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Potential Paging Bottlenecks

• Three possible bottlenecks of paging systems:
– fetching
– mapping
– replacing

• Demand paging reduces cost of fetching to minimum
(pre-fetching adds cost if page not used).

• TLB-assisted MMU reduces cost of mapping to a few
percent of RAM access time.

• Replacement policy is the main factor influencing
performance.



© 2001, P. J. Denning 3

Why is Replacement Important?

• Most pages are reused repeatedly.
• Replacing a page implies future page fault to

recover it.
• Choice of page to replace therefore influences

amount of paging.
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Principle of Optimality (1)

• Replace the page that will not be used again for the
longest time.
– Maximizes forward interval to next fault.
– Minimizes total number of faults.

• Not realizable: future page reference patterns are not
known.

• Policies that estimate future forward distance based
on past observation are suboptimal.



© 2001, P. J. Denning 5

Principle of Optimality (2)

• Minimize the space-time of a job.
– Measured in page-seconds
– Accumulate one page-second for each page held in memory

for one second
– A kind of “rent” for using memory space.

• In  fixed-size memory allocation, the previous
principle is minimizes faults and therefore the total
space-time resulting from faults.
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M pages of
memoryarriving

jobs

C

completing
jobs

Observe system for T seconds:
Total space-time available = MT
Space-time per job Y = MT/C
System throughput X = C/T

Thus X = M/Y.

Throughput maximum when
space time minimum.
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Observe job execute for T seconds virtual time
F(m) = number of page faults when m pages allocated to job

space-time without page faults = mT
space-time for one page fault = mD, where D is the delay
    in virtual seconds to process the page fault
space time for all page faults = mDF(m)

Therefore Y(m) = total space-time
                          = mT+mDF(m)
                          = mT(1+D/L(m))
where L(m) = T/F(m) = mean time between faults = lifetime function

If D/L(m) much larger than 1, Y(m) is minimum when L(m)/m maximum.

This occurs when m is chosen near the LIFETIME CURVE KNEE (next page).
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memory space

lifetime

slope = L(m)/m

m

L(m)

Slope = L(m)/m is maximum
at the knee of the lifetime curve.

Therefore, space-time minimized
if we choose memory allocation near
knee of job's lifetime curve.

KNEE
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The knee criterion is approximate because the space-time
formula on which it depends is approximate.

It also works for variable-space policies because the lifetime
curve can be defined for mean time between faults versus
mean memory allocation.



© 2001, P. J. Denning 10

Policies

• Fixed partition
– FIFO
– FIFO with usage bit (CLOCK)
– LRU
– MIN (the optimum)

• Variable partition
– Global X (X = LRU, FIFO, CLOCK, etc)
– WS
– PFF
– VMIN

Parameter m, the fixed
space size allocated to

the job, in pages.

Find F(m) = number of
page faults.

Parameter m, the fixed
space size allocated to

the job, in pages.

Find F(m) = number of
page faults.

Parameter T, the fixed
time intervql to measure

memory demand.

Find F(T) = number of
page faults, and

m(T) = mean memory
Consumed.

Parameter T, the fixed
time intervql to measure

memory demand.

Find F(T) = number of
page faults, and

m(T) = mean memory
Consumed.
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Fixed Partition Policies
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FIFO

• FIFO = first in first out
• Page frames used (f0,…,fm-1)
• Index i tells which frame is next for

replacement
• On page fault, replace fi and set i=(i+1)%m
• Attraction: very simple implementation
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1  2  3  4  1  2  5  1  2  3  4  5
1  2  3  4  4  4  5  1  2  3  4  5
   1  2  3  3  3  4  5  1  2  3  4
      1  2  2  2  3  4  5  1  2  3
         1  1  1  2  3  4  5  1  2
x  x  x  x        x  x  x  x  x  x

F(4)=10

r(t):

m=4:

faults:

1  2  3  4  1  2  5  1  2  3  4  5
1  2  3  4  1  2  5  5  5  3  4  4
   1  2  3  4  1  2  2  2  5  3  3
      1  2  3  4  1  1  1  2  5  5
x  x  x  x  x  x  x        x  x

F(3)=9

FIFO Example
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1         2         3         4         5
space (m)

15

10

5

0

faults
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1         2         3         4         5
space (m)

15

10

5

0

faults

Belady's
Anomaly

The anomaly occurs because
FIFO does not satisfy the
inclusion property: memory
contents for smaller m are
not subsets of those for
larger m (see example).
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CLOCK

• CLOCK = FIFO with usage bits
• Same as FIFO, except i-update rule is

while fi.U=1 do {fi.U=0; i=(i+1)%m}
• Attraction: almost as simple as FIFO and

protects used pages.
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LRU

• LRU = least recently used
• Maintain vector called “LRU stack” ordering

all p pages from most to least recently
referenced

• If S(t)=(f0,...,fp-1) is stack, page to be replaced
from m-page memory is fm-1.

