
Operating Systems

Peter J. Denning, James J. Hunt, and Walter F. Tichy

August 17, 1999

1 Introduction

Early operating systems were control programs a few thousand bytes long that

scheduled jobs, drove peripheral devices, and kept track of system usage for

billing purposes. Modern operating systems are much larger, ranging from hun-

dreds of thousands of bytes for personal computers (e.g., MS/DOS, Xenix) to

tens of millions of bytes for mainframes (e.g., Honeywell's Multics, IBM's MVS,

AT&T's UNIX) and hundreds of millions of bytes for some servers (Microsoft's

NT). In addition to managing processors, memory, and dozens of input/output

devices, modern operating systems also provide numerous services such as In-

ternet communications, Web communications, inter-process communications,

�le and directory systems, data transfer over local networks, and command

languages and graphical user interfaces for invoking and controlling programs.

These high-level services hide the primitive facilities of the base computer, such

as interrupts, status registers, and device interfaces, from the user. The oper-

ating system builds its high-level services by wrapping the low-level hardware

facilities in layers of software, resulting in a powerful virtual machine that is

much easier to use than the basic hardware. Thus an operating system provides

two classes of functions: orderly allocation of computing resources among pro-

cesses contending for them, and an extended machine that provides a powerful

programming environment. These two classes are not independent; poor struc-

ture can make resource allocation a nightmare. The microkernel architecture to

be discussed below is a good structure that enables e�cient resource allocation

and powerful programming environments.

2 Historical Development of Operating Systems

Most operating systems for mainframes and servers are descendants of third-

generation systems, such as Honeywell Multics, IBM VMS, VM/370, and CDC

Scope. These systems introduced important concepts such as timesharing,

multiprogramming, virtual memory, sequential processes cooperating via se-

maphores, hierarchical �le systems, and device-independent I/O[8, 9]. These

1

Peter J. Denning
(C) Copyright 1999 by Peter J. Denning, James J. Hunt, and Walter F. Tichy. You may print one personal copy. Any other copying or distribution requires express permission (contact pjd@gmu.edu). This article will appear in the revised edition of Ralston's Encyclopedia of Computer Science, MacMillan, 2000.

concepts all helped improve system throughput and utilization and insulate

programming from the details of a particular machine.

During the 1960s, many projects were established to construct timesharing

systems and test many new operating system concepts. These included MIT's

Compatible Timesharing System, the University of Manchester Atlas, the Uni-

versity of Cambridge Multiple Access System, IBM TSS/360, and RCA Spec-

tra/70. The most ambitious project of all was Multics (short for Multiplexed In-

formation and Computing Service) for the General Electric 645 processor (later

renamed the Honeywell 6180) [20]. Multics embraced every important system

concept of the day: processes, interprocess communication, segmented virtual

memory, page replacement, linking new libraries to a computation on demand,

automatic multiprogrammed load control, access control, protection rings, secu-

rity kernel, hierarchical �le system, device independence, I/O redirection, and

a high-level language shell.

Perhaps the most in
uential current operating system is Unix. Originally

developed at AT&T Bell Laboratories for DEC PDP computers, Unix distilled

the most useful features of Multics into a kernel that �t into the small memory

of a minicomputer. Unix retained its predecessor's processes, hierarchical �le

system, device independence, I/O redirection, and a high-level language shell.

Though the �rst version of Unix did not have virtual memory, most later ver-

sions did. It introduced an innovation, the pipe, which enables programs to be

strung together by directing (piping) the output of one program into the input

of the next. Arbitrarily long pipelines can be constructed from simpler programs

to solve complicated problems. Unix o�ered a large library of utility programs

that were well integrated with the command language. The most important in-

novation introduced with UNIX is the use of a high level programming language

(in this case C) for the vast majority of kernel programming. This allowed UNIX

to be transported to a wide variety of processors from mainframes to personal

computers[24, 17].

In the 1980s, a new genre of operating systems were developed for personal

computers, including MS-DOS, PC-DOS, Apple-DOS, CP/M, Coherent, and

Xenix. All these systems were of limited function, being initially designed for

8- and 16-bit microprocessor chips with small memories. In many respects, the

growth path of personal computer operating systems in the 1980s recapitulates

that of mainframes in the early 1960s. For example, multiprogrammed operating

systems for microcomputers appeared late in the 1980s in the forms of multiple

background tasks. Simultaneously active application programs Multiprocessor

operating systems soon followed, e.g., Windows NT and OS/2. This repetition

parallels that of the hardware development. Mainframes were initially CPU

limited, then memory limited, and �nally IO limited. Micro computers went

through these same development stages. Processor speeds and memories of

personal computers are now su�cient to support full-
edged operating systems.

With multi-processors and computer networks in the early 1980s, operat-

ing systems began to manage the resources of multiple computers at once. An

2

early example is StarOS, an operating system for the CM* (pronounced \CM

star") machine, a multicomputer consisting of several dozen individual comput-

ers linked by a special network; StarOS supported the \task force," a group

of processes cooperating in a distributed computation[16]. Medusa, another

operating system for CM*, was composed of several \utilities," each of which

implemented a particular abstraction such as a �le system; there was no central

control[19].

Xerox's Grapevine, a distributed database and message delivery system,

contained special name servers that located users, groups, and other services

when given their symbolic names. Because Grapevine had no central control, it

could survive failures of the name server machines[2].

Established, single-machine operating systems such as Unix and DEC's VMS

evolved to accommodate networks of computers. Such operating systems typi-

cally support standards for accessing �les on remote servers from any machine

in a network. Locus[22] and the Apollo DomainOS are early examples of operat-

ing systems providing a directory hierarchy that spans an entire network. Sun's

Network File System (NFS) was one of the �rst open, and hence widely avail-

able, Unix-based network �le systems[27]. Carnegie-Mellon's Andrew system

provides a Unix-based network �le system that spans thousands of computers

around the campus; it allows users to access �les without having to know their

locations and it improves performance by caching whole �les at individual nodes

in the network [15]. The Mach operating system, also developed at Carnegie-

Mellon University, handles a variety of distributed system operations including

a uniform �le name space, a virtual shared computational memory, and multi-

processing; it is compatible with Unix [1, 23]. Many of these systems rely on a

remote procedure call facility within the operating system to support operations

distributed among many machines.

The merging of mainframe functions into personal-computer operating sys-

tems was complete by the end of the 1990s. The Mach kernel was incorporated

in the NeXTStep operating system, which was acquired by Apple Computer in

1997 and will be o�ered in Apple's MacOS X. Linux, NetBDS, and FreeBSD,

free software version of Unix, were widely available for personal computers and

network servers.

Many organizations have found that distributed systems can have unac-

ceptably high costs for system administration { e.g., the separate installation

of a new version of software into hundreds of workstations. For this reason,

large networks of computers require simpli�ed, central management. Network

management functions can be found in server operating systems such as Sun

Microsystem's Solaris, Microsoft's NT, and the free Linux operating system.

Personal computers, workstations, and networks do not constitute the entire

universe of machines needing operating systems. Demands for high-performance

computing have led to massively parallel computers containing thousands and

more processors. Operating systems for these machines must provide a single

system view, meaning that thousands of processors or computing nodes in a

3

cluster can be operated and programmed as a single resource. Operating sys-

tems must support extremely fast synchronization and communication. Each

processor may have its own devices attached, and hence the operating system

must control thousands of I/O channels at once. Virtual memory and time-

sharing must be extended to accommodate massive parallelism. In parallel

computers with shared memory, programs run in a uniform address space with-

out seeing processor/memory boundaries. In distributed memory computers, a

programmer must distinguish local memory which is accessed through normal

instructions, and remote memory, which is accessed by sending messages|but

some operating systems are seeking to hide even this within a virtual mem-

ory. Processes need not run on a �xed processor, but may migrate through

a network. Perhaps the most important challenge is that the programming

environment should permit parallel programs to be written with only modest

e�ort beyond that required for sequential ones[10]. Current operating systems

research addresses these problems.

3 A Model Operating System

3.1 Overview

Over the years operating system designers have tended to use just two strate-

gies for organizing the software: the monolith and the kernel architectures. The

monolith results from a design strategy based on de�ning modules for operating

system functions; any module can call any other provided it follows the interface

speci�cations. All the modules must be linked together to create the operating

system executable �le and that �le must be completely loaded into the com-

puter's memory. Every module operates in supervisor mode so that it can have

access to the hardware resources of the computer; application programs run in

user mode, which has no such access. When an application program requires

access to such a resource, say a scanner, it must make a supervisor call to invoke

a module to perform that access on its behalf. The supervisor call instruction

switches the computer from user mode to supervisor mode and forces entry to

one of the operating system modules.

Monolithic operating systems can become extremely large and unwieldy.

The monolith accumulates all the software that might ever be needed on all

platforms, while the computer on which it is actually running needs only a

fraction of it. The operating system becomes di�cult to adapt to di�erent

hardware con�gurations, di�cult to extend and contract. Microsoft Windows

98, Windows NT, and Apple MacOS, all illustrate this trend. Both require 16-

32 MB of RAM, and their disk �les run upwards of 100 MB. Both systems are

well known for numerous bugs and frequent crashes, problems that seem only

to grow worse with each new (and larger) release.

