
Deadlocks Basics

P. J. Denning
For CS471/CS571

© 2001, P. J. Denning

© 2001, P. J. Denning 2

Definition
• System has many concurrent tasks (processes,

threads).
• Tasks require resources to make progress.
• System has fixed pools of resources of different types

(CPU, pages, sectors, files, records, etc.).
• Each task holds some resources
• Each task will have to wait if it requests more

resources that are not available.
• Deadlock = circular wait among tasks.

© 2001, P. J. Denning 3

Two kinds of deadlock

• Signals (consumable resources)
– Each task waiting for signal from another
– Can't back out

• Units (reusable resources)
– Each task waiting for another to release a resource

unit
– Can back out by aborting tasks until enough

resources available to free others.

© 2001, P. J. Denning 4

Signal Deadlock 1

P1: ...
 wait(a)
 wait(b)
 use objects a and b
 signal(b)
 signal(a)
 ...

P2: ...
 wait(b)
 wait(a)
 use objects a and b
 signal(a)
 signal(b)
 ...

Initially, semaphores a and b are both 1.
Deadlock if P1 and P2 complete their

first wait’s simultaneously before
attempting their second wait’s.

© 2001, P. J. Denning 5

Signal Deadlock 2

T: transaction(a,b)
 wait(a)
 wait(b)
 use objects a and b
 signal(b)
 signal(a)
 return

Deadlock may result if P1 calls T(a,b) and
P2 calls T(b,a) at the same time.

May not be easy to test for signal deadlocks:

© 2001, P. J. Denning 6

Signal Deadlock 3

T: transaction(a,b,c)
 if locked(a) then goto T
 lock(a)
 if locked(b) then {unlock(a); goto T}
 lock(b)
 if locked(c) then {unlock(a,b); goto T}
 lock(c)
 update records a,b,c
 unlock(a,b,c)
 return

Database systems use two-phase protocol:
get all locks before updating; don‘t wait.

© 2001, P. J. Denning 7

Signal Deadlock 4

Two-phase protocol may have long
busy-waiting period during times
of contention for shared records.

Can reduce waiting probability by inserting
random delay before looping back after
finding locked records.

© 2001, P. J. Denning 8

Resource Deadlock

• Circular waits arising from waiting for new resources
to be granted while holding other resources.

• Can be “backed out of” by aborting one or more of
the deadlock processes and releasing their resources
back to the system pools.

© 2001, P. J. Denning 9

Banking Example

• Bank gives Alice credit limit $100 and Bob
$200. Loan pool is $250.

• Alice asks for $90, bank grants. (Pool = $160)
• Bob asks for $160, bank grants. (Pool = $0)
• Alice asks for $10, waits.
• Bob asks for $10, waits.

© 2001, P. J. Denning 10

Kitchen Example

• Kitchen has two resources, burner and beater.
• Chef has two recipes, stew and pudding.
• Stew: start beating while still cooking on

burner, continue beating for a few minutes
after removing from burner.

• Pudding: start beating before placing on
burner, continue beating for a few minutes
after placing on burner.

© 2001, P. J. Denning 11

stew

pudding

burner beater

All joint progress paths have nondecreasing
increments in both dimensions.

© 2001, P. J. Denning 12

stew

pudding

burner beater

infeasible

All joint progress paths must avoid
the infeasible region.

© 2001, P. J. Denning 13

stew

pudding

burner beater

infeasible

unsafe

Any joint progress paths entering the
unsafe region cannot exit; deadlock at
northeast corner.

© 2001, P. J. Denning 14

Memory Example

• Command SEND(p,m) places message m in a
buffer obtained from OS and attaches to
inbox of process p.

• Command m=GET() returns the first message
from inbox and returns buffer to OS.

• Deadlock can result if OS runs out of buffers
when p1 and p2 are attempting SEND to each
other at the same time.

© 2001, P. J. Denning 15

Deadlock condition
For each deadlocked task, the set of unfilled requests is not
covered by the sum of the available resources plus all
resources held by non-deadlocked tasks.

Phrasing works for multi-dimensional resources where
"A covers B" means that each dimension of A is greater
than or equal to the corresponding dimension of B.

Draw graph with nodes for tasks and resources; arrow
(T,R) means task T waits for resource R; arrow (R,T)
means T holds resource R. Deadlock implies loop in
graph. However, loop does not imply deadlock.

© 2001, P. J. Denning 16

Deadlock Avoidance

• prior prevention -- negate one of the essential
conditions
– mutual exclusion of units
– nonpreemption of units
– resource waiting

• detection and recovery
• dynamic control of joint progress paths

© 2001, P. J. Denning 17

Prevention

• grant all resources before starting task
– two-phase locking
– max at beginning

• ordered resource usage:
– resources in groups 1,2,3,...
– if task requests more, they must come from

higher numbered group than any in which
task holds resources.

© 2001, P. J. Denning 18

1 2 N-1

resources

tasks

If tasks 1,2,...,N are in circular wait,
then task N must be holding the
resource needed by task N-1 and
requesting the resource held by task 1.
This is impossible under ordered usage.

If tasks 1,2,...,N are in circular wait,
then task N must be holding the
resource needed by task N-1 and
requesting the resource held by task 1.
This is impossible under ordered usage.

N•••

© 2001, P. J. Denning 19

• Prevention is conservative: it withholds
resources that may not be used.

• Tradeoff between unused resources and
time otherwise spent detecting and
removing deadlocks.

© 2001, P. J. Denning 20

Detection

• If deadlock suspected, apply “reduction”
algorithm: pretend all tasks deadlocked; find
task that can complete from available
resources; delete it from the set and pretend
its resources are released and added to those
available; repeat.

• If algorithm stops with nonempty set of tasks,
they are the deadlocked ones.

© 2001, P. J. Denning 21

Path Monitoring

• Generally intractable because path can enter
unsafe region, in which progress is still
possible but deadlock inevitable; finding a
safe path is exhaustive search problem.

• One tractable case: each task has (multi-
dimensional) line of credit; granting a task‘s
next request is safe if the next state, modified
by pretending all tasks reach their credit
limits, contains no deadlock.

