
Thrashing: Its causes and prevention

by PETER J. DENNING

Princeton University*
Princeton, New Jersey

INTRODUCTION

A particularly troublesome phenomenon, thrashing,
may seriously interfere with the performance of paged
memory systems, reducing computing giants (Multics,
IBM System 360, and others not necessarily excepted)
to computing dwarfs. The term thrashing denotes ex
cessive overhead and severe performance degradation or
collapse caused by too much paging. Thrashing in
evitably turns a shortage of memory space into a sur
plus of processor time.

Performance of paged memory systems has not al
ways met expectations. Consequently there are some
who would have us dispense entirely with paging,1 be
lieving that programs do not generally display behavior
favorable to operation in paged memories. We shall
show that troubles with paged memory systems arise
not from any misconception about program behavior,
but rather from a lack of understanding of a three-way
relationship among program behavior, paging algo
rithms, and the system hardware configuration (i.e., re
lative processor and memory capacities). We shall show
that the prime cause of paging's poor performance is not
unfavorable program behavior, but rather the large
time required to access a page stored in auxiliary
memory, together with a sometimes stubbon determin
ation on the part of system designers to simulate large
virtual memories by paging small real memories.

After defining the computer system which serves as
our context, we shall review the working set model for
program behavior, this model being a useful vehicle for
understanding the causes of thrashing. Then we shall
show that the large values of secondary ihemory access
times make a program's steady state processing
efficiency so sensitive to the paging requirements of

*Department of Electrical Engineering. The work reported
herein, completed while the author was at Project MAC, was
supported in part by Project MAC, an M.I.T. research program
sponsored by the Advanced Research Projects Agency, Depart
ment of Defense, under Office of Naval Research Contract No.
Nonr-4102(01).

other programs that the slightest attempt to overuse
main memory can cause service efficiency to collapse.
The solution is two-fold: first, to use a memory alloca
tion strategy that insulates one program's memory-
space acquisitions from those of others; and second, to
employ memory system organizations using a non-ro
tating device (such as slow-speed bulk core storage)
between the high-speed main memory and the slow-
speed rotating auxiliary memory.

Preliminaries

Figure 1 shows the basic two-level memory system in
which we are interested. A set of identical processors
has access to M pages of directly-addressable, multi-
programmed main memory; information not in main
memory resides in auxiliary memory which has, for our
purposes, infinite capacity. There is a time T, the
traverse time, involved in moving a page between the
levels of memory; T is measured from the moment a
missing page is referenced until the moment the re
quired page transfer is completed, and is therefore the
expectation of a random variable composed of waits in
queues, mechanical positioning delays, page transmis
sion times, and so on. For simplicity, we assume T is
the same irrespective of the direction a page is moved.

Normally the main memory is a core memory,
though it could just as well be any other type of
directly-addressable storage device. The auxiliary
memory is usually a disk or drum but it could also be a
combination of slow-speed core storage and disk or
drum.

We assume that information is moved into main
memory only on demand (demand paging); that is, no
attempt is made to move a page into main memory un
til some program references it. Information is returned
from main to auxiliary memory at the discretion of the
paging algorithm. The information movement across the
channel bridging the two levels of memory is called
page traffic.

A process is a sequence of references (either fetches or

915

916 Fall Joint Computer Conference, 1968

identical
processors

MAIN

(M pages)

Traverse Time T

AUXILIARY
(a> capacity)

- page traffic

FIGURE 1—Basic two-level memory system

stores) to a set of information called a 'program. We as
sume that each program has exactly one process as
sociated with it. In this paper we are interested only in
active processes. An active process may be in one of two
states: the running state, in which it is executing on a
processor; or the page wait state, in which it is temporar
ily suspended awaiting the arrival of a page from
auxiliary memory. We take the duration of the page
wait state to be T, the traverse time.

When talking about processes in execution, we need
to distinguish between real time and virtual time.
Virtual time is time seen by an active process, as if
there were no page wait interruptions. By definition, a
process generates one information reference per unit
virtual time. Real time is a succession of virtual time.
intervals (i.e, computing intervals) and page wait
intervals. A virtual time unit (vtu) is the time between
two successive information references in a process, and
is usually the memory cycle time of the computer sys
tem in which the process operates.