The kernel architecture avoids these problems by careful design of the mod-

4

ules. The kernel is designed as a small set of modules that must run in supervi-

sor mode; every other operating system function (and application) is designed

as an extension that can be invoked as needed, does not have to be memory

resident, and does not have to operate in supervisor mode. A typical kernel

implements interrupts, low-level I/O, processes, semaphores, virtual memory,

and interprocess communication. Everything else is treated as an extension {

�les, directories, network services, user interfaces. Since the number of sensi-

tive kernel functions is small, these systems tend to be much more bug free

and stable than their monolith counterparts. An error occurring in one of the

extended functions may crash that function, but it is very unusual to crash

the kernel. The term microkernel is now frequently used to call attention to

compact kernels.

The principle of levels can be used to structure either a monolithic or kernel-

ized system. Software is built up as a hierarchy of levels, each one constructed

on the ones below it. The programs at a given level depend only on functions

provided by lower levels. The bare hardware is the lowest layer, the applica-

tion programs the highest. The microkernel, layered directly over the hardware,

consists of several levels itself. The levels structure gives a systematic way of

building the software, testing it, and proving it correct.

Each level adds new functions or operations and hides selected functions at

lower levels. The functions visible at a given level form the instruction set of

an abstract or virtual machine. Hence, a program written at a given level can

invoke visible operations at lower levels, but not operations on higher levels.

The �rst operating system constructed as a hierarchy of levels was Dijkstra's

THE of 1968 [11]. The idea has been extended to generate families of operating

systems for related machines [13] and to increase the portability of an operating

system kernel [5]. The Provably Secure Operating System (PSOS) is the �rst

complete level-structured system reported and formally proved correct in the

open literature [18]. XINU demonstrates that the level-structure principle can

lead to exceptionally compact microkernels that can �t into the small memory of

a microchip [6]. A distributed operating system design with ten levels appears

in [4]. Mach, Chorus, and Amoeba are three microkernel architectures that

support multiprocessors; for a comparison see [30].

3.2 The Microkernel

Table 1 shows the minimal set of abstractions in a microkernel. The microkernel

contains no �le or directory system, o�ers no remote procedure call, and may

even require some of the memory management to be performed in user mode.

The functions in the microkernel are included there because they are di�cult

or ine�cient to provide elsewhere.

Level 1 dispatches interrupts and manages access to peripheral devices.

The interrupt dispatcher receives signals from condition detectors and responds

by immediately transferring control of the CPU to a corresponding condition-

5

LEVEL NAME OBJECTS EXAMPLE OPERATIONS

5 Processes Process Fork, suspend, resume,

join, signal, exit, kill

4 Inter-process Message, port Send, receive, transmit

communication

3 Memory Address, segment Create, destroy, map

management

2 Threads Thread, ready list, Fork, suspend, resume,

semaphore, wait, signal, kill

1 Low-level IO Device, read, write

device driver

Table 1: Microkernel layers

handler routine. Condition handlers are de�ned at each level that must respond

to conditions associated with that level; for example, the memory manager

responds to missing-page faults and the IPC level to interrupts signaling the

arrival of packets from the network. The entry points of condition handler pro-

cedures are stored in the interrupt vector, a list used by the interrupt dispatcher

to locate them. Device driver programs manage operations such as positioning

the head of a disk drive and transferring blocks of data. Software at a higher

level determines the address of the data on the disk and places requests for it

in the device's queue of pending work; the requesting process then waits at a

semaphore until the transfer has been completed.

Level 2 implements threads. A thread is a single
ow of control in some

address space. It is an abstraction for the instruction trace of a CPU executing

program code. Each thread operates in a context that includes a program stack,

the CPU register contents,interrupt masks, and any other
ags or state infor-

mation needed by the CPU to continue running the thread. This level provides

a context switch operation, which transfers a processor's attention from one

thread to another by saving the context of the �rst and loading the context of

the second. A scheduler in this level selects the next thread to run from a \ready

list" of available threads. The scheduler usually accommodates machines with

more than one processor available. This level provides the clock interrupt han-

dler, which forces the scheduler to switch threads at regular intervals. This level

also provides semaphores, the special variables used to cause one thread to stop

and wait until another thread has signaled the completion of a task. Threads

are analogous to \system processes" in PSOS and \lightweight processes" in

Locus.

Level 3 manages the computer's main memory, or RAM (random access

memory). The memory manager does two jobs: (1) it enforces separation of

address spaces, and (2) it moves blocks of data between RAM and secondary

storage media. An address space is the set of addresses that a CPU can gener-

6

ate. The simplest form of address-space separation is a partition of the RAM

into disjoint regions, each delineated by a base-and-bound register; an address

generated by the CPU is taken to be relative to the base register and must

not exceed the bound. A group of threads can be created in the same address

space; they cannot be protected from one another, but they can communicate

very easily through common variables. Virtual memory distinguishes between

address space (CPU addresses) and memory space (RAM addresses). With each

address space it associates a mapping table that converts a CPU address into a

RAM address. Virtual memory permits a CPU to access only the memory loca-

tions visible through the mapping table, thereby enforcing separation (partition)

among address spaces. The mapping table stores access
ags so that the CPU

can be further restricted by denying read or write access to individual objects.

Virtual memory can be con�gured to automatically move blocks of data between

RAM and disk, thereby automating swapping of data between memory levels

and relieving the programmer of any necessity to compile di�erent versions of

the program for di�erent RAM sizes [7]. Automation of swapping is achieved

by adding a "presence bit" to the mapping table. When the CPU generates the

address of an object marked as not present, the mapping hardware generates

an address-snag interrupt that invokes the missing-object interrupt routine in

Level 3. That routine locates the missing block in the secondary store, frees

space for it in the RAM, and moves the missing block in.

Whether to use virtual memory or simple memory partition is a design trade-

o� between system complexity and protection. For applications that run a small

number of mutually-trusting threads and where the entire application can �t

into a memory partition, virtual memory would be unnecessary. These include

digital organizers and embedded applications. For applications whose memory

demands are unpredictable or for which a high degree of protection is required,

virtual memory would be the best approach. To facilitate the tradeo�, some

systems do not include all the virtual memory functions in their microkernel,

placing them instead in a module outside the kernel. The kernel architecture

of the Mach operating system is like this; it provides only an interface for read-

ing and writing blocks of main memory and lets a user process determine which

blocks to replace. The JavaOS, a small operating system for embedded systems,

goes further: it leaves memory management up to the runtime system of the

language.

Level 4 implements inter-process communication (IPC). Threads that do not

share the same address space and threads running on di�erent computers in a

network exchange messages with IPC. Messages are exchanged via ports, which

are bu�ers that retain messages in transit. A message contains the sender port

number, the receiver port number, and a data �eld, enabling the receiver to

identify the sender and send a reply.

Level 5 supplies the full-blown process, a program in execution on a virtual

computer. A process consists of one or more threads, an address space, one or

more input ports for incoming messages, and output ports for outgoing mes-

7

6

Client

process server server

File

server server

Directory
...

Client

process

Kernel

Client sends message to server to obtain its service

User

mode

Kernel

mode

Print Graphics

Figure 1: The client-server model on a single machine.

6
Kernel KernelKernel

message

Network

Machine 1 Machine 2 Machine 3

Client process Graphics server File Server

Figure 2: The client-server model in a distributed system.

sages. The threads of a process share access to the address space and the ports.

A process can create o�spring (child) processes. This level tracks all processes

in a tree of parent-child relationships and restricts certain actions accordingly;

for example, a parent can force the termination of only its children and cannot

terminate unless all its children have terminated.

3.3 User-Level Servers

The remaining levels of the operating system are structured according to the

client-server model. In this model certain processes are designated as servers

because they perform functions for other processes, called clients, on request.

Clients and servers use IPC to exchange requests and responses. Figure 1 shows

how clients send messages through the kernel to servers on the same machine;

�gure 2 illustrates the distributed case.

When a server process is the only server on a machine, the machine itself is

often called the server; a common example is a �le server. Some servers, such

as printer servers, directory servers, mail servers, authentication servers, and

web servers, can run alone on a machine or can be part of a group of services

o�ered from a single machine. With this architecture it is possible to run several

versions of a server at once|for example, a Unix �le server and a Windows NT

�le server. Because all these servers sit on top of the same microkernel, any

client can communicate with any server via the same IPC mechanism.

Although clients and servers communicate with messages, most systems al-

8

LEVEL NAME OBJECTS EXAMPLE OPERATIONS

9 Graphics server Window, input event resize, move, draw,

receive, send

8 Shell application program Statements in shell

language

7 Directories Directory Create, delete, enter,

remove, search, get

6 Streams File, device, pipe Create, delete, open, close,

read, write

Table 2: Layers in the user services

low programs to invoke services as procedure calls. This means that all ser-

vices, local and remote, are called in the same way, and no programmer is

required to know which is which. The mechanism for this, called remote pro-

cedure call (RPC), is implemented completely by compilers and does not have

to be a component of the IPC level. When it encounters a procedure call

P(parameters) in a program, the compiler substitutes a call on a "stub" of the

form RPC(P,parameters). The stub either calls the procedure P locally, or it

sends a message with a copy of the parameters to the remote server on which

P resides; that server calls P(parameters) locally and returns then result to the

calling stub, which then returns it to its caller.

