
CS 571 Materials
February 19, 2002
4:30pm - 7:10pm
Peter J. Denning

©2002 by Peter J. Denning 2

AGENDA

• Q&A
• Review of A2 and P1
• Virtual Machines
• Info Objects
• Handles and Directories

©2002 by Peter J. Denning 3

Review of A2

• Elevator controller
• Passenger threads
• Car (elevator) thread
• Monitor to synchronize

©2002 by Peter J. Denning 4

Floors
1-8

Call
Buttons

 D

U D

U D

U D

U D

U D

U D

U

System state

U D S

floor, direction

2

1

2 1

2

1

1

request
matrix

car

©2002 by Peter J. Denning 5

Passenger:

 DELAY(T)

 choose (d,i,j)

 CALL(i,d)

 SELECT(j)

 repeat

Passenger:

 DELAY(T)

 choose (d,i,j)

 CALL(i,d)

 SELECT(j)

 repeat

©2002 by Peter J. Denning 6

Passenger:

 DELAY(T)

 choose (d,i,j)

 CALL(i,d)

 SELECT(j)

 repeat

Passenger:

 DELAY(T)

 choose (d,i,j)

 CALL(i,d)

 SELECT(j)

 repeat

Passenger doing other
things for time T

Passenger doing other
things for time T

Choose random numbers:
d = 1 (up) or -1 (down)
i = floor number (entry)
j = floor number (exit), i≠j

Choose random numbers:
d = 1 (up) or -1 (down)
i = floor number (entry)
j = floor number (exit), i≠j

Call for elevator from floor i in direction d;
wait until elevator arrives at floor i;
enter elevator (2 sec).
ON RETURN: entered into elevator

Call for elevator from floor i in direction d;
wait until elevator arrives at floor i;
enter elevator (2 sec).
ON RETURN: entered into elevator

request destination floor j
wait until elevator arrives at floor j;
exit elevator (2 sec).
ON RETURN: exited from elevator

request destination floor j
wait until elevator arrives at floor j;
exit elevator (2 sec).
ON RETURN: exited from elevator

©2002 by Peter J. Denning 7

CONDITION VARIABLES:

timetoEnter[i,d] -- true when
 passenger on floor i requesting
 direction d can now enter the
 elevator car, which has arrived
 and opened its door.

timetoExit[j] -- true when
 elevator has arrived at floor j
 and has now opened door to allow
 passengers to exit.

timetoMove -- true when elevator
 has a request to move to another
 floor.

selectionsMade -- true when current
 group of new passengers have all
 made their floor selections.

CONDITION VARIABLES:

timetoEnter[i,d] -- true when
 passenger on floor i requesting
 direction d can now enter the
 elevator car, which has arrived
 and opened its door.

timetoExit[j] -- true when
 elevator has arrived at floor j
 and has now opened door to allow
 passengers to exit.

timetoMove -- true when elevator
 has a request to move to another
 floor.

selectionsMade -- true when current
 group of new passengers have all
 made their floor selections.

©2002 by Peter J. Denning 8

STATE VARIABLES:

U[1..8]:
 counts of number of up requests
 waiting at floor i

D[1..8]:
 counts of number of down requests
 waiting at floor i

S[1..8]:
 counts of number of boarded passengers
 requesting exit at floor j

floor: current floor of elevator car

dir: current direction of elevator car
 +1 = up, -1 = down, 0 = stopped

sel: count of how many recently admitted
 passengers have not made selections

STATE VARIABLES:

U[1..8]:
 counts of number of up requests
 waiting at floor i

D[1..8]:
 counts of number of down requests
 waiting at floor i

S[1..8]:
 counts of number of boarded passengers
 requesting exit at floor j

floor: current floor of elevator car

dir: current direction of elevator car
 +1 = up, -1 = down, 0 = stopped

sel: count of how many recently admitted
 passengers have not made selections

©2002 by Peter J. Denning 9

MONITOR FUNCTIONS (for passengers):

CALL(i,d):
 if d=1 then U[i]++ else D[i]++
 timetoMove.signal
 timetoEnter[i,d].wait
 DELAY(2)
 return

SELECT(j):
 S[j]++
 sel--; if sel=0 then selectionsMade.signal
 timetoMove.signal
 timetoExit[j].wait
 DELAY(2)
 return

MONITOR FUNCTIONS (for passengers):

CALL(i,d):
 if d=1 then U[i]++ else D[i]++
 timetoMove.signal
 timetoEnter[i,d].wait
 DELAY(2)
 return

SELECT(j):
 S[j]++
 sel--; if sel=0 then selectionsMade.signal
 timetoMove.signal
 timetoExit[j].wait
 DELAY(2)
 return

©2002 by Peter J. Denning 10

MONITOR FUNCTIONS (for elevator car):

dir = CHECKFLOOR:
 release passengers wanting to exit at current floor
 determine new value for direction (dir)
 continue (dir unchanged)
 reversed (dir = -dir)
 stop (dir = 0)
 admit new passengers waiting at current floor in new direction
 return dir

bool = RU:
 (Boolean) true if there are requests above current floor or
 up requests at current floor

bool = RD:
 (Boolean) true if there are requests below current floor or
 down requests at current floor