In this paper we take 1 vtu = 1 microsecond, since 1
microsecond is typical of core memory cycle times. The
table below lists estimates of the traverse time T for
typical devices, using the approximate relation

T = Ta + Tt

where Ta is the mechanical access time of the device and
Tt is the transmission time for a page of 1000 words.

Storage
Device

thin film
core
bulk core
high speed drum
moving-arm disk

± a

0
0
0
10* vtu
106 vtu

Tt (page =
1000 words)

102 vtu
103 vtu
KHvtu
103 vtu
103 vtu

r = Ta + Tt

102 vtu
103 vtu
10* vtu
104 vtu
106 vtu

The working set model for program behavior

In order to understand the causes and cures for

virtual
time

pages referenced in this
interval constitute W(t,r)

FIGURE 2—Definition of working set

thrashing, it is necessary to understand some basic prop
erties of program behavior. The working set model for
program behavior, discussed in detail in reference2, is a
useful way for understanding these properties, so we
review it here.

By a program we mean the set of pages to which a pro
cess directs its references. A basic program property,
that of locality, is the non-uniform scattering of a pro
cess's reference across its program during any virtual
time interval. That is, a process tends to favor some of
its pages more than others. During disjoint virtual time
intervals, the set of favored pages may be different.
Locality has been observed to various degrees in exist
ing programs,3,4 and it can be considerably enhanced
if programmers design their algorithms to operate lo
cally on information, one region at a time.

The working set of information W(t,r) associated with
a process at time t is the set of pages referenced by the
process during the virtual time interval (i- r , t) . The
concept is illustrated in Figure 2.

The working set size o}(t,r) is the number of pages in
W(t,r). Observe that CO(£,T) < r, since no more that T

distinct pages can be referenced in an interval of length
r ; that <a(t,0) = 0, since no references can occur in zero
time; and that O>(£,T) is a non-decreasing function of r,
since more references can occur in longer intervals
(t-r,t).

The working set model owes its validity to locality.
A working set measures the set of pages a process is
favoring at time t; assuming that processes are not too
fickle, that is, they do not abruptly change sets of
favored pages, the working set W(t,r) constitutes a
reliable estimate of a process's immediate memory need.

Intuitively, a working set is the smallest set of pages
that ought to reside in main memory so that a process
can operate efficiently. Accordingly, T should be chosen
as small as possible and yet allow W(t,r) to contain at
least the favored pages. In principle, then, r may vary
from program to program and from time to time. A
working set memory allocation policy is one that permits
a process to be active if and only if there is enough un
committed space in main memory to contain its work
ing set.

Thrashing: Its Causes and Prevention 917

Define the random variable xs to be the virtual time
interval between successive references to the same page
in a program comprising s pages; these interreference
intervals x8

 ;are useful for describing certain program
properties. Let FXf (u) = Pr[xs < u] denote its distribu
tion function (measured over all programs of size s), and
let xs denote its mean.

The relation between the size of a program and the
lengths of the interreference intervals to its component
pages may be described as follows. Let process 1 be
associated with program Pi (of sizes Si) and process 2 be
associated with program P2 (of size s2), and let P 4 be
larger than P 2 . Then process 1 has to scatter its refer
ences across a wider range of pages than process 2, and
we expect the interreference intervals xA of process 1 to
be no longer than the interreference intervals xS2 of pro
cess 2. That is, sx > s2 implies xn > x»t.

Memory management strategies

I t is important to understand how programs can in
terfere with one another by competing for the same
limited main memory resources, under a given paging
policy.

A good measure of performance for a paging policy is
the missing-page probability, which is the probability
that, when a process references its program, it directs
its reference to a page not in main memory. The better
the paging policy, the less often it removes a useful
page, and the lower is the missing-page probability. We
shall use this idea to examine three important paging
policies (ordered here according to increasing cost of
implementation):

1. First In, First Out (FIFO): whenever a fresh
page of main memory is needed, the page least
recently paged in is removed.

2 Least Recently Used (LRU): whenever a fresh
page of main memory is needed, the page unref
erenced for the longest time is removed.