Level 6 implements a common interface to information objects. Info-objects

produce, consume, store, or transmit streams (sequences) of bytes. There are

three types of info-objects: devices, �les, and pipes. Devices are external equip-

ment that either produce or consume streams of bytes; a keyboard is an example

of an input (stream-producing) device and a display is an example of an out-

put (stream-consuming) device. A �le stores a stream of bytes for an inde�nite

time. A pipe conveys a stream of bytes from a sender process to a receiver. The

importance of treating devices, �les, and pipes as info-objects is that they can

all be accessed by the same interface: OPEN, CLOSE, READ, and WRITE.

OPEN(object) establishes an e�cient and fast communication pathway between

a process and the object; CLOSE shuts it down. READ(openobject) transfers

bytes from the open object to the calling process andWRITE(openobject) trans-

fers bytes from the calling process to the open object. The stream manager calls

microkernel services as needed to implement the requested operation. It uses

low-level I/O to perform the actual data transfers between address space and

secondary storage or external devices. It uses the IPC level to transmit pipe-

streams. This architecture makes the three kinds of objects interchangeable. A

programmer can say READ(openobject) without knowing in advance whether

the object is an open device, a �le, or a pipe.

Level 7 manages a hierarchy of directories that catalogs the hardware and

software objects to which access must be controlled throughout the network:

9

�les, devices, pipes, ports, processes, and other directories. A directory is a

table that matches external names of objects to internal names. An external

name is a string of characters chosen by a user; an internal name is a binary code

chosen by the system. Internal names can be guaranteed to be unique for all

time, which enables users to share objects without prior arrangements on what

to name them. Internal names are generated for every sharable object|�le,

pipe, device, directory, process, or port. The directory allows the user to deal

solely with recognizable, meaningful strings as object names without having

to import system names into an address space (where they can be misused or

damaged). Pathnames in directory hierarchies can be used to uniquely identify

objects.

The directory level is responsible only to record the associations between

the external and internal names; other levels manage the objects themselves.

Thus, when a directory of devices is searched for the string \laser," the result

returned is merely an internal name for the laser printer. The internal name

must be passed to a program at level 6 (streams), which handles the actual

transmission to that printer.

Level 8 provides command language interfaces called shells. The shell derives

its name from a metaphor: it is the layer of software that separates the user

from the rest of the machine. The user expresses a command to the shell which,

in turn, invokes low-level and kernel service as appropriate to implement the

command. The shell is in essence a parser that interprets commands in the

syntax of the command language; it creates processes and pipes and connects

them with �les and devices as needed to carry out the command. A graphical

user interface uses point-and-click facilities (windows, icons, mouse, menus) to

accomplish the same objective.

At level 9, a graphics server provides user programs with the ability to

present pictorial information to the user and coordinate that information with

input from user devices such as a keyboard, a mouse, or a joystick. The server

enables several programs to share screen space without interfering with one an-

other. Standard libraries have been developed to provide a large number of

graphical user interface elements such as buttons, sliders, menus, check-boxes,

tree displays, dialog boxes, dials, meters, and table displays|all providing in-

tuitive controls for applications. The distinction between the graphical server

and the graphical user interface is that the server provides graphical control and

display for applications while the interface provides standardized components

for a uniform appearance and behavior of interface elements. These interface

elements are displayed by the graphical server.

10

4 General Comments on Operating System Ar-

chitecture

4.1 Level Structure

The level structure is a hierarchy of functional speci�cations designed to im-

pose a high degree of modularity and enable incremental software veri�cation,

installation, and testing.

In a functional hierarchy, a program at one level may directly call any visible

operation of a lower level; input is communicated directly to the lower-level

operation without any intermediate level's involvement; and output is returned

directly to the caller. The level structure can be completely enforced by a

compiler, which inserts procedure calls or expands functions in-line[13]. A well-

documented example of its use is XINU, a distributed operating system for

microcomputers[6].

It is important to distinguish the level structure discussed here from the

layer structure of the International Standards Organization model of long-haul

network protocols[29]. In the ISO model, data input to a remote operation are

passed down through all the layers on the sending machine and back up through

all the layers on the receiving machine; return data follow the reverse path.

Because each layer adds delay to a data transmission, whether or not that layer's

function is required for the transaction, long-haul network protocols are likely

to be ine�cient in a local network [22]. A signi�cant advantage of functional

levels over information-transferring layers is e�ciency: a program that does not

use a given function will experience no overhead from that functions' presence

in the system.

4.2 Names

Naming of objects is a very important design problem in operating systems.

The system of object names has two principal requirements. (1) It must allow

individual users to choose local names as character strings that make sense to

them. (2) It must also allow any two users to share an object even though

they have no prior agreement on the name each will use for the object. These

requirements can be met by allowing objects to have two names: the user-

assigned (external) name and a system-assigned (internal) name. Although

users can reuse external names at will, internal names must be unique in both

space and time: in space because the object name may be passed to anyone

anywhere; and in time because object names cannot be reused lest someone

access the wrong object.

A two-level mapping scheme is used to convert an external name to an object

location. The �rst level converts user-de�ned character strings into internal

system names; the second level converts system names to object locations. In

11

the architecture described below, the directories implement the �rst level and

the individual object managers implement the second.

The simplest internal names are bit-strings, called handles, generated by

the operating system when an object is created. Whenever a program requests

creation of an object such as a process, port, pipe, or �le, the operating system

returns an internal name for that object. The internal name is used to identify

the object in subsequent operations. In its simplest form, a handle is a pointer

to the object or an index into a table of objects managed by a particular level.

On a network comprises many machines, two extensions to handles are nec-

essary. First, handles are extended by adding extra bits to hold the identi�er

of the creating machine; this makes handles unique throughout the network.

Second, the mapping from handles to object locations must be augmented with

search rules to help �nd objects that reside on other machines: object managers

must poll other machines during searches for objects. To speed up multiple ac-

cesses to the same object, an object manager can maintain a cache which notes

the locations of recently requested objects. Policies of moving or replicating ob-

jects to requesting machines and updating caches were explored in the Purdue

Ibis[26] and Carnegie-Mellon Andrew[15] �le systems, as well as in the Xerox

Grapevine system[2].

These simple handles are good for object sharing but inadequate for access

control. Nothing prevents anyone from passing a handle for an object to the

wrong type manager, or from attempting to overwrite a read-only object. To

overcome these limitations, some systems rely on capabilities rather than han-

dles. A capability is a handle augmented with type and access codes. These

codes can be checked by an object manager to make sure that it performs only

the operations allowed by the access code only on its type of object. Fabry [12]

advocated capabilities as the most e�cient solution to the two naming require-

ments stated earlier.

Capabilities were explored, among others, in the Carnegie-Mellon Hydra

system[33], the Cambridge CAP system[32], and the Intel iMax system[21].

The Amoeba system[30] provides encrypted capabilities for both kernel and

user-space objects. Amoeba capabilities can be passed safely across machine

boundaries and stored in arbitrary data structures. Objects referred to by

capabilities are located by broadcast, with the result cached fur future use.

4.3 Heterogeneous Systems

The systems discussed above deal with many computers on a network by running

the same operating system on each machine, an approach often called homoge-

neous distributed computing. In such an environment, sharing information and

moving objects among the machines is straightforward.

The open system philosophy, now practiced by many manufacturers of hard-

ware and software, aims for networks whose components can be supplied by

di�erent vendors and which will work together anyway because those vendors

12

FORM OF CALL EFFECT

dev handle := INSTALL DEV(spec) Add the speci�cation of a new device to

the device table.

REMOVE DEV(dev handle) Free up the entry occupied by the given

device in the device table.

READ SEG(mem addr, dev handle,

dev addr, size)

Copy size bytes from the device, start-

ing at address dev addr, to the segment of

memory starting at base mem addr.

WRITE SEG(mem addr, dev handle,

dev addr, size)

Copy size bytes from the segment of mem-

ory at base mem addr to the device start-

ing at address dev addr.

Table 3: Speci�cation of low-level I/O (level 1)

follow basic standards. These are often called heterogeneous distributed comput-

ing systems because they may not have the same operating system or internal

understanding of formats and structures. To make such an environment work,

all machines will have to use a standard Interprocess Communication system

(e.g., TCP/IP). They may require translating �lters to convert formats and

structures as they are sent between machines with di�erent operating systems.

5 A Closer Look

Let us now look a little more deeply into the operations and assumptions of the

operating system levels outlined above.

5.1 Low-level I/O: level 1

This level o�ers simple transfers of blocks of information between devices and the

main store (RAM). It hides such details as device startup, parameter passing,

device register, device controller management, and interrupts.