• Attraction: good performance, no anomalies
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1  2  3  4  1  2  5  1  2  3  4  5
1  2  3  4  1  2  5  1  2  3  4  5
   1  2  3  4  1  2  5  1  2  3  4
      1  2  3  4  1  2  5  1  2  3
         1  2  3  4  4  4  5  1  2
x  x  x  x        x        x  x  x

F(4)=8

r(t):

m=4:

faults:

1  2  3  4  1  2  5  1  2  3  4  5
1  2  3  4  1  2  5  1  2  3  4  5
   1  2  3  4  1  2  5  1  2  3  4
      1  2  3  4  1  2  5  1  2  3
x  x  x  x  x  x  x        x  x  x

F(3)=10
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1         2         3         4         5
space (m)

15

10

5

0

faults

No anomaly occurs because
LRU satisfies the inclusion
property: memory contents
for smaller m are subsets
of those for larger m
(see example).
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LRU

S(t-1) S(t)

f0

f1

fm-1

fp-1

i

i
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LRU

S(t-1) S(t)

i

i

d(t)

r(t)=i

page fault at time t
if and only if d(t)>m

stack
distance
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LRU

S(t-1) S(t)

i

i

d(t)

r(t)=i

page fault at time t
if and only if d(t)>m

histogram {c(k)} in
which c(k) = number
of occurrences of
d(t)=k

sum{c(k)} = length of
reference string

stack
distance
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1  2  3  4  1  2  5  1  2  3  4  5
1  2  3  4  1  2  5  1  2  3  4  5
   1  2  3  4  1  2  5  1  2  3  4
      1  2  3  4  1  2  5  1  2  3
         1  2  3  4  4  4  5  1  2
                  3  3  3  4  5  1
x  x  x  x  4  4  x  3  3  5  5  5

r(t):

stacks:

d(t):

k  c(k)  F(k)
1    0    12
2    0    12
3    2    10
4    2     8
5    3     5
x    5

In one pass track
the LRU stack and
its distances.

On first references,
distance is infinite,
denoted by x.

Collect frequency histogram for
all possible stack distances, k.
F(k) is the sum of the counts for
all distances larger than k.
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Stack Algorithms

• Fixed-space memory policy called a stack algorithm
if it satisfies the inclusion property.

• Its pages can be ordered into a vector S(t) such that
the first m entries of S(t) are the memory contents at
time t.

• The stack S(t-1) is updated to S(t) by applying a
priority rule over all the pages.

• Page fault at time t exactly if d(t)>m.
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Stack Algorithms (2)

• LRU is a stack algorithm; its priority rule at time t
organizes the pages by increasing backward distance.

• MIN (optimal) is a stack algorithm; its priority rule at
time t organizes the pages by increasing forward
distance.

• Even the RAND (random) policy is a stack algorithm;
its priority rule at time t is a random permutation of
the pages.
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MIN

• MIN = minimum possible faults (optimum)
• Replace page with longest forward distance until

next reference.
• Attraction: benchmark for realizable policies.
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MIN (2)

• Stack update rule more complex.
• Referenced page moves to top because it is always in

memory, even if m=1.
• Any page below the current distance does not move

because there is no fault in any of those memory sizes
and memory contents cannot change in those memories.

• Pages in between move down or stay put, but cannot
move up because an up move would represent a page-in
for that memory size for a non referenced page.

• A page moves as far down as its priority permits.
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S(t-1) S(t)

i

i

a

max(a,b)

min(a,b)

b
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1  2  3  4  1  2  5  1  2  3  4  5
1  2  3  4  1  2  5  1  2  3  4  5
   1  1  1  4  1  1  5  5  5  5  4
      2  2  2  4  2  2  1  1  1  1
         3  3  3  3  3  3  2  2  2
                  4  4  4  4  3  3
x  x  x  x  2  3  x  2  3  4  5  2

r(t):

stacks:

d(t):

k  c(k)  F(k)
1    0    12
2    3     9
3    2     7
4    1     6
5    1     5
x    5

notice the update: page 3 comes from infinity; page 2
must move down, and it goes farther down than 1 because
1 is referenced again sooner.

after a page's last reference, its priority
is no longer important; here we use priority
equal to page number.
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1         2         3         4         5
space (m)

15

10

5

0

faults

LRU

MIN
FIFO
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Variable Partition Policies
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GLOBAL “X”

• Lump all pages of all jobs together in one pool and
apply policy “X” to the pool.

