frames not visible to programmer.
• Mapping is simple and fast.

© 2001, P. J. Denning 34

Segmentation

• Address space is nonlinear (2-D) consisting of
segments, each a definite size.

• Segments are good containers for objects defined in
the program. Compiler assigns objects to segments.

• Addresses are of the form (s,x) -- segment number,
offset. Offset cannot exceed segment length.

• Memory is linear, segments stored as contiguous
blocks. External fragmentation a problem.

© 2001, P. J. Denning 35

ddom

CPU RAM

s

MMU

ST[d]

TLB

(s,B,L)

B x(s,x)

segment
fault

downup

SFH

(s,x)addr

(P,M,U,A,B,L)

L

© 2001, P. J. Denning 36

Segmentation Modes

• Automatic Mode: Programmer unaware of
segment boundaries; compiler assigns objects
to segments.
– Burroughs Algol machines (B5000, B6700)

• Manual Mode: Programmer aware of
segments; gives symbolic names (S,X) in
program; compiler translates to internal (s,x)
codes.
– Multics (GE645)

• No major machines today

© 2001, P. J. Denning 37

Dynamic Linking

• In manual mode, new possibility arises: program
contains symbolic reference (S,X) but no segment
number has been assigned to S; S is a file and X a
variable within S.

• Compiler can leave the symbolic reference in the
code. When it is encountered for the first time,
system generates a linkage fault.

• Linkage fault handler copies file S into a new
segment s, creates ST entry for s, replaces the
symbolic reference with its segment number, and
returns control to the program.

© 2001, P. J. Denning 38

Segmentation + Paging

• Combines the two by dividing segments into pages
and giving each segment its own page table.

• Eliminates the external fragmentation problem
caused by variable size segments in RAM.

• More complex mapping with both ST and PT.

© 2001, P. J. Denning 39

ddom

CPU RAM

s

MMU

ST[d]

TLB

(s,t,i,f)

f

y(f,y)

page
fault

downup

PFH

(s,x)=(s,(i,y))addr

(A,t)

i

PT[t]

(P,M,U,F)

© 2001, P. J. Denning 40

MMU-TLB interaction

TLB entries (s,t,i,f)

MMU interrogates TLB with key (s,i)
• Bypasses ST and PT lookups if it finds a full match;
 then it gets f immediately.
• Bypasses ST lookup if it finds partial match on segment number s;
 then it must lookup PT entry i to get f.
• Does both ST and PT lookups if it finds no match on segment number s;
 then it must lookup both ST and PT entries to get f.
• Then MMU generates its output (f,y).

MMU-TLB interaction

TLB entries (s,t,i,f)

MMU interrogates TLB with key (s,i)
• Bypasses ST and PT lookups if it finds a full match;
 then it gets f immediately.
• Bypasses ST lookup if it finds partial match on segment number s;
 then it must lookup PT entry i to get f.
• Does both ST and PT lookups if it finds no match on segment number s;
 then it must lookup both ST and PT entries to get f.
• Then MMU generates its output (f,y).

© 2001, P. J. Denning 41

Problem of Sharing

• How do two processes share a segment? Desire to share comes
up after programs are written. Can we share without
recompiling the programs?

• Difficult with pure segmentation. The parties do not need the
same segment number because both their ST entries can point to
the same (B,L) region. But if OS needs to move the segment or
swap it out, it has to locate all ST and update their entries.

• Easier with segmentation-paging. The parties have different
segment numbers pointing to the same PT. Any change to a
page’s position is recorded once, in the PT entry. All parties
will see the change immediately.

© 2001, P. J. Denning 42

ST[d1]

s1

ST[d2]

s2

B

L

change the placement or size
of the segment ==>

back-propagate the new info
to all ST’s pointing to the
segment.

change the placement or size
of the segment ==>

back-propagate the new info
to all ST’s pointing to the
segment.

© 2001, P. J. Denning 43

t

ST[d1]

s1

t

ST[d2]

s2

PT[t] f

Change the placement of the
page ==>

Update just one PT entry.

No back-propagation.

Change the placement of the
page ==>

Update just one PT entry.

No back-propagation.

f

© 2001, P. J. Denning 44

Capability Addressing

• Generalize from segments to objects.
• Facilitate object sharing with location transparency.
• Capabilities = object handles recognized throughout

a system or network; protected from alteration.
• Three-level mapping: symbolic name to capability,

capability to descriptor, descriptor to object.

© 2001, P. J. Denning 45

x

OT[d1]

o1

x

OT[d2]

o2

DT B

Change the placement or size of
the object x ==>

Update just one descriptor (x).

DT a large hash table. Object
ids (x) are used just once.

Change the placement or size of
the object x ==>

Update just one descriptor (x).

DT a large hash table. Object
ids (x) are used just once.

 x (B,L)

L

“o1” and “o2” are compiler-
assigned codes for symbolic
names chosen by the user.

“o1” and “o2” are compiler-
assigned codes for symbolic
names chosen by the user.

© 2001, P. J. Denning 46

Modern Capability Examples

• Object-oriented programming:
– Run-time system generates handles, which map

through descriptors to objects.
– User chooses symbolic names for objects; run-time

system associates those names with their handles.
– Three-level map:

• name → handle
• handle → descriptor
• descriptor → object.

© 2001, P. J. Denning 47

• E-Mail Systems:
– Handle: user@host (unique)
– Three-level mapping:

• Alias to handle (address book)
• Handle to IP address (DNS service)
• IP address to mailbox (IP)

© 2001, P. J. Denning 48

• Handle Protocol (see handle.org):
– Give objects a location-dependent, unique name in

the Internet.
– Handle: an object ID chosen within a hierarchical

system that makes handle-ids unique.
– Three-level mapping:

• Document text reference to handle (handle://unique-id)
• Handle-id to hostname/pathname (handle server)
• hostname/pathname to object (http)

© 2001, P. J. Denning 49