Each device has a detailed speci�cation that includes its hardware address,

speed and bandwidth parameters, error codes, command codes, and driver.

A device driver is a program that interprets the command codes available

to the system; for example, the disk driver instructs the disk controller to

move the disk arm to a particular cylinder in response to the disk command

\seek(diskaddress)". All the device speci�cations are stored in a device table in

a main-memory segment. The operations INSTALL DEV and REMOVE DEV

are used to add and remove entries from this table.

13

A device-to-memory transfer is initiated by a READ SEG operation. It

copies a number of bytes given by a size parameter from the device to a segment

of memory. Similarly, a WRITE SEG operation carries out a memory-to-device

transfer by copying a speci�ed number of bytes from a memory segment to the

device. Many systems support block devices where the basic unit of transfer is

a block of data (typically between 512 and 4096 bytes) instead of a byte.

Once the system is booted, new devices can be added by copying their spec-

i�cations from any storage medium for which there is a driver. During the boot

sequence, an initial set of drivers must be loaded as part of the loading of the

operating system executable �le. This initial set may be determined by probing

for known devices, then loading just the drivers corresponding to the devices

that are available.

5.2 Threads: level 2

A thread, or primitive process, is described by its context, i.e., its stack and the

register state. The register state, known also as its stateword, holds the con-

tents of all processor registers|including not only the general purpose registers

holding program data and addresses, but also the program counter, condition

codes, interrupt masks, stack pointer, and any other registers that control or

delimit the execution of a program. To run a process, its register state must be

loaded into a processor's registers. The operation of saving one thread's state

and loading another is called context switch.

A thread is in one of four states: running, ready, waiting, or suspended.

A running thread controls a processor: its register state has been loaded into

a processor, and that process is executing instructions from its program. A

ready thread is authorized to execute instructions a processor as soon as one is

available. A waiting thread is waiting for a semaphore signal and is ineligible

for execution until the signal arrives. A suspended thread is waiting for a signal

from its parent. The ready and waiting states are represented by lists | all the

threads waiting for a processor are linked to the ready list and all those waiting

for a particular semaphore are linked to that semaphore's waiting list. The ready

list is commonly organized as a set of queues for each priority level. When a

thread is added to the ready list, it may preempt a lower-priority running thread,

returning it to the ready list. Each thread has a private semaphore on which

only it can wait. A thread is �rst created in its suspended state and will not

become ready until its creator gives the signal.

Thread priorities are determined partly by the users and partly by the oper-

ating system. An example user-set priority is the high priority given to threads

that must react quickly to time-critical events (such as completion of an opera-

tion on a high-speed I/O device). Examples of system-set priorities are assigning

a background thread lower priority than a foreground thread, and the demotion

of a thread that has executed for a long time, in a system aiming to favor short

jobs. The lowest priority of all is assigned to the idle threads. They consist of

14

FORM OF CALL EFFECT

thread handle :=

T FORK(addr, priority)

Creates a suspended thread at the given pri-

ority level by allocating a context for it. Sets

its program counter to addr and returns a

handle to the thread.

T KILL(thread handle) Deletes the given thread (Undoes

T FORK).

T SUSPEND(thread handle) Transfers the given thread into the sus-

pended state, removing it from its current

state (running, ready, waiting). Remembers

its prior state. (No e�ect if the thread is al-

ready suspended.)

T RESUME(thread handle) Returns the thread to its prior state. A new

thread is transferred to the ready state. (No

e�ect if the thread is not suspended.)

sem handle := CREATE SEM(val) Creates a semaphore with val as initial non-

negative integer counter value and an empty

waiting list.

DELETE SEM(sem handle) Removes the given semaphore (undoes

CREATE SEM).

WAIT(sem handle) Subtracts 1 from the counter of the given

semaphore. If the counter is now negative,

WAIT suspends the invoking thread, en-

queues it on the semaphore's waiting list,

and switches to the next ready thread. Oth-

erwise, returns immediately to caller.

SIGNAL(sem handle) Adds 1 to the counter of the given sema-

phore; if the counter is now negative or zero,

transfers a a thread from the semaphore's

waiting list to the ready list. Returns im-

mediately to caller.

Table 4: Speci�cation of thread level interface (level 2)

15

in�nite loops of no-ops (empty instructions) and run only if there is no other

ready thread; they are needed because otherwise a processor will crash if it has

no instructions to execute.

Most operating systems allow many more threads to be created than there

are processors. To prevent any one of them from monopolizing a processor,

operating systems implement time slicing, a policy of limiting the maximum

period that a thread can run continuously. At the start of a thread's interval of

execution, a timer register in the processor is set to a standard value, called the

\time quantum;" the timer triggers a clock interrupt when it reaches zero. The

clock interrupt handler (part of the threads level) returns the running thread to

the ready list, resets the timer to the time quantum, and switches to the next

ready thread.

Requests for I/O are the most common events generated by threads. A

thread requesting I/O places a request in the work queue of the device driver,

signals the driver, and stops to wait on its private semaphore. The request

includes the components

requesting thread id

request type (read or write)

memory address

device address

size

The device driver will cause the requested transfer to take place; when done, it

signals the requesting thread via its private semaphore. The interrupt handler

that receives the device's completion signal awakens the device driver from the

point where it had paused to wait for the device's completion signal.

I/O is not the only example of thread coordination. Other common examples

include: (1) several threads must stop and wait while another thread executes

the instructions of an operation on a shared object; (2) a producer thread cannot

add items to a full bu�er and a consumer thread cannot remove items from an

empty bu�er; (3) threads borrow resource units from a pool and others must

wait if the pool is temporarily empty. The semaphore is a single mechanism

that provides simple solutions to these coordinations (and many others).

A semaphore consists of a counter and a queue. The counter records the

number of signals sent but not yet received; when it is negative, each thread

waiting for a signal is listed in the queue. The operation WAIT implements

the request to obtain a signal from the semaphore; SIGNAL provides a signal

that can release one waiting thread (if any are waiting). The private semaphore

is uniquely and permanently assigned to a thread; its implementation can be

simpli�ed because it only needs to record whether or not its owner is waiting

on it.

In the �rst example of thread coordination cited above, threads must be

allowed access to shared data one at a time. For example, if two teller machines

attempt to add deposits to the same account simultaneously, one deposit will be

16

lost; which is lost and which is recorded depends on the relative speeds of the

two tellers. This problem can be prevented by de�ning a semaphore mutex (for

\mutual exclusion") with an initial count of 1, and then bracketing the shared

access with and WAIT/SIGNAL pair:

WAIT(mutex)

access to shared data

SIGNAL(mutex)

Any section of code that must be constrained to be executed by only one thread

at a time is called a critical section.

In the third example of thread coordination cited above, threads access a

critical section that allocates resource units. The number of resources units is

the initial value of a semaphore named pool:

WAIT(pool)

WAIT(mutex)

get unit number from free list

return (unit number)

SIGNAL(mutex)

A thread returns a unit to the pool:

WAIT(mutex)

add unit number to free list

SIGNAL(mutex)

SIGNAL(pool)

One of the original motivations for semaphores was to avoid busy waiting

| a form of waiting in which the processor loops while testing for a go-ahead

condition. Busy waiting can waste a lot of processor time. The WAIT and

SIGNAL operations avoids busy waiting.

5.3 Memory Management: level 3

The simplest responsibility of a memory manager is to partition the memory

among address spaces so that parallel threads in di�erent address spaces cannot

interfere with one another. This can be accomplished through a method called

segmentation. A segment of memory is a region of L (for length) contiguous

addresses starting at a base address B. The pair of values (B,L) is called a

descriptor for the segment and is part of the register state of a processor. The

addressing hardware of the processor checks that a process-generated address A

does not exceed L and, if not, presents the address B+A to memory.

Memory managers are often asked to do more than simply partition the main

memory among disjoint tasks. They are asked to automatically swap segments

between a backing store (usually a disk) and the main memory. This kind of

17

FORM OF CALL EFFECT

(B,L) := ALLOC(size) Return the base and length of a free seg-

ment of memory of the given size (L =

size).

FREE((B,L)) Return the segment (B;L) to the pool of

free space in memory.

Table 5: Speci�cation of physical memory (level 3)

memory manager is called virtual memory. By creating the illusion that the

entire address space �ts into main memory, virtual memory frees programmers

from managing swaps.

Two mechanisms are needed to accomplish this. First, every address space

must be represented as a table containing one entry for each segment of the

address space. An entry tells whether the segment is present in main memory,

and if so gives its descriptor. The processor addressing hardware presents the

segment number to the memory mapping unit (MMU), which looks up the

descriptor in the table and computes the memory address as above. If the

MMU �nds the segment marked as \missing," it generates a missing-segment

addressing fault signal. The fault signal invokes the segment-fault handler (part

of this level). Second, the fault handler frees up space in main memory for the

new segment by copying one or more segments back to disk (and marking them

as missing), then swapping in the new segment (and marking it as present), and

then allowing the interrupted thread to resume and retry the address. A full

discussion of virtual memory appears in a separate article of this Encyclopedia.

