
Handles and Directories

P. J. Denning
For CS471/CS571

© 2001, P. J. Denning

© 2001, P. J. Denning 2

Handles

• Handles: system-generated names for objects
• Issued: by object class manager on creating object
• Protected: OS tries to prevent them from being modified
• h = (T, A, id) = (type, access, identifier)
• TYPES: OS object type

– file
– device
– directory
– virtual machine
– etc

© 2001, P. J. Denning 3

Diagram (next page) shows users calling on XM, the
manager of type X objects.

When XM creates object of type X, it returns a
handle to the object. Object itself is in the storage

areas controlled by XM. Handle is in user’s
workspace.

To perform an operation, say OP1, on an object, the
user calls the OP1 procedure (in XM) along with the

object’s handle and parameters of the call.

This is called information hiding because the inner
details of the XM are hidden from users. Users see
only objects as represented by handles. Users can
perform only the operations supplied by the type

manager. Details of implementation are of no
concern to the user.

Diagram (next page) shows users calling on XM, the
manager of type X objects.

When XM creates object of type X, it returns a
handle to the object. Object itself is in the storage

areas controlled by XM. Handle is in user’s
workspace.

To perform an operation, say OP1, on an object, the
user calls the OP1 procedure (in XM) along with the

object’s handle and parameters of the call.

This is called information hiding because the inner
details of the XM are hidden from users. Users see
only objects as represented by handles. Users can
perform only the operations supplied by the type

manager. Details of implementation are of no
concern to the user.

© 2001, P. J. Denning 4

XM
(“X” Manager)

h1
h2
h3

h4
h5

User 1

User 2

?

CREATE DELETE OP1 OP2

© 2001, P. J. Denning 5

Handles

• TYPE: code indicating type of object designated by
the handle -- e.g., file, device, pipe, virtual machine.

• Checked by type managers to ensure that operations
are applied to the proper types of objects.

© 2001, P. J. Denning 6

Handles

• ACCESS: code whose i-th bit enables i-th operation of
the type manager

• E.g., if read is 4th command of 6 file-system
commands, a handle enabling read would look like
– (F, 000100, id)

© 2001, P. J. Denning 7

Handles

• IDENTIFIER: a system-chosen number that
distinguishes an object from all others

• If system includes multiple machines on
network, the number is (machine id, local id)

• User does not choose the id
• User stores handles in own workspace

© 2001, P. J. Denning 8

Requirements on id’s

• Unique in space: no two objects of the same
type have same id
– What errors if not met?

• Unique in time: ids are not reused; just issued
and used for one object only
– What errors if not met?

© 2001, P. J. Denning 9

Handle Management

• Handles given to user, stored in user space
• Protection: can handles be protected from

tampering or modification?
• Management: can user assign local names to

handles?
• DIRECTORY SYSTEM: provides protection

and management for handles

© 2001, P. J. Denning 10

Directories

• A directory is a table associating strings with handles
• Strings: user-chosen names
• (Handles: system-chosen unique ids)
• h = SEARCH(d, “string”)
• ENTER(d, “string”, h) --- no duplicates
• REMOVE(d, “string”)
• Directory hierarchies: ENTER(d1, “string”, d2) makes

directory d2 subordinate of d1

© 2001, P. J. Denning 11

“report.doc”, h1

“list”, h2

report.doc

list

(directory)

(directory)

(text file)

© 2001, P. J. Denning 12

Directories

• Directory tree: begins with root (Unix /)(DOS \)
• Pathname: sequence of directory names beginning with root

and ending with object that need not be directory
– /usr/local/info/mail/pjd
– \windows\system\programfiles
– hard disk:desktop:applications

• Extend SEARCH to accept pathnames for “string”
• Pathnames automatically unique in space (why?) but not in time

(why?)

© 2001, P. J. Denning 13

Directories

• VM component: current directory cd
• String cd automatically prefixed to a string generated by the VM

for a directory search
• Another VM component: path
• Path is one or more directory-pathnames; SEARCH extended so

that SEARCH(“string”) uses all the directories of the path as
search places until a match on string is found

• Simplifies searching
• Directories are not files -- may be implemented as files (usual

method), RAM tables, or database tables.