3. Working Set (WS): whenever a fresh page of
main memory is needed, choose for removal some
page of a non-active process or some non-working-
set page of an active process.

Two important properties set WS apart from the
other algorithms. First is the explicit relation between
memory management and process scheduling: a pro
cess shall be active if and only if its working set is fully
contained in main memory. The second is that WS is
applied individually to each program in a multipro-
grammed memory, whereas the others are applied
globally across the memory. We claim that applying a
paging algorithm globally to a collection of programs
may lead to undesirable interactions among them.

How do programs interact with each other, if at all,

under each of these strategies? How may the memory
demands of one program interfere with the memory al
located to another? To answer this, we examine the
missing-page probability for each strategy.

In a multiprogrammed memory, we expect the miss
ing-page probability for a given program to depend on
its own size s, on the number n of programs simul
taneously resident in main memory, and on the main
memory size M:

(1) (missing-page probability) = m(n, s, M)

Suppose there are n programs in main memory; in
tuitively we expect that, if the totality of their working
sets does not exceed the main memory size M, then no
program loses its favored pages to the expansion of
another (although it may lose its favored pages because
of foolish decisions by the paging algorithm). That is,
as long as

(2) £ «<(*, n) < M

there will be no significant interaction among programs
and the missing-page probability is small. But when n
exceeds some critical number n0, the totality of working
sets exceeds M, the expansion of one program displaces
working set pages of another, and so the missing-page
probability increases sharply with n. Thus,

(3) m(nh s, M) > m(n2, s, M) if nx > n2

This is illustrated in Figure 3.

If the paging algorithm operates in the range n > n0,
we will say it is saturated.

Now we want to show that the FIFO and LRU
algorithms have the property that

(4) m(n, «i, M) > m(n, s2, M) if sx > s2

That is, a large program is at least as likely to lose pages
than a small program, especially when the paging
algorithm is saturated.

To see that this is true under LRU, recall that if pro
gram Pi is larger than P 2 , then the interreference inter
vals satisfy xi > x2: large programs tend to be the ones
that reference the least recently used pages. To see that
this is true under FIFO, note that a large program is
likely to execute longer than a small program, and thus
it is more likely to be still in execution when the
FIFO algorithm gets around to removing its pages. The
interaction among programs, expressed by Eq. 4, arises
from the paging algorithm's being applied globally
across a collection of programs.

918 Fall Joint Computer Conference, 1968

m(n,s,M) e(m)

0

FIGURE 3—Missing-page probability

Finally, we note that under a WS algorithm, the
missing-page probability is independent of n and M
since eq. 2 is always satisfied. The missing-page prob
ability depends only on the choice of T ; indeed,

Mgir) = Pr[missing page is referenced]
in size s program

(5) = Pr[page referenced satisfies xa > r]

mt(r) = 1 - Fx,{r)

where FXg (u) = Pr[xs < u] has already been defined to
be the interreference distribution. Therefore, the WS
algorithm makes programs independent of each other.
We shall show shortly that this can prevent thrashing.

From now on, we write m instead of m(n,s,M).

Steady state efficiency and thrashing

Suppose that a certain process has executed for a
virtual time interval of length V and that the missing-
page probability m is constant over this interval V. The
expected number of page waits is then (Vm), each
costing one traverse time T. We define the efficiency
e(m) to be:

(6)

Then,

(7)

e(m) =
(elapsed virtual time)

(elapsed virtual time) +
(elapsed page wait time)

V
e(m)

V + VmT 1 + m T

Clearly, e(m) measures the ability of an active process
to use a processor.

Figure 4 shows e(m) for five values of T:

0

FIGURE 4—Efficiency

T = 1,10,100,1000,10000 vtu

where T = 10000 vtu may be regarded as being typical
of the fastest existing rotating auxiliary storage devices.

The slope of e(m) is

(8) e'(m) = JL ,(„) = j j - = ^

which means that, for small m and T> > 1, e{m) is ex
tremely sensitive to a change in m. I t is this extreme
sensitivity of e(m) to w-fluctuations for large T that is
responsible for thrashing.