5.4 Inter-process Communication: level 4

Inter-process communication (IPC) is used to exchange messages among threads

in di�erent address spaces, on the same or di�erent machines. IPC is the base

for client/server communication and remote procedure call (RPC).

Senders expect messages to be delivered even if the receiver is not able to

accept messages exactly when they are sent. To accomplish this, messages are

not sent directly to processes or threads; they are sent to special bu�ers called

ports. Each port has a network-wide, unique identi�cation number. A random

large number (96 to 128 bits) is good enough to ensure that two ports have

distinct numbers.

Table 7 shows the main operations of IPC. A port is created with CRE-

ATE PORT and deleted with DELETE PORT. ATTACH PORT opens a con-

nection to an existing port, either for receiving messages form it or sending

18

FORM OF CALL EFFECT

vm handle := CREATE VM(size,

dev addr, dev handle)

Create a new virtual memory of given size,

initialized to the contents of the �le at the

given address on the given secondary storage

device.

DELETE VM(vm handle) Delete the given virtual memory and free up

space it occupied in the secondary storage

system.

A := MAP(V, vm handle) Translate the virtual address V generated by

a processor into an address A in the main

store, using the mapping table of the given

virtual memory. If the mapping table says

that the block containing V is not present,

generate a mapping fault (the fault han-

dler will move the missing block into mem-

ory, update the table, and retry the MAP

operation).

Table 6: Speci�cation of virtual memory (level 3)

messages to it. To complete this operation, the IPC software must identify the

machine on which the port is located. On a small, local network, this can be

done by broadcasting a message \who has port id?". On a larger network this is

done by consulting a name server. A name server is a database that records the

associations between ports and machines; it provides an interface for registering

ports and looking them up. In either case | broadcast or name server | the

IPC software caches the result for fast future lookup.

The operation SEND delivers a message to a port and RECEIVE retrieves

it. Both operations are synchronous, meaning that SEND blocks until the mes-

sage has been copied into the port and that RECEIVE blocks until a message

is available in the port. Some operating systems also provide asynchronous

versions, in which both SEND and RECEIVE return immediately, providing a

return code indicating that the operation is incomplete. In this case, the IPC

interface needs additional operations that allow sender and receiver to �nd out

if previous operations have completed.

The operation TRANSMIT combines SEND and RECEIVE; it is useful for

RPC. A client uses TRANSMIT to send a message to a server port and wait

until a reply is returned. The port at which the reply is expected is sent along

with the original message.

When messages are sent to a port on another machine in a network, a net-

work service is used. A network service speaks several di�erent protocols for

exchanging messages with other computers. When sending a message, it breaks

19

FORM OF CALL EFFECT

port id := CREATE PORT() Create a new port with a randomly chosen

identi�cation number.

DELETE PORT(port id) delete the port given by port id.

port handle :=

ATTACH PORT(port id, rw)

open a connection to the port port id; ini-

tialize it for sending or receiving, depend-

ing on the value of rw.

DETACH PORT(port id) drop the connection to the port port id.

SEND(sport id, sbase, ssize) send message of length ssize beginning at

sbase to port given by sport id. Block until

all data have been transferred to the port.

(rbase,rsize) := RECEIVE(rport id) block until a message has arrived at port

rport id, then return it in segment (rbase,

rsize).

(rbase,rsize) := TRANSMIT(

sport id, sbase, ssize, rport id)

send a message of length ssize beginning at

sbase to sport id and block until the reply

message has been received from rport id.

Table 7: Speci�cation of IPC (level 4)

large messages into smaller packets, encapsulates them into the appropriate

protocol wrappers, forwards the packets one by one to the receiver, and re-

transmits them if they are lost or corrupted. The receiving machine's network

service reassembles the message from the fragments, even if they arrive out of

order. A network service provides a host of additional functions. For example,

it translates data types from one machine's representation to another's, authen-

ticates other network services, acts as a gateway that bridges di�erent networks,

and performs simple name lookup. A network service can be run in kernel or

user mode, similar to virtual memory management More detail about network

protocols, IPC, and RPC can be found in other articles of this Encyclopedia.

5.5 Processes: level 5

A process is a program in execution on a virtual (simulated) machine. It consists

of one or more threads, an address space, and communication ports. The threads

within the same process form a \team" that must cooperate toward a common

computational goal; they share the same address space and cannot be protected

20

from one another. When it is created, a process has one thread; it can create and

control additional threads with the facilities of the Threads Manager (Level 2).

A process's creator also passes it a small set of ports for sending and receiving

messages; they can be used later to exchange control information and port

identi�ers for additional communication channels.

The system keeps track of the creator of each process and restricts process

control operations accordingly. The creator of a process is called a \parent"

and the new process the \child." A parent may suspend, resume, or kill any

of its children but no others. These operations apply to all descendants of the

a�ected child process | suspend and resume apply to all threads of a process;

kill applies to the process and all its children. The JOIN operation allows a

parent to stop and wait until all its children have completed their tasks; each

child uses the EXIT operation to tell the parent it has done so.

The operating systems UNIX and MACH separate process creation into

two parts: FORK and EXEC. FORK creates a clone of the parent and EXEC

performs a context switch to a child program. This approach is quite powerful

but can be expensive on multiprocessor systems without shared memory.

5.6 Stream I/O: level 6

Stream I/O is the common interface to the information objects �les, devices,

and pipes. Each deals with streams of bytes. The common operations | OPEN,

CLOSE, READ, and WRITE | are used to open and close data sources and

sinks, to read blocks of data from a source, and to write blocks of data into

a sink. The common interface supports I/O independence, the principle that

READ and WRITE operations can be independent of the type of data source or

sink. All READ and WRITE statements in a program refer to stream handles,

which are attached to �les, devices, and pipes when the program is executed.

This strategy can greatly increase the versatility of a program. A library

program (such as the pattern-�nding \grep" program in Unix) can take its input

from a �le or directly from a keyboard and can send its output to another �le,

to a window on a display, or to a printer. Without I/O independence, di�erent

versions of a program would have to be written for each possible combination

of source and sink.

I/O independence works because �les, devices, and pipes all rely on the

same model of data: streams (sequences) of bytes. Corresponding to each of

these objects is a pair of pointers, r for reading and w for writing; r counts the

number of bytes read thus far and w those written thus far; r cannot exceed

w. Each READ request begins at position r and advances r by the number of

bytes read. Similarly, each WRITE request begins at position w and advances

w by the number of bytes written.

The stream I/O interface uses \dynamic dispatch" to route a request to the

appropriate �le, device, or pipe manager. The dispatch vector points to the

type managers for each type of info-object (three in this case). To see how

21

FORM OF CALL EFFECT

proc handle :=

CREATE PROC(�le handle,

port list)

Allocates a process control block that points

to the thread, address space, and ports of the

process. Creates a single suspended, thread

and a virtual memory containing the exe-

cutable �le denoted by �le handle. Attaches

to the ports given in port list. Adds the new

proc handle to the list of children of its caller.

KILL(proc handle) Terminates the given process, but only if it is

a child of the caller: delete the threads and

virtual memory and detach from its ports;

release its process control block; and delete it

from the list of existing children of its parent.

EXIT() Terminates the caller process and deducts 1

from the UNDONE variable of the parent

process.

JOIN(m) Sets caller's UNDONE variable to m, then

waits until it reaches 0.

SUSPEND(proc handle) Puts the threads of the given process into

the suspended state, but only if the process

is a child of the caller.

RESUME(proc handle) Puts the threads of the given process back

into the state they had at the time of the

last SUSPEND operation on the process, but

only if the given process is a child of the

caller.

Table 8: Speci�cation of process operations (level 5)

22

this works, take the stream READ as an example. READ is provided with an

open-object handle, which contains within it a type indicator of the info-object

to which it points; using the dispatch vector, READ then passes control to the

device manager, �le manager, or pipe manager. A knowledgeable programmer

can extend the same interface to deal with a new type of stream object by

providing the type manager and adding a pointer to it to the dispatch vector.

The stream model is not used in every operating system. Multics illustrated

another approach [20]. Multics had a segmented address space that subsumed

the �le system. Each segment was permanent, just like a �le, and had a unique

pathname in a directory tree. The �rst time a process referred to a segment

(via its directory pathname), a \linkage" fault interrupts the process, calling in

the linker, which loads the missing segment; thereafter, the process can refer to

the segment using ordinary virtual addressing. Certain segments of the address

space are permanently bound to devices: read (writing) and one of them reads

(writes) the associated device. Fabry o�ered arguments that explain why the

shared-handle approach to naming info-objects leads to a simpler I/O system

than Multics had [12]

5.6.1 Files

A �le server implements a long-term store for �les. Files are named sequences

of bytes of known (but arbitrary) lengths that persist until deleted and are

accessible from all machines in the network. The �le server o�ers a set of �le

operations (Table 9) that includes the four generic stream operations.

