Memory Policy Basics

P.]J. Denning
For CS471/571

© 2001, P. J. Denning

Potential Paging Bottlenecks

e Three possible bottlenecks of paging systems:
— fetching

— mapping

— replacing
e Demand paging reduces cost of fetching to minimum
(pre-fetching adds cost if page not used).

e TLB-assisted MMU reduces cost of mapping to a few
percent of RAM access time.

e Replacement policy is the main factor influencing
performance.

© 2001, P. J. Denning 2

Why is Replacement Important?

* Most pages are reused repeatedly.

* Replacing a page implies future page fault to
recover it.

e Choice of page to replace therefore influences
amount of paging.

© 2001, P. J. Dennin 3

Principle of Optimality (1)

e Replace the page that will not be used again for the
longest time.

— Maximizes forward interval to next fault.

— Minimizes total number of faults.

* Not realizable: future page reference patterns are not
known.

e Policies that estimate future forward distance based
on past observation are suboptimal.

© 2001, P. J. Denning

Principle of Optimality (2)

e Minimize the space-time of a job.

— Measured in page-seconds

— Accumulate one page-second for each page held in memory
for one second

— A kind of “rent” for using memory space.

e In fixed-size memory allocation, the previous
principle is minimizes faults and therefore the total
space-time resulting from faults.

© 2001, P. J. Denning

arriving
jobs

M pages of
memory

C

>
completing
jobs

© 2001, P. J. Denning

Observe system for T seconds:
Total space-time available = MT
Space-time per job Y = MT/C
System throughput X = C/T

Thus X = M/Y.

Throughput maximum when
space time minimum.

Observe job execute for T seconds virtual time
F(m) = number of page faults when m pages allocated to job

space-time without page faults = mT

space-time for one page fault = mD, where D is the delay
in virtual seconds to process the page fault

space time for all page faults = mDF(m)

Therefore Y(m) = total space-time
= mT+mDF(m)
= mT(1+D/L(m))
where L(m) = T/F(m) = mean time between faults = lifetime function

If D/L(m) much larger than 1, Y(m) is minimum when L(m)/m maximum.

This occurs when m is chosen near the LIFETIME CURVE KNEE (next page).

© 2001, P. J. Denning 7

lifetime
A

L(m)

slope = L(m)/m

© 2001, P. J. Denning

Slope = L(m)/m is maximum
at the knee of the lifetime curve.

Therefore, space-time minimized
if we choose memory allocation near
knee of job's lifetime curve.

» memory space

The knee criterion is approximate because the space-time
formula on which it depends is approximate.

It also works for variable-space policies because the lifetime

curve can be defined for mean time between faults versus
mean memory allocation.

© 2001, P. J. Denning

Policies

Parameter m, the fixed
space size allocated to
the job, in pages.

e Fixed partition
Find F(m) = humber of

- FIFO page faults.
— FIFO with usage bit (CLOCK)
. Parameter T, the fixed
~ MIN (the optimum) time intervgl to measure
e Variable partition memory demand.
— Global X (X =LRU, FIFO, CLOCK, etc) .
Find F(T) = number of
- WS page faults, and
— PFF m(T) = mean memory
— VMIN Consumed.

© 2001, P. J. Denning 10

Fixed Partition Policies

© 2001, P. J. Dennin

11

FIFO

e FIFO = first in first out
e Page frames used (f,...,f)

e Index i tells which frame is next for
replacement

e On page fault, replace f, and set i=(i+1)%m
e Attraction: very simple implementation

© 2001, P. J. Denning

12

FIFO Example

2

1

r(t):

m=4:

F(4)=10

X

X

faults:

F(3)=9

13

© 2001, P. J. Denning

faults

15

10

© 2001, P. J. Denning

» space (m)

14

faults

A
Belady's
5 Anomaly
The anomaly occurs because
/ FIFO does not satisfy the
10 inclusion property: memory
contents for smaller m are
not subsets of those for
5 » larger m (see example).
o) » space (m)

© 2001, P. J. Denning 15

CLOCK

e CLOCK = FIFO with usage bits

e Same as FIFO, except i-update rule is
while f.U=1 do {f,.U=0; i=(i+1)%m)}

e Attraction: almost as simple as FIFO and
protects used pages.