To show how the slightest attempt to overuse
memory can wreck processing efficiency, we perform the
following conceptual experiment. We imagine a set of
(n -f 1) identical programs, n of which are initially
operating together, without sharing, in memory at the
verge of saturation (that is, n = n0 in Figure 3); then we
examine the effect of introducing the (n + l)-st pro
gram.

Let 1,2,,..., (n + 1) represent this set of {n + 1)
identical programs, each of average size s. Initially, n of
them fully occupy the memory, so that the main
memory size is M = ns. Let m0 denote the missing-page
probability under these circumstances; since there is
(on the average) sufficient space in main memory to con
tain each program's working set, we may assume
m0< < 1 and that e(m0) is reasonable (i.e., it is not
true that e(m0) << 1). Then, the expected number of
busy processors (ignoring the cost of switching a pro
cessor) is:

Thrashing: I ts Causes and Prevention 919

(9) = 52 ei(m0) =
1 + m0T

Now introduce the (n + l)-st program. The missing-
page probability increases to (ra0 + A) and the ex
pected number of busy processors becomes

(10)
n+l

= 51 ei(m0 + A) =
n + 1

1 + (m0 + A)T

Now if the pages of n programs fully occupy the
memory and we squeeze another program of average
size s into memory, the resulting increase in the missing-
page probability is

(11) A =
1

(n + l)s n + l

since we assume that the paging algorithm obtains the
additional s pages by displacing s pages uniformly from
the (n + 1) identical programs now resident in main
memory. The fractional number of busy processors
after introduction of the (n + l)-st program is

(12) t = n + 1
p n

1 + m0T

1 + (m0 + A)T

We assume that the traverse time T is very large;
that is, T (in vtu) > > n > > . We argue that

A =
1

n + 1
>> m0

To show this, we must show that neither A ttm0 nor
A < < m0 is the case. First, A wm0 cannot be the case,
for if it were, we would have (recalling T> >n> > 1):

(13) e(m0) tt e(A)
1 + AT

1 + n + 1

1 > > e(A) =
\n + 1/

> > e(m0)

once again contradicting the original assumption that,
when n programs initially occupied the memory, it is
not true that e(m0) < < 1. Thus, we conclude that
A ^> m0.

When T » n ^> 1 and A = — — y> m0, it is easy to

show that

(14)
n + l

T

n + l

+ (n + l)w0 « 1

The presence of one additional program has caused a
complete collapse of service.

The sharp difference between the two cases at first
defies intuition, which might lead us to expect a gradual
degradation of service as new programs are introduced
into crowded main memory. The excessive value of the
traverse time T is the root cause; indeed, the preceding
analysis breaks down when it is not true T>>n.

The recognition that large traverse times may inter
fere with system performance is not new. Smith,5 for
example, warns of this behavior.

Relations among processor, memory, traverse time

We said earlier that a shortage of memory space leads
to a surplus of processor time. In order to verify this
statement, we shall answer the question: "Given p,
what is the smallest amount of main memory needed to
contain enough programs to busy an average of p pro
cessors?" We define Q(p) to be this quantity of memory,
and then show that p may be increased if and only if
Q{p) is increased, all other things being equal.

Suppose there are n identical programs in main
memory, each of average size s and efficiency
et-(w») = e(m). The expected number of busy pro
cessors is to be

(15)

so that

n + 1

n + 1 + T
<< 1

which contradicts the original assumption that, when n
programs initially occupied the memory, it is not true
that e(m0) < < 1. Second, A< <m„ cannot be the case;
for if it were, then we would have (from Eqs. 7 and 13)

(16) e(m)
p(l + mT)

Then the expected memory requirement is

(17) Q{p) = ns = ps(l+mT)

This relationship between memory requirement and
traverse time is important. If for some reason the pag-

920 Fall Joint Computer Conference, 1968

Q(p)

Ao9e * 9 tf>
s

— T
f-*-m

FIGURE 5—Relation between memory size and traverse time FIGURE 6—Single-processor memory requirment

ing algorithm does not make m sufficiently small,
then mT > > 1 because T> > 1. In this case we have
Q(p) £d psmT, almost directly proportional to the traverse
time T (see Figure 5).