To establish a connection with a �le, a process presents a �le handle to the

OPEN operation. OPEN contacts the �le server via a known port. The �le

server locates the �le in its secondary storage and allocates ports for transmis-

sions between itself and the caller; it may even create and assign a dedicated

thread to manage the �le session. A READ operation copies the requested data

from the �le server to the client's bu�ers (assigned when the �le was opened),

then copies those data to the caller's address space, and �nally updates the �le's

read pointer. A WRITE operation performs similarly in the reverse direction.

The SEEK operation can change the read and write pointers to allow for ran-

dom (non-sequential) �le access. Examples of such remote �le implementations

are the Berkeley Cocanet System[25] and the Network File System (NFS)[27].

Caching is often used to improve performance of �le READ and WRITE op-

erations. When the �le is opened, a copy is read into the client's bu�ers; READ

operations do not require further transmissions from the �le server. However,

the cache must be copied back to the �le server shortly after any WRITE op-

eration. Examples are Purdue's Ibis[26] and CMU's Andrew[15].

Some �le systems also provide improved synchronization and version control.

Synchronization control means implementing a solution to the \multiple readers

and writers" problem as part of READ and WRITE operations [14, 30]. Version

control means to retain previous versions of a �le so that older versions can be

23

FORM OF CALL EFFECT

�le handle := CREATE FILE() Creates an empty �le and returns a handle

for it. (If the caller is a process, it can store

the handle in a directory entry and make

the �le available throughout the system.)

DELETE(�le handle) Deletes the given �le (undoes the corre-

sponding CREATE FILE).

o�le handle :=

OPEN(�le handle, rw)

Opens the given �le by allocating bu�er

storage and loading the �le index table into

main memory. The �le is enabled for read-

ing, writing, or both, depending on the

value of rw. The read pointer r is set to

zero, and the write pointer w to the �le's

length (fl). (Fails if the �le is already

open).

CLOSE(o�le handle) Undoes OPEN.

READ(o�le handle, buf, n) Sets m := min(fl � r; n). Copies m bytes

from the given �le, starting with position

r, into segment buf. Updates fl to fl+m.

(Fails if reading is not enabled.)

WRITE(o�le handle, buf, n) Copies the �rst n bytes of segment buf into

the given �le, starting with position w.

Sets fl := max(fl; w + n) and w := fl

(Fails if writing is not enabled.)

SEEK(o�le handle, pos, rw) Stores the value of pos into the read pointer

r, the write pointer w, or both, depending

on the value of rw. (Fails if pos is larger

than �le length fl.)

ERASE(o�le handle) Sets �le length, read and write pointers to

zero; releases secondary storage blocks oc-

cupied by the �le. (Fails if writing not

enabled.)

Table 9: Interface for �les (level 6)

24

retrieved even after the �le is \overwritten " [31].

5.6.2 Devices

The devices level implements a common interface to a wide range of external I/O

devices, including keyboards, scanners, displays, printers, plotters, and time-of-

day clock. The interface attempts to hide di�erences in devices by making

input devices appear as sources of data streams and output devices as sinks.

Obviously, the di�erences cannot be completely hidden|for example, cursor-

positioning commands must be embedded in the data stream sent to a graphic

display|but a substantial degree of uniformity is possible.

Corresponding to each device is a device driver program at Level 1. The

stream implementation of device access translates between the model of streams

and the device access model assumed by the device driver. (Considerable e�ort

is required to construct reliable, robust device drivers; the stream level does not

attempt to duplicate that work, but only to interface with it.) Some devices are

operated by dedicated servers | print servers are notable examples | and in

these cases the translation is nothing more than a remote procedure call to the

server.

The stream devices can add semantics appropriate for the device. For ex-

ample, a READ operation applied to a keyboard may be programmed to return

the next full line of input, regardless of its length.

Table 10 summarizes the interface for external devices. It is similar to the

interface for �les, without the SEEK and ERASE operations.

5.6.3 Pipes

Pipes move a continuous stream of data from a writer process to a reader process

on the same or di�erent machines. The most important property of a pipe is

that a reader must stop and wait until a writer has put enough data into the

pipe to �ll the request. The main di�erence with IPC is that a pipe provides

a continuous stream; IPC would treat a stream as a series of chunks, each

transmitted separately.

When the reader and writer processes are on the same machine, a pipe

between them can be stored in shared memory and the READ and WRITE

operations are implemented in the same way as SEND and RECEIVE operations

for message queues [3]. When the two processes are on di�erent machines, IPC

ports are used.

The semantics of READ and WRITE operations must be de�ned even if one

end of the pipe is not connected. Should a writer be blocked from entering data

until the reader opens its end? What happens if either the reader or writer

breaks its connection? Such questions are answered by a connection protocol.

The speci�cations in the table above use the \rendezvous on open and close"

connection protocol:

25

FORM OF CALL EFFECT

dev handle :=

CREATE DEV(type, address)

Creates a control block for the stream in-

terface to a device driver or server. Re-

turns a handle referring to this control

block. (If the caller is a process, it can

store the handle in a directory entry and

make the device available throughout the

system.)

DELETE(dev handle) Releases

the given device control block (undoes the

corresponding CREATE DEV).

odev handle :=

OPEN(dev handle, rw)

Opens the given device by allocating bu�er

storage and performing setup operations.

The device is enabled for reading, writing,

or both, depending on the value of rw and

on whether the device is an input or out-

put device or both. (Fails if the device is

already open).

CLOSE(odev handle) Undoes OPEN.

READ(odev handle, buf, n) Reads n bytes into segment base address

buf, as for �les. (No e�ect for output

device.)

WRITE(odev handle, buf, n) Sends the n bytes of segment base address

buf to the device, as for pipe. (No e�ect

for input device.)

Table 10: Interface for devices (level 6)

26

FORM OF CALL EFFECT

pipe handle := CREATE PIPE() Creates a new empty pipe and returns a

handle for it. (If the caller is a process,

it can store the handle in a directory en-

try and make the pipe available throughout

the system.)

DELETE(pipe handle) Deletes the given pipe (undoes the corre-

sponding CREATE PIPE).

opipe handle :=

OPEN(pipe handle, rw)

Opens the given pipe by allocating bu�er

storage and performing setup operations.

Initially, the pipe is empty. If rw = read

the pipe is opened for reading (but only

if the pipe is not already open for read-

ing). If rw = write, it is opened for writ-

ing (but only if the pipe is not already open

for writing.) If both reader and writer are

on the same machine, the pipe can be im-

plemented in shared memory; otherwise it

must be implemented using IPC ports.

CLOSE(opipe handle) If executed by the reader: close down the

pipe and send an error message to a wait-

ing writer. If executed by the writer: wait

until reader empties the pipe, then close it

down.

READ(opipe handle, buf, n) Waits until there are at least n bytes in

the open pipe, then moves them from the

pipe into the caller's address space at base

address buf. Awakens waiting writer if

the read has freed up enough space in the

pipe to accommodate the writer's request.

(Fails if the open pipe does not permit

reading.)

WRITE(opipe handle, buf, n) Copies n bytes from the caller's address

space at base address buf into the given

pipe. Waits if pipe cannot accommodate

the requested bytes. May awaken waiting

reader. (Fails if the open pipe does not

permit writing.)

Table 11: Interface for pipes (level 6)

27

� The open-for-reading and the open-for-writing request may be called at

di�erent times; each returns immediately.

� The CLOSE operation, executed by the reader, shuts both ends of the

pipe; when executed by the writer, the operation is deferred until the

reader empties the pipe.

5.7 Directories: level 7

Level 7 manages a hierarchy of directories containing handles for sharable ob-

jects. In our model, ports, pipes, �les, devices, and directories are sharable;

but handles for processes, threads, semaphores, virtual memories, and for open

pipes, �les, devices, are not sharable and cannot appear in directories. A hier-

archy arises because a directory can contain handles for subordinate directories.

A directory is a table that matches an external name, stored as a string of

characters, with a handle. (An access code for the object is contained in the

handle.) The �rst (\self") entry of a directory contains a copy of the directory's

own handle and the second entry is reserved for the handle of the parent direc-

tory. These two handles facilitate certain common operations such as copying

an entry to the current directory or changing the current directory to the par-

ent. In a tree of directories (Figure 3), the concatenated sequence of external

names from the root to a given object serves as a unique, system-wide external

name (pathname) for that object. Since directories are at a higher level than

�les, the �le system can be used to store directories.

The principal directory operation is a search command that locates and re-

turns the handle corresponding to a given external name. Thus, the directory

level is merely a mechanism for mapping external names to internal ones. Infor-

mation about attributes of objects, such as ownership, time of last use, or time

of creation, is not kept in directories but rather in the object descriptor blocks

within the various object-manager levels.

Portions of the directory hierarchy may be replicated across machines. The

replication methods must guarantee consistency of the replicated portions; dis-

tributed database methods have been used for this purpose [28], as have others

[26, 15]. To control the number of update messages in a large system, the full

directory database may be kept on only a small number of machines. Other

machines can cache the portions of the directory database accessed by their

users. Operations that modify an entry in a directory must send updates to the

directory-database machines, which relay the updates to other machines.

The speci�cations for the directory level in the table below are not complete;

speci�c systems will provide other operations as needed.