• Tends to perform much worse than “X” applied
separately to jobs:
– Order in usage-detecting priority lists influenced much

more by scheduling (e.g., round-robin) than by program
referencing.

– Susceptible to thrashing because there is no way to protect
individual localities.
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MPL (N)

jobs/sec

system saturation limit

expected
throughput

actual throughput

N-opt

Thrashing is unexpected,
sudden drop in system
throughput with increased
multiprogramming level.

Thrashing occurs when
MPL so large that no
program has enough space
for its locality sets; hence
the jobs generate a high
level of paging and all wind
up waiting for disk service
rather than make progress
on the CPU.
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WS

• WS = Working Set
• The working set at time t is the set of pages observed

in a backward looking window of fixed length T.
• The working set tracks localities: when T is contained

within a phase, the WS is the locality set.  At
transitions, WS contains some of both localities.

• Can be implemented with usage bits sampled every
T seconds in virtual time.
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WS (2)

• A WS memory policy is designed for variable
partition multiprogramming.

• The policy grants each job its WS, and allows the
MPL to rise only until memory is full of WS’s.

• The policy prevents thrashing.
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refs:    1   2   3   4   1   2   5   1   2   3   4   5

window size 6

WS = pages 1, 2, 4, 5

W(t,T)

W(9,6) = {1,2,4,5}

WS "sees" a subset of the pages
through its window and adjusts
memory allocation to match.

A page fault will occur at t=10
because page 3 is not in the
working set W(9,6).

time t=9
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1   2   3   4   1   2   5   1   2   3   4   5

In real time, a page swap delay is
inserted between t=9 and t=10
because of the page fault.

1   2   3   4   1   2   5   1   2 3   4   5page swap time
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WS follows an inclusion property: W(t,T-1) a subset of W(t,T)

Is there a distance function such that d(t)>T exactly when
there is a page fault at time t?

Yes: use the virtual time interval between references to
the same page.  When a page is referenced, it generates
a page fault exactly if that distance is larger than T.

x x x x x x
≤T ≤T ≤T>T >T

reference
to page i

page
fault

TT

page i is resident continuously until T seconds
into an interreference interval exceeding T.
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1  2  3  4  1  2  5  1  2  3  4  5
1  1  1  1  1  1  1  1  1  1  1   
   2  2  2  2  2  2  2  2  2  2  2
      3  3  3  3           3  3  3
         4  4  4  4           4  4
                  5  5  5  5     5
x  x  x  x  4  4  x  3  3  7  7  5

r(t):

residencies:
(T=4)    

d(t):

k  c(k)  F(k)
1    0    12
2    0    12
3    2    10
4    2     8
5    1     7
6    0     7
7    2     5
x    5

Note that WS size varies over time.
The mean space m(T)  is the total page-time
divided by time, or m(4) = 40/12 = 3.33 pages.

Thus for T=4, the corresponding point in the
faults versus mean space graph is (F(T), m(T))
or (8, 3.33).
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1  2  3  4  1  2  5  1  2  3  4  5
1  1        1  1     1  1         
   2  2        2  2     2  2      
      3  3                 3  3   
         4  4                 4  4
                  5  5           5

residencies:
(T=2)    

m(2)=23/12=1.92

1  2  3  4  1  2  5  1  2  3  4  5
1  1  1     1  1  1  1  1  1      
   2  2  2     2  2  2  2  2  2      
      3  3  3              3  3  3
         4  4  4              4  4
                  5  5  5        5

residencies:
(T=3)    

m(3)=33/12=2.75

1  2  3  4  1  2  5  1  2  3  4  5
1  1  1  1  1  1  1  1  1  1  1  1
   2  2  2  2  2  2  2  2  2  2  2
      3  3  3  3  3        3  3  3
         4  4  4  4  4        4  4
                  5  5  5  5  5  5

residencies:
(T=5)    

m(5)=43/12=3.58

1  2  3  4  1  2  5  1  2  3  4  5
1  1  1  1  1  1  1  1  1  1  1  1
   2  2  2  2  2  2  2  2  2  2  2
      3  3  3  3  3  3     3  3  3
         4  4  4  4  4  4     4  4
                  5  5  5  5  5  5

residencies:
(T=6)    

m(6)=45/12=3.75
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1         2         3         4         5

mean
space
(m)

15

10

5

0

faults

MIN

WS
1 2

3

4
6

7

5

WS space-fault points plotted
and connected; numbers are
T values.