Reducing T by a factor of 10 could reduce the
memory requirement by as much as 10, the number of
busy processors being held constant. Or, reducing T by
a factor of 10 could increase by 10 the number of busy
processors, the amount of memory being held constant.

This is the case. Fikes et al.6 report that, on the
IBM 360/67 computer at Carnegie-Mellon University,
they were able to obtain traverse times in the order
of 1 millisecond by using bulk core storage, as compared
to 10 milliseconds using drum storage. Indeed, the
throughput of their system was increased by a factor
of approximately 10.

In other words, it is possible to get the same amount
of work done with much less memory if we can employ
auxiliary storage devices with much less traverse time.

Figure 6, showing Q(p)/ps sketched for p = 1
and T = 1,10,100,1000,10000 vtu, further dramatizes
the dependence of memory requirement on the traverse
time. Again, when m is small and T is large, small w-
flucatuations (as might result under saturated FIFO or
LRU paging policies) can produce wild fluctuations in

Q (P) .

Normally we would choose p so that Q(p) represents
some fraction / of the available memory M:

(18) (Q)p = fM 0 < / < l

so that (l-f)M pages of memory are held in reserve to

allow for unanticipated working set expansions (it
should be evident from the preceding discussion and
from Eq. 4 that, if Q(p) = M, an unanticipated working
set expansion can trigger thrashing). Eq. 18 represents a
condition of static balance among the paging algorithm,
the processor memory configuration, and the traverse
time.

Eq. 16 and 17 show that the amount of memory
Q(p) = fM can increase (or decrease) if and only if p in
creases (or decreases), providing mT is constant. Thus,
if p' < p processors are available, then Q(p') < Q(v) = fM
and fM-Q(p') memory pages stand idle (that is, they
are in the working set of no active process). Similarly, if
only fM<JM memory pages are available, then for
some p'<p, Q(p') = f'M, and (p-p') processors stand
idle. A shortage in one resource type inevitably results in
a surplus of another.

If must be emphasized that these arguments, being
average-value arguments, are only an approximation
to the actual behavior. They nevertheless reveal certain
important properties of system behavior.

The cures for thrashing

I t should be clear that thrashing is caused by the ex
treme sensitivity of the efficiency e(m) to fluctuations
in the missing-page probability m; this sensitivity is
directly traceable to the large value of the traverse
time T. When the paging algorithm operates at or near
saturation, the memory holdings of one program may
interfere with those of others: hence paging strategies
must be employed which make m small and indepen-

Thrashing: Its Causes and Prevention 921

dent of other programs. The static balance relation
Q (p) = fM shows further that:

1. A shortage in memory resource, brought about the
onset of thrasing or by the lack of equipment, re
sults in idle processors.

.2. A shortage in processor resources, brought about
by excessive processor switching or by lack of equip
ment, results in wasted memory.

To prevent thrashing, we must do one or both of the
following: first, we must prevent the missing-page prob
ability m from fluctuating; and second, we must reduce
the traverse time T.

In order to prevent m from fluctuating, we must be
sure that the number n of programs residing in main
memory satisfies n<n0 (Figure 2); this is equivalent to
the condition that

n0

(19) , 1 " «<(*, r<) < M

where «»•(£, r*) is the working set size of program i. In
other words, there must be space in memory for every
active process's working set. This strongly suggests that
a working set strategy be used. In order to maximize n0,
we want to choose r as small as possible and yet be sure
that W(t, T) contains a process's favored pages. If each
programmer designs his algorithms to operate locally on
data, each program's set of favored pages can be made
surprisingly small; this in turn makes n0 larger. Such
programmers will be rewarded for their extra care, be
cause they not only attain better operating efficiency,
but they also pay less for main store usage.

On the other hand, under paging algorithms (such as
FIFO or LRU) which are applied globally across a
multiprogrammed memory, it is very difficult to ascer
tain n0, and therefore difficult to control m-fluctuations.

The problem of reducing the traverse time T is more
difficult. Recall that T is the expectation of a random
variable composed of queue waits, mechanical position
ing times, and page transmission times. Using optimum
scheduling techniques7 on disk and drum, together
with parallel data channels, we can effectively remove
the queue wait component from T; accordingly, T can
be made comparable to a disk arm seek time or to half
a drum revolution time. To reduce T further would re
quire reduction of the rotation time of the device (for
example, a 40,000 rpm drum).