The CREATE DIR operation creates an empty, unattached directory. The

access codes passed to this operation indicate which classes of processes have

the right to search or modify the directory. The ATTACH operation is used to

create a new entry in a target directory. When new entry is a directory, this

28

FORM OF CALL EFFECT

dir handle :=

CREATE DIR(access)

Allocates an empty directory, sets its access

codes to access, generates a handle for it, and

places a copy of the handle in the �rst entry.

Marks the new directory as unattached to the

directory tree.)

DELETE(dir handle) Deletes the given directory. (Fails if any entry

of the directory is nonempty, other than the

self and parent entries, or if the directory is

attached to the directory tree.) empty.)

ATTACH(dir handle,

name, obj handle)

Makes an entry (name, obj handle) in the given

directory. If obj handle denotes a directory, sets

its parent entry to dir handle. Noti�es the di-

rectory databases of the change. (Fails if name

already exists in the directory, if the directory

dir handle is not attached, if obj handle denotes

an already attached directory, of if obj handle

denotes a nonsharable object.)

DETACH(dir handle, name) Removes the named entry from the given di-

rectory. Noti�es the directory databases of the

change. (Fails if the given name does not exist

in the given directory, or if it names a nonempty

directory, or if the access codes of the directory

prohibit changes.)

obj handle :=

SEARCH(dir handle, name)

Finds the entry of the given name in the given

directory and returns a copy of the associated

handle. (Fails if the name does not exist in

the given directory, or if the access codes of the

directory prohibit searching.)

n := COUNT(dir handle) Returns the number of entries in the given di-

rectory. (Fails if the the access codes of the

directory prohibit searching.)

(name, handle) :=

GET(dir handle, i)

Returns the ith entry of the directory. (Fails if

there is no such entry or if the entry is blank.)

RENAME(dir handle, name,

newname)

Locates the named entry and replaces the name

with the new name. (Fails if the directory ac-

cess codes prohibit changes.)

Table 12: Speci�cation of a directory manager interface (level 7)