Note that at one point (T=7)
WS generates a better operating
point than (fixed-space) MIN
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PFF

• PFF = page fault frequency
• WS requires regular virtual time usage-bit sampling

(at window-size separations).
• PFF samples at page-fault times.
• To prevent a short inter-fault interval from making it

seem that most pages are unused, PFF uses a
threshold T.  Inter-fault intervals less than the
threshold are ignored.
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PFF (2)

• Let T = threshold value
• Let time t be moment of page fault and t* be time of

previous page fault.
• If t-t* ≤ T, take no replacement action; just add the

faulting page to memory.
• If t-t* > T, replace all pages with usage bit 0, reset all

usage bits to 0; and add the faulting page to memory.
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PFF (3)

• PFF does not satisfy an inclusion property.
• PFF can exhibit anomalies (like Belady’s anomaly for

FIFO).
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VMIN

• VMIN = variable space MIN (optimal)
• Parameter T, a window size as in WS
• At a reference to a page:

– retain page till next reference if forward time to next
reference is ≤ T.

– otherwise replace the page.

• Since criterion for retaining is identical to WS, the
fault rate of VMIN = F(T) from WS.
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1  2  3  4  1  2  5  1  2  3  4  5
1  1  1  1  1  1  1  1  1  1  1   
   2  2  2  2  2  2  2  2  2  2  2
      3  3  3  3           3  3  3
         4  4  4  4           4  4
                  5  5  5  5     5
x  x  x  x  4  4  x  3  3  7  7  5

r(t):

residencies:
(T=4)    

d(t):

The residency chart for VMIN is similar
to that for WS, except that VMIN does not hold
a page into a long inter-reference interval as does WS.

VMIN has the same page fault sequence but a lower
resident set size than WS.  The red letters show the
contributions to WS space-time that VMIN eliminates.

m(4)=22/12=1.83
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1  2  3  4  1  2  5  1  2  3  4  5
1           1        1            
   2           2        2         
      3                    3      
         4                    4   
                  5              5

residencies:
(T=2)    

m(2)=12/12=1.00

1  2  3  4  1  2  5  1  2  3  4  5
1           1  1  1  1            
   2           2  2  2  2         
      3                    3      
         4                    4   
                  5              5

residencies:
(T=3)    

m(3)=16/12=1.33

1  2  3  4  1  2  5  1  2  3  4  5
1  1  1  1  1  1  1  1            
   2  2  2  2  2  2  2  2         
      3                    3      
         4                    4   
                  5  5  5  5  5  5

residencies:
(T=5)    

m(5)=26/12=2.17

1  2  3  4  1  2  5  1  2  3  4  5
1  1  1  1  1  1  1  1            
   2  2  2  2  2  2  2  2         
      3                    3      
         4                    4   
                  5  5  5  5  5  5

residencies:
(T=6)    

m(6)=26/12=2.17

1  2  3  4  1  2  5  1  2  3  4  5
1  1  1  1  1  1  1  1            
   2  2  2  2  2  2  2  2         
      3  3  3  3  3  3  3  3      
         4  4  4  4  4  4  4  4   
                  5  5  5  5  5  5

residencies:
(T=7)    

m(7)=38/12=3.17



© 2001, P. J. Denning 48

1         2         3         4         5

mean
space
(m)

15

10

5

0

faults

MIN

WS

VMIN
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If the program has long phases and T is set less than the phase
lengths, then VMIN = WS during the phases.

The VMIN space advantage occurs at the transitions between
phases, when VMIN unloads old pages before entering the new
phase, while WS retains old pages for a while after entering
the new phase.

Experimental studies (1970s) showed that WS is about as close
to optimum space-time as a realizable paging strategy can come
and will usually be within 5% to 10% of optimum.
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CPU

DISK

I/O

WS controller
admit new job only

when pool sufficient
for its WS

Load-Controlled WS Scheduling

waiting jobs

active jobs
(part of MPL)

pool = M - sum(WS[i])
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Submitted jobs, N

jobs/sec

system saturation limit

load-controlled
throughput

throughput
without load
control

N = waiting + activeWS automatically adjusts
number of active jobs to
get maximum throughput
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finis