A much more promising solution is to dispense al
together with a rotating device as the second level of
memory. A three-'evel memory system (Figure 7)
would be a solution, where between the main level
(level 0) and the drum or disk (level 2) we introduce a
bulk core storage. The discussion following Eq. 17 sug,-

0 1

CVJ

MAIN AUXILIARY
FIGURE 7—Three-level memory system

gests that it is possible, in today's systems, to reduce the
traverse time T by a factor of 10 or more. There are two
important reasons for this. First, since there is no
mechanical access time between levels 0 and 1, the
traverse time depends almost wholly on page trans
mission time; it is therefore economical to use small
page sizes. Second, some bulk core storage devices are
directly addressable,6 so that it is possible to execute
directly from them without first moving information
into level 0.

As a final note, the discussion surrounding Figures 4
and 5 suggests that speed ratios in the order of 1:100
between adjacent levels would lead to much less sen
sitivity to traverse times, and permit tighter control
over thrashing. For example:

Level Type of Memory Device Access Time

0 thin film 100 ns.
1 slow-speed core 10/ts.
2 very high-speed drum 1 ms.

CONCLUSIONS

The performance degradation or collapse brought about
by excessive paging in computer systems, known as
thrashing, can be traced to the very large speed dif
ference between main and auxiliary storage. The large
traverse time between these two levels of memory
makes efficiency very sensitive to changes in the
missing-page probability. Certain paging algorithms
permit this probability to fluctuate in accordance with
the total demand for memory, making it easy for at
tempted overuse of memory to trigger a collapse of
service.

The notion of locality and, based on it, the working
set model, can lead to a better understanding of the
problem, and thence to solutions. If memory allocation
strategies guarantee that the working set of every ac
tive process is present in main memory, it is possible to
make programs independent one another in the sense
that the demands of one program do not affect the
memory acquisitions of another. Then the missing-page
probability depends only on the choice of the working

922 Fall Joint Computer Conference, 1968

set parameter r and not on the vagaries of the paging
algorithm or the memory holdings of other programs.

Other paging policies, such as FIFO or LRU, lead to
unwanted interactions in the case of saturation: large
programs tend to get less space than they require, and
the space acquired by one program depends on its
"aggressiveness" compared to that of the other pro
grams with which it shares the memory. Algorithms
such as these, which are applied globally to a collection
of programs, cannot lead to the strict control of memory
usage possible under a working-set algorithm, and
they therefore display great susceptibility to thrashing.

The large value of traverse time can be reduced by
using optimum scheduling techniques for rotating
storage devices and by employing parallel data chan
nels, but the rotation time implies a physical lower
bound on the traverse time. A promising solution, de
serving serious investigation, is to use a slow-speed core
memory between the rotating device and the main
store, in order to achieve better matching of the speeds
of adj acent memory levels.

We cannot overemphasize, however, the importance
of a sufficient supply of main memory, enough to con
tain the desired number of working sets. Paging is no

substitute for real memory. Without sufficient main
memory, even the best-designed systems can be dragged
by thrashing into dawdling languor.

REFERENCES

1 G H F I N E et al
Dynamic program, behavior under paging
Proc 21 Nat 1 Conf. ACM 1966

2 P J DENNING
The working set model for program behavior
Comm ACM 11 5 May 1968 323-333

3 L A BELADY
A study of replacement algorithms for virtual- storage computers
IBM Systems Journal 5 2 1966

4 J S LIPTAY
The cache
IBM Systems Journal 7 1 1968

5 J L SMITH
Multiprogramming under a page on demand strategy
Comm ACM 10 10 Oct 1967 636-646

6 R E F I K E S H C LAUER A L VAREHA
Steps toward a general prupose time sharing system using large
capacity core storage and TSS/360
Proc 23 Nat ' l Conf ACM 1968

7 P J D E N N I N G
Effects of scheduling on file memory operations
AFIPS Conf Proc 30 1967 SJCC