© 2001, P. J. Dennin

16

LRU

* LRU = least recently used

* Maintain vector called “LRU stack” ordering

all p pages from most to least recently
referenced

o If S(t)=(fy...f,4) is stack, page to be replaced

from m-page memory is f_ ;.

e Attraction: good performance, no anomalies

© 2001, P. J. Denning 17

2

1

r(t):

m=4:

F(4)=8

X

X

faults:

F(3)=10

18

© 2001, P. J. Denning

faults
A

No anomaly occurs because
15 LRU satisfies the inclusion
property: memory contents
for smaller m are subsets
10 of those for larger m

(see example).

o) » space (m)

© 2001, P. J. Denning 19

S(t-1)

© 2001, P. J. Denning

S(1)

20

LRU

stack
distance

d(t)

S(t-1)

r(t)=i

© 2001, P. J. Denning

S(1)

page fault at time 1
if and only if d(t)>m

21

LRU

r(t)=i

i page fault at time 1
if and only if d(t)>m

stack

distance d(t)

histogram {c(k)} in
which c(k) = number
: of occurrences of

' d(t)=k

sum{c(k)} = length of
reference string

S(t+-1) S(t)

© 2001, P. J. Denning 22

r(t):

stacks:

d(t):

In one pass track

the LRU stack and
its distances.

On first references,
distance is infinite,

denoted by x.

1 2 3 4 1 2 5 1 2 3 4 5
1 2 3 4 1 2 5 1 2 3 4 5
1 2 3 4 1 2 5 1 2 3 4
1 2 3 4 1 2 5 1 2 3
1 2 3 4 4 4 5 1 2
3 3 3 4 5 1
X X X xXx 4 4 x 3 3 5 5 5
k c(k) F(k)
1 0 12
2 0 12 Collect frequency histogram for
3 2 10 all possible stack distances, k.
4 2 8 F(k) is the sum of the counts for
> 3 > all distances larger than k.
X 5

© 2001, P. J. Denning 23

Stack Algorithms

e Fixed-space memory policy called a stack algorithm
if it satisfies the inclusion property.

e Its pages can be ordered into a vector S(t) such that
the first m entries of S(t) are the memory contents at
time t.

e The stack S(t-1) is updated to S(t) by applying a
priority rule over all the pages.

e Page fault at time t exactly if d(t)>m.

© 2001, P. J. Denning

24

Stack Algorithms (2)

e LRU is a stack algorithm; its priority rule at time t
organizes the pages by increasing backward distance.

e MIN (optimal) is a stack algorithm; its priority rule at
time t organizes the pages by increasing forward
distance.

e Even the RAND (random) policy is a stack algorithm;
its priority rule at time t is a random permutation of

the pages.

© 2001, P. J. Denning 25

MIN

¢ MIN = minimum possible faults (optimum)

e Replace page with longest forward distance until
next reference.

e Attraction: benchmark for realizable policies.

© 2001, P. J. Denning

26

MIN (2)

e Stack update rule more complex.

e Referenced page moves to top because it is always in
memory, even if m=1.

e Any page below the current distance does not move
because there is no fault in any of those memory sizes
and memory contents cannot change in those memories.

e Pages in between move down or stay put, but cannot
move up because an up move would represent a page-in
for that memory size for a non referenced page.

e A page moves as far down as its priority permits.

© 2001, P. J. Denning 27

b"é’ max(a,b)

min(a,b)

S(t+-1) S(t)

© 2001, P. J. Denning

28

notice the update: page 3 comes from infinity; page 2
must move down, and it goes farther down than 1 because
1 is referenced again sooner.

r(¢): 1 2 /314 1 2 5 1 2,3 4 5
1 2 /3 /4 1 2 5 1 (2|13 4 5
stacks: 1/1/1 4 1 1 5 |5|5 5 4
2/, 2 2 4 2 2 |1 1|1 1 1
3 3 3 3 3|3 |2 2 2
4 4 |4 (4 3 3
d(t): x x x x 2 3 x 2 7 4 5 2
k c(k) F(k)
1 0 12 after a page's last reference, its priority
2 3 9 is no longer important; here we use priority
3 2 7 equal to page number.
4 1 6
5 1 5
X 5

© 2001, P. J. Denning 29

faults

A
15
LRU
10
FIFO
MIN
5
o)
2 4 5

© 2001, P. J. Denning

» space (m)

30

Variable Partition Policies

© 2001, P. J. Dennin

31

GLOBAL “X”

e Lump all pages of all jobs together in one pool and
apply policy “X” to the pool.

e Tends to perform much worse than “X” applied
separately to jobs:

— Order in usage-detecting priority lists influenced much
more by scheduling (e.g., round-robin) than by program
referencing.