29

#
#
##

Q
Q
Q
QQ

`````````````

�
�
�

@
@
@

�
�
�

A
A
A

�
�
�

@
@
@

S
S
S

�
�
�

denninglaser clock terminal tbl

bindev

net-hosts jjh tichy

user

passwd

etc

nro� eqn

root

Some directories of the directory tree are permanently reserved for

speci�c purposes. For example, the \dev" directory lists all the ex-

ternal devices of the system. The \lib" directory lists the library of

all executable programs maintained by the system's administration.

A \user" directory contains subdirectories for each authorized user;

that subdirectory is the root of a subtree belonging to that user. In

Unix, the unique external name of an object is formed by concate-

nating the external names along the path from the root, separated

by \/" and omitting the root. Thus, the laser printer's external

name is \/dev/laser."

Figure 3: A Directory Tree

operation sets that new directory's parent pointer to the target directory. The

DETACH operation only removes entries form directories but has no e�ect on

the object to which a handle points; to delete an object, the DELETE operation

of the appropriate level must be used. To minimize inadvertent deletions, the

operation to delete a directory fails if applied to a directory containing anything

else but the self and parent pointers.

The ATTACH and DETACH operations must notify other machines so that

changes become e�ective throughout the system. By maintaining two condi-

tions, this process is unlikely to yield inconsistencies: (1) an empty directory

must �rst be attached to the global directory tree before entries are made in it,

and (2) a directory must be empty before being detached. A more complicated

noti�cation mechanism will be needed if a process can construct a directory

subtree before attaching its root to the global directory tree. The COUNT and

GET operations are used by a formatting program to prepare a summary of the

objects listed in a directory.

5.8 Shell: level 8

Most system users spend most of their time executing existing programs, not

writing new ones. The shell is the program that listens to the user's console

and interprets inputs as commands to invoke existing programs, in speci�ed

30



combinations with speci�ed inputs. When a user logs in, the operating system

creates a process containing a copy of the shell program with its default input

connected to the user's keyboard and its default output connected to the user's

display.

The shell scans each complete command line of the input to pick out the

names of programs to be invoked and the values of arguments to be passed to

them. For each program called in this way, the shell creates a process. The

processes are connected according to the data 
ow speci�ed in the command

line. Multics was one of the �rst systems to have a shell [20]; Unix adapted the

shell model [24].

Operations of substantial complexity can be programmed in the command

language of the Unix shell. For example, the operations that format and then

print a �le named text can be set in motion by the command line:

tbl < text | eqn | lptroff > output

The �rst program is tbl, which scans the data on its input stream and replaces

descriptions of tables of information with the necessary formatting commands.

The \<" symbol indicates that tbl is to take its input from the �le text. The

output of tbl is directed by a pipe (the \|" symbol) to the input of eqn, which

replaces descriptions of equations with the necessary formatting commands. The

output of eqn is then piped to lptro�, which generates the commands for the

laser printer. Finally, \>" indicates that the output of lptro� is to be placed in

the �le output. If \> output" is replaced with \| laser," the data are instead

sent directly to the laser printer.

After the components of a command line are identi�ed, the shell obtains

handles for them by a series of commands:

h1 := SEARCH(CD, "tbl");

h2 := SEARCH(WD, "text");

h3 := CREATE_PIPE();

h4 := SEARCH(CD, "eqn");

h5 := CREATE_PIPE();

h6 := SEARCH(CD, "lptroff");

h7 := CREATE_FILE();

ATTACH(WD, "output", h7);

The variable CD holds a handle for a commands directory and WD holds a

handle for the current working directory. Both CD and WD are part of the

shell's context

The shell then creates and resumes processes that execute the three compo-

nents of the pipeline and awaits their completion:

RESUME(CREATE_SHPROC(h1, (OPEN(h2,r), OPEN(h3,w))));

RESUME(CREATE_SHPROC(h4, (OPEN(h3,r), OPEN(h5,w))));

RESUME(CREATE_SHPROC(h6, (OPEN(h5,r), OPEN(h7,w))));

JOIN(3);

31



(CREATE SHPROC works almost like CREATE PROC of level 5. It �rst

extracts the ports from the open stream descriptors it its second argument

and passes these ports and the �rst argument, and executable �le, to CRE-

ATE PROC.) After the join completes, the shell can kill these processes, close

all open objects, and acknowledge completion of the entire command to the user

through a \prompt" symbol on the user's display.

If the speci�cation \< text" is omitted, the shell connects tbl to the default

input, which is the same as its own, namely the keyboard. In this case, the

second search command is omitted and the �rst process creation is

CREATE_SHPROC(h1,(STD_IN, OPEN(h3,w)));

where STD IN is the standard input for a process. Similarly, if \> output" is

omitted, the shell connects lptro� to the default output, the shell's STD OUT.

If an elaborate command line is to be performed often, typing it can become

tedious. Unix encourages users to store complicated commands in executable

�les called shell-scripts that become simpler commands. A �le named format

might be created with the contents

tbl < $1 | eqn | lptroff > $2

where the names of input and output �les have been replaced by variables $1

and $2. When the command format is invoked, the variables $1 and $2 are

replaced by the arguments following the command name. For example, typing

format text output

would substitute \text" for $1 and \output" for $2 and so would have exactly

the same e�ect as the original command line.

5.8.1 Graphics Server: level 9

The graphics server provides a standard way for programs to interact with the

user pictorially. The basic abstractions are the window and the event. The

window enables a program to display something for the user without interfering

with the output of other programs. The event encapsulates information from

input devices such as a keyboard, a mouse, or a joystick, and messages sent

between windows. The server maintains a policy (focus) for deciding to which

window a given event belongs.

A user program can draw into a window regardless of whether it is visible

or not. The server tries to maintain the contents of the window. If it loses the

content, it can send a redraw event to the user program to request reconstruction

of the context.

Each user program normally has an event loop to scan for and react to

events. After initializing its windows, the program dedicates a thread to the

event loop and to each of the actions linked to events. When an event arrives,

32



FORM OF CALL EFFECT

handle := CREATE(display) Creates a new window on the given display.

DELETE(handle) Removes the given window and its context

from the display and releases its resources.

MOVE(handle, x, y) Reposition the window at a new location.

RESIZE(handle, width, height) Change the size of the window.

MOVE(handle, x, y) Reposition the window at a new location

SHOW(handle) Make the given window visible by placing

it on the display.

HIDE(handle) Remove the given window and its contents

from the screen but maintain its state.

UP(handle) Reposition the window over the window

that most immediately overlaps it.

DOWN(handle) Reposition the window under the window

that it most immediately overlaps.

event := RECEIVE(handle) Get the next event that was sent to the

window from its event queue.

SEND(handle, event) Send an event to the given window.

Table 13: Graphics Server(level 9)

33



the loop thread decides what action to take, invokes the corresponding action

thread, then waits again. The event loop generally does not terminate until the

user program does.

A special program called the window manager may be provided to assist the

user. This program makes it easy for the user to manipulate windows on the

screen (e.g., resize by dragging a corner, reposition by dragging the title bar),

start and end programs, and even provide screen space that is much larger than

the actual screen. The user may even be able to choose what window manager

to run. For example, the X Window server, o�ers a wide variety of window

managers to choose from (with acronyms including fvwm, twvm, mwm, kde,

and gnome).

Window-system \class libraries" provide extensible building blocks for win-

dows. With these libraries, a programmer can construct control windows that

make it easier to present information to the user and get the user's feedback.

Examples of control-window elements are icons, buttons, sliders, menus, check-

boxes, tree displays, and table displays. The Swing library in Java is a good

example. A windows manager and its class library o�er the applications devel-

oper a powerful way of organizing user interactions with the application.

6 System Initialization

One small but essential piece of an operating system has not been discussed|the

method of starting up the system. The start-up procedure, called a bootstrap

sequence, begins with a very short program copied into memory from a per-

manent read-only memory (ROM). This program loads a longer program from

disk, which then takes control and loads the operating system itself. Finally,

the operating system creates a special login process connected to each terminal

of the system.

When a user correctly types an identi�er and a password, the login process

will create a shell process connected to the same terminal. When the user types

a logout command, the shell process will exit and the login process will resume.

7 Conclusion

We have used the levels model to describe the functions of multi-machine operat-

ing systems and how it is possible to systematically hide the physical locations

of all sharable objects while being able to locate them quickly when given a

name in the directory hierarchy. The directory function is not simply a way

of naming �les; it is a way of naming any sharable object. No user machine

needs to store locally a full copy of the entire directory structure; it needs only

save a copy of the view with which it is currently working. The full structure is

maintained by a small group of machines implementing a reliable, dependable

34



storage system.

The model can deal with heterogeneous systems consisting of general purpose

user machines, such as workstations, and special purpose machines such as stable

storage systems, database servers, �le servers, and supercomputers. Only the

user machines need a full operating system; the special purpose machines require

only a microkernel compatible with the microkernels on the workstations.

The model can also deal with the growing number of real-time systems

such as bank customer inquiry systems, web servers, airline reservation sys-

tems, transportation monitoring and control systems, manufacturing plant con-

trol systems, and hospital patient monitoring systems. The common element

in these systems is that each deals with a speci�ed set of external events that

trigger system responses, and the system responses must be completed within

a speci�ed deadline. The microkernel can be used to �eld the event signals and

trigger the responses; the response programs can be established at the higher

levels and use microkernel operations to coordinate their operations.

As computer systems proliferate we will rely more and more on networks

of computers. The network will act as a \nervous system" connecting many

sensors, actuators, motors, and service nodes. The networks will have to react

to sensor input rapidly and e�ectively. The principles of operating systems, as

outlined above, will be used to achieve these ends. Today's operating system

principles, understood as software structuring principles, may well become prin-

ciples for the design of chips and microcomputers | they are that fundamental.

Enterprise computing o�ers new challenges that can be accommodated with-

in the levels mode. In organizations, the operating system is no longer limited to

\managing the 
ow of work through the network of computers." It is concerned

with helping people manage the 
ow of work in their organization. This form

of operating system needs to incorporate a new level, a level that recognizes

the distinctions of action in enterprises, a level higher in our hierarchy than the

graphics server. The new, enterprise level is higher because it addresses ongoing

never-ending coordinated actions among many people; it's also real time as

noted in the paragraph above.

The levels mode is powerful because it is based on the same principle found

in nature to organize many scales of space and time. At each level of abstrac-

tion are well-de�ned rules of interaction for the objects visible at that level;

the rules can be understood without detailed knowledge of the smaller objects

making up those objects. The many parts of an operating system cannot be

fully understood without keeping this principle in mind.

References

[1] Accetta, M. et al., \Mach: A New Kernel Foundation for Unix Develop-

ment," Proceedings of USENIX 1986 Summer Conference (Summer 1986),

pp. 93{112.

35



[2] Birrell, A. D. et al., \Grapevine: An Exercise in Distributed Computing,"

Communications of the ACM 25(4) (April 1982), pp. 260{274.

[3] Brinch Hansen, P., Operating System Principles, Prentice-Hall, Englewood

Cli�s, NJ (1973).

[4] Brown, R. L., Denning, P. J., and Tichy, W. F., \Advanced Operating

Systems," IEEE Computer 17(10) (Oct. 1984), pp. 173{190.

[5] Cheriton, D. R., \The Thoth System: Multi-process Structuring and

Portability," Elsevier Science, New York, 1982.

[6] Comer, D., Operating System Design: The XINU Approach, Prentice-Hall,

Englewood Cli�s, NJ (1984).

[7] Denning, Peter J., \Virtual Memory," Computing Surveys, 2(3) (Sept.

1970), pp. 154-216.

[8] Denning, Peter J., \Third Generation Computer Systems," Computing

Surveys 3(4) (December 1971), pp. 175{212.

[9] Denning, Peter J., \Fault-Tolerant Operating Systems," Computing Sur-

veys 8(4) (December 1976), pp. 359{389.

[10] Denning, Peter J., and Tichy, Walter F., \Highly parallel computation,"

Science 250 (30 November 1990), pp. 1217{1222.

[11] Dijkstra, Edsger W., \The Structure of the THE-Multiprogramming Sys-

tem," Communications of the ACM 11(5) (May 1968), pp. 341{346.

[12] Fabry, R. S., \Capability-Based Addressing," Communications of the ACM

17(7) (July 1974), pp. 403{412.

[13] Habermann, A. Nico, Lawrence Flon, and Lee W. Cooprider, \Modulariza-

tion and Hierarchy in a Family of Operating Systems," Communications

of the ACM 19(5) (May 1976), pp. 266{272.

[14] Holt, R. C., Concurrent Euclid, Unix, and the Tunis Operating System.

Reading, MA: Addison-Wesley, 1983.

[15] Howard J. H. et al., \Scale and Performance in a Distributed File System,"

ACM Transactions on Computer Systems, 6(1) (February 1988), pp. 51{

81.

[16] Jones, Anita K. et al., \StarOS, A Multiprocessor Operating System for

the Support of Task Forces," Proceedings of the Seventh Symposium on

Operating Systems Principles, (December 1979), pp. 117{127.

36



[17] Kernighan, B. W. and R. Pike, The Unix Programming Environment,

Prentice-Hall, Englewood Cli�s, N.J., 1984.

[18] Neumann, Peter G., Robert S. Boyer, Richard J. Feiertag, Karl N. Levitt,

and Lawrence Robinson, \A Provably Secure Operating System, its Ap-

plications, and Proofs," CSL-116 (2nd edition), SRI International, Menlo

Park, CA (May 7, 1980).

[19] Ousterhout, John K. et al., \Medusa: An Experiment in Distributed Op-

erating System Structure," Communications of the ACM 23(2) (February

1980), pp. 92{105.

[20] Organick, E. I., The Multics System: An Examination of its Structure,

The MIT Press, Cambridge, Mass., 1972.

[21] Organick, E. I., A Programmer's View of the Intel 432 System, McGraw-

Hill, New York, 1983.

[22] Popek, G. et al., \Locus: A Network Transparent, High Reliability Dis-

tributed System," Proceedings of the Eighth Symposium on Operating Sys-

tems Principles, (December 1981), pp. 169{177.

[23] Rashid, R. et al., \Machine-Independent Virtual Memory Management

for Paged Uniprocessor and Multiprocessor Architectures," IEEE Trans-

actions on Computers 37(8) (August 1988), pp. 896{908.

[24] Ritchie, D. M. and K. L. Thompson, \The UNIX Time-Sharing System,"

Communications of the ACM 17(7) (July 1974), pp. 365{375.

[25] Rowe, L. A. and Birman, K. P., \A local network based on the UNIX

operating system," IEEE Trans. Software Engineering, SE-8(2) (March

1982), pp. 137{146.

[26] Ruan, Zuwang and Tichy, Walter, \Performance Analysis of File Repli-

cation Schemes in Distributed Systems," Performance Evaluation Review

15(1) (May 1987), pp. 205{215.

[27] Sandberg, Russel, et al., \Design and Implementation of the Sun Net-

work Filesystem," Proceedings of USENIX 1985 Summer Conference (June

1985), pp. 119{130.

[28] Selinger, P. G.,\Replicated Data," in Distributed Data Bases, ed. F. Poole,

Cambridge University Press, Cambridge, England (1980), pp. 223-231.

[29] Tanenbaum, Andrew S., Computer Networks, 3rd Ed. Prentice-Hall, En-

glewood Cli�s, NJ (1996).

[30] Tanenbaum, Andrew S., Distributed Operating Systems, Prentice-Hall, En-

glewood Cli�s, NJ (1995).

37



[31] Tichy, W. F., \RCS|A system for version control", Software{Practice &

Experience, 15(7) (July 1985), pp. 637{654.

[32] Wilkes, M. V. and R. M. Needham, The Cambridge CAP Computer and

its Operating System, Elsevier/North-Holland Publishing Co. (1979).

[33] Wulf, William A., Roy Levin, and Samuel P. Harbison, HYDRA/C.mmp,

An Experimental Computer System, McGraw-Hill (1981).

38




