
Procedure Basics

P. J. Denning
For CS471/571

© 2001, P. J. Denning

© 2001, P. J. Denning 2

Closed Sub-Programs
• Idea dates back to 1949 (Atlas @ U Manchester)
• Motivations for sub-programs:

– Modularity
– Information hiding
– Reuse

• Sub-program invocation is a function call that
appears as a single step to the caller.

• Function call takes parameters (inputs) and
produces a result value (output)

© 2001, P. J. Denning 3

Contour Model

• Contour: an executable sub-program unit
with instructions, parameters, local variables,
and private working store.

• Name comes from a diagramming method in
which sub-programs depicted as contours on
a topological map.

• Contour model originated around 1970
(Johnston)

© 2001, P. J. Denning 4

MAIN

A B

C D

MAIN program declares two sub-programs A and B.
A declares two more sub-programs C and D.

B declares one more sub-program E.

MAIN program declares two sub-programs A and B.
A declares two more sub-programs C and D.

B declares one more sub-program E.

E

© 2001, P. J. Denning 5

MAIN

A B

C D

Contour diagram
corresponds to tree of

enclosures.

ENVIRONMENT of a
contour = path from the
node back to the root

e.g.,

E(C) = (C, A, MAIN)
E(A) = (A, MAIN)

Block level = distance
from root

Contour diagram
corresponds to tree of

enclosures.

ENVIRONMENT of a
contour = path from the
node back to the root

e.g.,

E(C) = (C, A, MAIN)
E(A) = (A, MAIN)

Block level = distance
from root

E

LEVELS

0

1

2

© 2001, P. J. Denning 6

• Contours are a model for block structure in
some programming languages

• Contours are a model for type inheritance in
object-oriented languages

© 2001, P. J. Denning 7

Block Levels

• Block level of a contour or a variable is the level at
which the name is declared.
– Level of MAIN: 0
– Level of A and B: 1
– Level of C, D, and E: 2
– Level of variable x of MAIN: 0
– Level of variable y of A: 1

© 2001, P. J. Denning 8

Execution Sequences

• (C, …) denotes period of invocation of contour C
• (C is the moment of call,) the return
• Two contour calls are either independent or one

embedded in the other
– (C1, …) … (C2, …)
– (C1, … (C2, …) …)

© 2001, P. J. Denning 9

Allowable References

• Contour can refer to any name defined in any
contour of its environment. In case two contours
duplicate a name, only the closest is visible.
– Example: MAIN contains variable x; all embedded contours

(A,B,C,D,E) can refer to x.
– Example: A contains variable y; contours C and D can refer

to y, but not B, E, or MAIN.
– Example: A contains variable named x also; C and D can

refer to A’s x but cannot see MAIN’s x.

• Contour cannot see any name at a level deeper than
its own.

© 2001, P. J. Denning 10

Allowable Calls

• A contour’s name is visible within its defining
contour; that name is also visible from all contours
embedded in the defining contour. Examples:
– C can call B or D
– B can call A or E
– B cannot call C or D
– MAIN can call A or B; but not C, D, or E

• Any contour can call itself (recursion)

© 2001, P. J. Denning 11

Code Implementation

• Contour (procedure) code stored in a separate,
executable code segment.

• Base of that segment is in a standard CPU register.
• Next instruction within that segment is addressed by

IP (instruction pointer) register in CPU.
• All data used by the code come from a data segment,

usually stored as a stack. (Sometimes called the “call
stack” because space is allocated on procedure calls
and released on procedure returns.)

© 2001, P. J. Denning 12

1000

CODE

IP

DATA

SP

LA 30
L

72

1030

CPU RAM

Current instruction is “Load Address 30”.
Executing it places DATA+30 = 1030 on top

of the stack.

Next instruction is “Load”. Executing it will
replace 1030 at SP with the value stored in

location 1030, i.e., with 72.

Current instruction is “Load Address 30”.
Executing it places DATA+30 = 1030 on top

of the stack.

Next instruction is “Load”. Executing it will
replace 1030 at SP with the value stored in

location 1030, i.e., with 72.

1030:

© 2001, P. J. Denning 13

Data Implementation

• Invocation of contour is stored in an activation
record, or frame, created on call, deleted on return.

• Frame contains space for return linkage information,
parameters, local variables, and working store.

• Frames linked in LIFO order; therefore, frames can be
stored on a stack.

• New (called) frame is constructed on top of the
working stack of the caller. Its base is the caller’s SP
just before the call.

© 2001, P. J. Denning 14

linkage

parameters

locals

working
stack

BASE

SP

FRAME STRUCTURE

Linkage area contains return state to
restore caller’s environment.

Parameter area contains parameters of
the call.

Locals area contains local variables of
the procedure.

Working stack contains the temporary
store, managed as stack. E.g., to
compute X+Y,

 LA x BASE+x on stack
 L value of X on the stack
 LA y BASE+y on stack
 L value of Y on the stack
 A sum of X+Y on the stack

FRAME STRUCTURE

Linkage area contains return state to
restore caller’s environment.