— Susceptible to thrashing because there is no way to protect
individual localities.

© 2001, P. J. Denning

32

jobs/sec

4 Thrashing is unexpected,
system saturation limit sudden drop in system
T throughput with increased
P expected multiprogramming level.
= throughput

Thrashing occurs when
MPL so large that no
program has enough space
for its locality sets; hence
the jobs generate a high
level of paging and all wind

actual throughput up waiting for disk service
rather than make progress

» MPL (N) on the CPU.

I o o o - \

N-op*t

© 2001, P. J. Denning 33

WS

e WS = Working Set

e The working set at time t is the set of pages observed
in a backward looking window of fixed length T.

e The working set tracks localities: when T is contained
within a phase, the WS is the locality set. At
transitions, WS contains some of both localities.

e Can be implemented with usage bits sampled every
T seconds in virtual time.

© 2001, P. J. Denning 34

WS (2)

e A WS memory policy is designed for variable
partition multiprogramming.

e The policy grants each job its WS, and allows the
MPL to rise only until memory is full of WS’s.

e The policy prevents thrashing.

© 2001, P. J. Denning

35

window size 6 time t=9

v
refs: 1 2 3 4 1 2 5 1 2 3 4 5
— J
Y
WS = pages 1,2, 4,5 WS "sees" a subset of the pages

through its window and adjusts

W(t,T) memory allocation to match.

W,6)={1245 :
Gor=t) A page fault will occur at =10

because page 3 is not in the
working set W(9,6).

© 2001, P. J. Denning 36

page swap time 3

In real time, a page swap delay is
inserted between t=9 and t=10
because of the page fault.

© 2001, P. J. Denning

37

WS follows an inclusion property: W(t,T-1) a subset of W(t,T)

Is there a distance function such that d(+)>T exactly when
there is a page fault at time t?

Yes: use the virtual time interval between references to
the same page. When a page is referenced, it generates
a page fault exactly if that distance is larger than T.

referenc-:e page
to page i [fault
<T <T >T <T >T
X X X VAR, L3
_J _J
4—T> 4—T>

page i is resident continuously until T seconds
into an interreference interval exceeding T.

© 2001, P. J. Denning 38

r(¢): 1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 1 1 1 1 1 1
residencies: 2 2 2 2 2 2 2 2 2 2 2
(T=4) 3 3 3 3 3 3 3
4 4 4 4 4 4
5 5 5 5 5
d(t): x x x x 4 4 x 3 3 7 7 5
k c(k) F(k)
1 0 12 Note that WS size varies over time.
2 0 12 The mean space m(T) is the total page-time
3 2 10 divided by time, or m(4) = 40/12 = 3.33 pages.
4 2 8
Z é ; Thus for T=4, the corresponding point in the
. 5 5 faults versus mean space graph is (F(T), m(T))
% 5 or (8, 3.33).

© 2001, P. J. Denning 39

residencies:
(T=2)

residencies:
(T=3)

residencies:
(T=5)

residencies:
(T=6)

2 3 4 1 2 5 1 2 3 4 5
I I 1 I 1
2 2 2 2 2 2
3 3 3 3
4 4 4 4
5 5 5
2 3 4 1 2 5 1 2 3 4 5
1 1 I T 1 1 1 1
2 2 2 2 2 2 2 2 2
3 3 3 3 3 3
4 4 4 4 4
5 5 5
2 3 4 1 2 5 1 2 3 4 5
I 1T 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 5 5 5 5 5
2 3 4 1 2 5 1 2 3 4 5
I 1T 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5