MONITOR FUNCTIONS (for elevator car):

dir = CHECKFLOOR:
 release passengers wanting to exit at current floor
 determine new value for direction (dir)
 continue (dir unchanged)
 reversed (dir = -dir)
 stop (dir = 0)
 admit new passengers waiting at current floor in new direction
 return dir

bool = RU:
 (Boolean) true if there are requests above current floor or
 up requests at current floor

bool = RD:
 (Boolean) true if there are requests below current floor or
 down requests at current floor

©2002 by Peter J. Denning 11

CHECKFLOOR:

 release exiting passengers

 if (dir=1 & RU) then {admit waiting up requests}

 else if (dir=1 & RD) then {admit waiting down requests; dir=-1}

 else if (dir=-1 & RD) then {admit waiting down requests}

 else if (dir=-1 & RU) then {admit waiting up requests; dir=1}

 else dir=0

 selectionsMade.wait

 return dir

CHECKFLOOR:

 release exiting passengers

 if (dir=1 & RU) then {admit waiting up requests}

 else if (dir=1 & RD) then {admit waiting down requests; dir=-1}

 else if (dir=-1 & RD) then {admit waiting down requests}

 else if (dir=-1 & RU) then {admit waiting up requests; dir=1}

 else dir=0

 selectionsMade.wait

 return dir

©2002 by Peter J. Denning 12

CHECKFLOOR:

 release exiting passengers

 if (dir=1 & RU) then {admit waiting up requests}

 else if (dir=1 & RD) then {admit waiting down requests; dir=-1}

 else if (dir=-1 & RD) then {admit waiting down requests}

 else if (dir=-1 & RU) then {admit waiting up requests; dir=1}

 else dir=0

 selectionsMade.wait

 return dir

CHECKFLOOR:

 release exiting passengers

 if (dir=1 & RU) then {admit waiting up requests}

 else if (dir=1 & RD) then {admit waiting down requests; dir=-1}

 else if (dir=-1 & RD) then {admit waiting down requests}

 else if (dir=-1 & RU) then {admit waiting up requests; dir=1}

 else dir=0

 selectionsMade.wait

 return dir

while S[floor]>0 do {
 timetoExit[floor].signal
 S[floor]--
 }

while S[floor]>0 do {
 timetoExit[floor].signal
 S[floor]--
 }

sel=0
while U[floor]>0 do {
 timetoEnter[floor,1].signal
 U[floor]--
 sel++
 }

sel=0
while U[floor]>0 do {
 timetoEnter[floor,1].signal
 U[floor]--
 sel++
 }

sel=0
while D[floor]>0 do {
 timetoEnter[floor,-1].signal
 D[floor]--
 sel++
 }

sel=0
while D[floor]>0 do {
 timetoEnter[floor,-1].signal
 D[floor]--
 sel++
 }

©2002 by Peter J. Denning 13

elevator:

 timetoMove.wait

 dir = CHECKFLOOR

 if dir≠0 then DELAY(15)

 floor = floor+dir

 repeat

elevator:

 timetoMove.wait

 dir = CHECKFLOOR

 if dir≠0 then DELAY(15)

 floor = floor+dir

 repeat

©2002 by Peter J. Denning 14

P1

• Group project
• Objective: implement in Java a simulation of

threads (representing people) using the elevator
controller of A2. Simulate elevator use with
different usage scenarios.
– Experience in multi-threaded programming
– Prepare engineering report on your approach, findings,

and conclusions.

©2002 by Peter J. Denning 15

Engineering Report Components
• Statement of the problem, approach to solution, and

main claims of the report
• Overview of architecture investigated as a solution to

this problem (includes diagrams, data flows, data
structure, algorithm sketches)

• Overview of the experiments used to test the
architecture

• Results of the individual experiments (including
graphs and plots)

• Findings and conclusions
• Appendices: simulator source code; raw data outputs

©2002 by Peter J. Denning 16

Data Collection
• Insert statements to gather data at key event

points
• Use these event records to calculate samples

of the metric of interest.
• Get a distribution and averages of the

samples.

©2002 by Peter J. Denning 17

Data Collection Example
• Average time for passenger to travel on elevator

(from moment of call to exit)
• Passenger identifier pid
• Insert “data(arrival,time,pid)” before CALL(i,d) --

records time in arrival[pid]
• Insert “data(departure,time,pid)” after SELECT(j) --

computes sample = time - arrival[pid]
• Aggregates

– Total of samples
– Count of number of samples

• Compute average = Total/Count

©2002 by Peter J. Denning 18

Data Collection Example
• Note that one “sample” is actually measured in

customer-seconds.
• The “Total” is total number of customer-seconds

accumulated by waiting customers.
• The “Count” C is total number of customers.
• The “Observation Period” T is the total time to track

a given number of customers through the system.
• Then “Average Waiting Time” = Total/C
• And “Average Queue Length” = Total/T