Parameter area contains parameters of
the call.

Locals area contains local variables of
the procedure.

Working stack contains the temporary
store, managed as stack. E.g., to
compute X+Y,

 LA x BASE+x on stack
 L value of X on the stack
 LA y BASE+y on stack
 L value of Y on the stack
 A sum of X+Y on the stack

© 2001, P. J. Denning 15

return value

linkage

parameters

locals

working
stack

BASE

SP

RETURNING A VALUE

Frame element BASE-1 is the target
for the return value. That element
will be the top of stack (SP) after the
return.

Before making the call, the caller
must reserve an element on top of its
working stack for the return value.

Contour procedure copies the return
value from the top of its working
stack to the return location with

 LA -1
 “compute return value”
 ST

RETURNING A VALUE

Frame element BASE-1 is the target
for the return value. That element
will be the top of stack (SP) after the
return.

Before making the call, the caller
must reserve an element on top of its
working stack for the return value.

Contour procedure copies the return
value from the top of its working
stack to the return location with

 LA -1
 “compute return value”
 ST

© 2001, P. J. Denning 16

(MAIN, … (A, … (C, … (B, …) …) …) …)

MAIN

A

C

MAIN
A
C

t1

t1

2 0
1
2
3
4

DP

DISPLAY contains the current environment
(at time t1).

DP contains the current block level in static
tree.

DISPLAY[DP] is base of current frame.

Extend definition of LA to include the block
level k of the contour in which an address x is
to be interpreted:

 LA k,x

Puts DISPLAY[k]+x on stack.

If contour at level K contains this instruction,
K≥k because no contour can see variables
deeper in the tree.

DISPLAY contains the current environment
(at time t1).

DP contains the current block level in static
tree.

DISPLAY[DP] is base of current frame.

Extend definition of LA to include the block
level k of the contour in which an address x is
to be interpreted:

 LA k,x

Puts DISPLAY[k]+x on stack.

If contour at level K contains this instruction,
K≥k because no contour can see variables
deeper in the tree.

DISPLAY

The registers of the DISPLAY
and the display pointer DP
replace the single register

DATA shown previously.

The registers of the DISPLAY
and the display pointer DP
replace the single register

DATA shown previously.

© 2001, P. J. Denning 17

(MAIN, … (A, … (A, … (C, … (B, …) …) …) …) …)

MAIN

A

C

MAIN
A
C

t1

t1

2 0
1
2
3
4

DP More frames may be on the stack than are
indicated by the display -- because of a
recursion or because of a call to block higher in
the tree.

Diagram illustrates an extra frame inserted by
a recursive call on A.

The DISPLAY permits referencing statically-
enclosing contours no matter what the
dynamics of contour calls have been.

More frames may be on the stack than are
indicated by the display -- because of a
recursion or because of a call to block higher in
the tree.

Diagram illustrates an extra frame inserted by
a recursive call on A.

The DISPLAY permits referencing statically-
enclosing contours no matter what the
dynamics of contour calls have been.

DISPLAY

A

© 2001, P. J. Denning 18

(MAIN, … (A, … (C, … (B, …) …) …) …)

MAIN

A

C

MAIN

A

C

B

MAIN
A
C

MAIN
B

t1 t2

t1 t2

2 0
1
2
3
4

0
1
2
3
4

DP
1

DP

© 2001, P. J. Denning 19

• Data to be saved in the linkage section of the called contour:
– Old DP
– Old DISPLAY[k], where k = level of called contour
– Old SP
– Old (IP,S,M), where S = supervisor state, M = interrupt mask

• The CALL instruction saves these data, sets DP=k and
DISPLAY[k]=x, and sets (IP,S,M) = (ENTRY(x), S(x), M(x))

• The instruction RETURN restores the old values (and thereby
discards the called frame from the stack).

© 2001, P. J. Denning 20

In the example …

• The call at time t2 changes the environment from
E(C) = (C, A, MAIN) to E(B) = (B, MAIN)

• The calling contour (C) is at block level 2 and the called contour
(B) at block level 1.

• Environment is in DISPLAY, current block level in the display
pointer (DP).

• The call instruction specifies k, the block level, and x, the code
entry point, of the called contour.

• The call just prior to time t2 is for (k,x) = (1,B).
• All the call needs to do is change DP to 1 and DISPLAY[1] to B.

The other display registers can be left in place because B cannot
reference deeper and will not use them.

© 2001, P. J. Denning 21

Procedure Entry

• The procedure code of Contour C is embedded in the code
segment with an entry point ENTRY(C).

• If C is an OS procedure, it may operate in supervisor mode and
with some interrupts masked.

• Define C’s procedure handle as (ENTRY(C), S(C), M(C)), where
S(C) is the supervisor/user mode setting and M(C) is the
interrupt mask setting.

• Put procedure handle on stack, invoke it with CALL instruction.