© 2001, P. J. Denning

m(2)=23/12=1.92

m(3)=33/12=2.75

m(5)=43/12=3.58

m(6)=45/12=3.75

40

faults

A
WS space-fault points plotted
and connected; numbers are
15 T values.
2
Note that at one point (T=7)
3 WS .
10 WS generates a better operating
- point than (fixed-space) MIN
MIN
5 7
mean
° 2 3 a4 5 e
(m)

© 2001, P. J. Denning

41

PFF

* PFF = page fault frequency

WS requires regular virtual time usage-bit sampling
(at window-size separations).

e PFF samples at page-fault times.

e To prevent a short inter-fault interval from making it
seem that most pages are unused, PFF uses a
threshold T. Inter-fault intervals less than the
threshold are ignored.

© 2001, P. J. Denning 42

PFF (2)

o Let T = threshold value

e Let time t be moment of page fault and t* be time of
previous page fault.

e Ift-t* < T, take no replacement action; just add the
faulting page to memory.

e If t-t* > T, replace all pages with usage bit 0, reset all
usage bits to 0; and add the faulting page to memory.

© 2001, P. J. Denning 43

PFF (3)

e PFF does not satisty an inclusion property.

e PFF can exhibit anomalies (like Belady’s anomaly for
FIFO).

© 2001, P. J. Denning 44

VMIN

VMIN = variable space MIN (optimal)
Parameter T, a window size as in WS

At a reference to a page:

— retain page till next reference if forward time to next
reference is < T.

— otherwise replace the page.

Since criterion for retaining is identical to WS, the
fault rate of VMIN = F(T) from WS.

© 2001, P. J. Denning

45

r(t):

residencies:
(T=4)

d(t):

1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 m(4)=22/12=1.83
4 4 4 4 4 4
5 5 5 5 5
X X X xXx 4 4 x 3 3 7 7T 5

The residency chart for VMIN is similar
to that for WS, except that VMIN does not hold
a page into a long inter-reference interval as does WS.

VMIN has the same page fault sequence but a lower

resident set size than WS. The red letters show the
contributions to WS space-time that VMIN eliminates.

© 2001, P. J. Denning 46

residencies:
(T=2)

residencies:
(T=3)

residencies:
(T=5)

residencies:
(T=6)

residencies:
(T=7)

2 3 4 1 2 1 3 4 5
I I
2 2
3 3
4 4
5
2 3 4 1 2 1 3 4 5
I 1 1
2 2 2
3 3
4 4
5
2 3 4 1 2 1 3 4 5
I T T T 1 I
2 2 2 2 2 2
3 3
4 4
5 5 5 5
2 3 4 1 2 1 3 4 5
I T T T 1 I
2 2 2 2 2 2
3 3
4 4
5 5 5 5
2 3 4 1 2 5 1 2 3 4 5
I I 1 1 1 1T 1
2 2 2 2 2 2 2 2
33 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5

© 2001, P. J. Denning

m(2)=12/12=1.00

m(3)=16/12=1.33

m(5)=26/12=2.17

m(6)=26/12=2.17

m(7)=38/12=3.17

47

faults

A
15
WS
10
VMIN MIN
5
mean
0 1 2 - > space
(m)

© 2001, P. J. Denning

48

If the program has long phases and T is set less than the phase
lengths, then VMIN = WS during the phases.

The VMIN space advantage occurs at the transitions between
phases, when VMIN unloads old pages before entering the new
phase, while WS retains old pages for a while after entering
the new phase.

Experimental studies (1970s) showed that WS is about as close

to optimum space-time as a realizable paging strategy can come
and will usually be within 5% to 10% of optimum.

© 2001, P. J. Denning

49

Load-Controlled WS Scheduling

waiting jobs

active jobs
(part of MPL)

—» DISK —»

—» CPU > —
—» I/0 >

h 4

WS controller
admit new job only
when pool sufficient

pool = M - sum(WSIi])

for its WS

© 2001, P. J. Denning 50

jobs/sec

system saturation limit

\\ load-controlled
\ throughput
\
\
\
\ throughput
\ without load
\\ control

» Submitted jobs, N

.

WS automatically adjusts = waiting + active

number of active jobs to
get maximum throughput

© 2001, P. J. Denning

51

finis

© 2001, P. J. Denning

52