© 2001, P. J. Denning 22

CALL Sequence

• Objective: call procedure whose handle is h and is a block level k
• Reserve a stack element for the return value.
• MARK instruction pushes the SP value on a temporary register

stack PC of pending calls; marks the base of the new frame.
• Compute parameters and push on the stack.
• Push initial values of locals on the stack.
• Push k and h on top of the stack.
• CALL instruction:

– Saves environment state in linkage area (marked by PC)
– Invokes procedure designated by procedure handle h
– Pops and discards the top two elements of stack
– Pops and discards the top element of PC

© 2001, P. J. Denning 23

EXAMPLE

Let uppercase denote a variable and lowercase its location in
its frame. Let X, Y be local variables of a procedure at block
level j. Function F is defined at level k < j. Function invocation
Y = F(X) is compiled as shown, constructing the new frame on
top of the stack.

 LA j,y address of Y on stack
 R 1 reserve 1 blank element for return value
 MARK mark base of new frame
 R 4 reserve 4 blank elements for linkage
 LA j,x address of parameter X on stack
 L value of parameter X on stack
 “locals” set up local variables on stack
 L “k” block level of function F on stack
 LA j,f address of procedure handle of F on stack
 L value procedure handle of F on stack
 CALL invoke procedure
 ST store result in Y (address on top of stack)

EXAMPLE

Let uppercase denote a variable and lowercase its location in
its frame. Let X, Y be local variables of a procedure at block
level j. Function F is defined at level k < j. Function invocation
Y = F(X) is compiled as shown, constructing the new frame on
top of the stack.

 LA j,y address of Y on stack
 R 1 reserve 1 blank element for return value
 MARK mark base of new frame
 R 4 reserve 4 blank elements for linkage
 LA j,x address of parameter X on stack
 L value of parameter X on stack
 “locals” set up local variables on stack
 L “k” block level of function F on stack
 LA j,f address of procedure handle of F on stack
 L value procedure handle of F on stack
 CALL invoke procedure
 ST store result in Y (address on top of stack)

© 2001, P. J. Denning 24

EXAMPLE

Same basic conditions as previous example. Function
invocation Y = F(X+Z) is compiled as:

 LA j,y address of Y on stack
 R 1 reserve 1 blank element for return value
 MARK mark base of new frame
 R 4 reserve 4 blank elements for linkage
 LA j,x address of parameter X on stack
 L value of parameter X on stack
 LA j,z address of parameter Z on stack
 L value of parameter Z on stack
 A compute sum
 “locals” set up local variables on stack
 L “k” block level of function F on stack
 LA j,f address of procedure handle of F on stack
 L value procedure handle of F on stack
 CALL invoke procedure
 ST store result in Y (address on top of stack)

EXAMPLE

Same basic conditions as previous example. Function
invocation Y = F(X+Z) is compiled as:

 LA j,y address of Y on stack
 R 1 reserve 1 blank element for return value
 MARK mark base of new frame
 R 4 reserve 4 blank elements for linkage
 LA j,x address of parameter X on stack
 L value of parameter X on stack
 LA j,z address of parameter Z on stack
 L value of parameter Z on stack
 A compute sum
 “locals” set up local variables on stack
 L “k” block level of function F on stack
 LA j,f address of procedure handle of F on stack
 L value procedure handle of F on stack
 CALL invoke procedure
 ST store result in Y (address on top of stack)

© 2001, P. J. Denning 25

EXAMPLE

Same basic conditions as previous example. Function G is
defined at level m. Invocation Y = F(G(X)) is compiled as:

 LA j,y address of Y on stack
 R 1 reserve 1 blank element for return value
 MARK mark base of new frame (F)
 R 4 reserve 4 blank elements for linkage (F)
 R 1 reserve 1 blank element for value of G
 MARK mark base of new frame (G)
 R 4 reserve 4 blank elements for linkage
 LA j,x address of parameter X on stack
 L value of parameter X on stack
 “locals” set up local variables for G on stack
 L “m” block level of G on stack
 LA j,g address of G handle on stack
 L value of G handle on stack
 CALL call G
 “locals” set up local variables for F on stack
 L “k” block level of function F on stack
 LA j,f address of procedure handle of F on stack
 L value procedure handle of F on stack
 CALL invoke procedure
 ST store result in Y (address on top of stack)

EXAMPLE

Same basic conditions as previous example. Function G is
defined at level m. Invocation Y = F(G(X)) is compiled as:

 LA j,y address of Y on stack
 R 1 reserve 1 blank element for return value
 MARK mark base of new frame (F)
 R 4 reserve 4 blank elements for linkage (F)
 R 1 reserve 1 blank element for value of G
 MARK mark base of new frame (G)
 R 4 reserve 4 blank elements for linkage
 LA j,x address of parameter X on stack
 L value of parameter X on stack
 “locals” set up local variables for G on stack
 L “m” block level of G on stack
 LA j,g address of G handle on stack
 L value of G handle on stack
 CALL call G
 “locals” set up local variables for F on stack
 L “k” block level of function F on stack
 LA j,f address of procedure handle of F on stack
 L value procedure handle of F on stack
 CALL invoke procedure
 ST store result in Y (address on top of stack)

