ready overworked department chair-
men, this activity is the most important
of all for the continued health and per-
haps even the existence of computer
science. Already we have heard specu-
lation on the future of computer sci-
ence education as computer systems
continue to migrate into secondary
and primary schools. Planning is an
essential activity in all other successful
organizations. We ignore it at our
peril.

Ithough no decisions were

reached during the 1984 Snow-
bird Conference, the essential first step
of identifying the problems was accom-
plished. It is essential that a unifying
image of computer science be devel-
oped so that the community can speak
more forcefully on important issues. A
cooperative spirit among members of
the discipline is necessary for any ef-

fective interdepartmental interaction
or long-range planning.

A specific issue requiring broad sup-
port is that of infrastructure require-
ments. Computer science departments
cannot meet their current teaching and
research obligations without increased
support in this area. Some support is
available now, but more coherent pro-
grams and asociated funding is vital.

Recruitment of additional graduate
students and faculty career develop-
ment are two chronic related prob-
lems. Their solution is vital to the dis-
cipline in development. The PhD
production rate must be increased if
the field is to flourish. A community-
wide approach to these problems must
be developed if any long-term solu-
tions are to be effective.

As the discipline matures, there is
much that the academic community
can and must do for itself to solve the
problems identified in this report.

Also, there is a commensurate need for
increased external support from uni-
versity administration, industry, and
government. [

The authors’ addresses are: John
Tartar, Department of Computer Sci-
ence, University of Alberta, Edmon-
ton, Alberta, Canada, T6G 2HI; Bruce
Arden, Electrical Engineering and
Computer Science Department, Prince-
ton University, Princeton, NJ 08540;
Taylor Booth, Electrical Engineering
and Computer Science Department,
University of Connecticut, Storrs, CT
06268; Peter Denning, MS 230-5,
NASA Ames Research Center, Moffet
Field, CA 94035; Ray Miller, School
of Information and Computer Sci-
ence, Georgia Institute of Technology,
Atlanta, GA 30332; and Andries van
Dam, Brown University, Department
of Computer Sciences, Providence, Rl
02912.

Ruminations on Education

Peter J. Denning, Research Institute for Advanced Computer Science

Remarks based on the author’s opening address at the
Snowbird 84 meeting and on the ensuing discussion.

In 1979-81 a series of reports, in-
cluding the Feldman Report to the Na-
tional Science Foundation [Communi-
cations, September 1979] and the
Snowbird 80 report from the chairmen
of the PhD-granting departments in
computer science and engineering
[Communications, June 1981], helped
persuade the NSF and many university

Originally published in Communications of the ACM,
Oct. 1984. Reprinted by permission of Association for
Computing Machinery.

May 1985

administrations that the ‘‘computer
science problem’’ was real and helped
bring relief in the form of badly needed
resources. Now that the needed re-
sources have started to flow, it is time
for the faculty once again to seize the
initiative and deal with problems that
are within their power to influence. In
the past we asked, ‘“What can others
do for us?’’ Now we must ask, ‘“What
can we do for ourselves?”’

We are receiving new resources, we
are hiring new faculty, we are retain-
ing faculty, we are seeing the teaching
load reduced, we are getting the needed

laboratory equipment, and most
important we are taking on exciting
new challenges in computer science re-
search. The solutions to most of the re-
maining problems must come not
from outsiders but from ourselves.
My purpose here is to suggest what
some of the remaining problems are
and, where possible, outline ap-
proaches to solutions. The areas are

Salaries,

Equipment and facilities,
Promotion and tenure,

Special treatment of junior faculty,

105

e [.ong range planning,

® Core curriculum,

e Relations with other disciplines,
and

e Nature of research.

The following sections look at each
one of these areas in turn. The issues in
the first four are familiar—I simply
want us to remind ourselves that we
have not fully resolved them.

Salaries

For new PhDs, the salary gap be-
tween academia and industry is nar-
rowing and in many departments no
longer exists. It is not unusual to find
industrial offers of $48K for new PhDs
this year (higher with certain types of
experience); some of the larger depart-
ments have made offers of $36K for
the first academic vear plus 33 percent
for the first summer. [A salary survey
conducted at Snowbird 84 among 62
respondents showed these median
9-month salaries in the large depart-
ments (18 or more faculty): new PhDs
$34,000; Assistant Professors with
three vears’ experience $36,000; As-
sociate Protfessors upon promotion
$39,500. In the smaller departments,
the corresponding figures were about
$1000 lower.]

To achieve these new PhD salaries,
many departments are tolerating ‘‘sal-
ary inversions,” i.c., new salaries are
close to senior-faculty salaries. This is
an unstable situation. It will lead to
discontent among the senior members
of the faculty, who will then be suscep-
tible to being recruited by other institu-
tions. Departments with this problem
should make every effort to eliminate
it.

Equipment and facilities

The Snowbird 80 report stated that
arescarch lab capable of advancing the
frontier of our science requires capital-
ization on the order of $50K to $75K
per researcher. An analysis today of
the laboratories in the major research

106

departments leads to the same conclu-
sion. These figures are similar to those
in the other experimental disciplines
such as physics, chemistry, or biology.

Less attention has been paid to lab-
oratories for undergraduate instruc-
tion, which are essential to the in-
tegration of experimental computer
science into the core curriculum. For-
tunately, many industries recognize
this and are offering to provide large
donations of equipment for under-
graduate laboratories.

To be successful with our labora-
tories, we must obtain sufficient floor
space and provide a sufficient staff of
technicians, programmers, and facil-
itics managers to handle installation,
reconfiguration, and maintenance.
This staff must be capable of dealing
with the highly heterogeneous systems

Many departments are
tolerating “salary
inversions,” that is, new
salaries close to senior-
faculty salaries.

and networks that will inevitably ap-
pear in our laboratories. Although the
support staff for research is counted in
the capitalization cost reported above,
the support staff for instructional
laboratories is an additional cost. The
resources for this ‘‘laboratory infra-
structure’” must ultimately be pro-
vided by the university because gov-
ernment funds are generally restricted
to specific research projects or are
temporary, seed funds.

Because many outsiders have doubts
about the permanence or depth of com-
puter science, it is difficult to persuade
administrations in many universities to
allocate the substantial new funds
needed for our laboratories. (I will give
a more complete analysis of these
doubts in later sections.) We need
more compelling arguments than
“*burgeoning student enrollments.”’
Once outsiders are convinced of the
staying power and substance of our
discipline, they are more likely to be
persuaded by analogies between ours
and other experimental disciplines.

Promotion and tenure

A number of difficulties have arisen
in recent years in connection with our
system of promotion and tenure. Most
universities abide by the AAUP guide-
line, which states that tenure must be
granted within six years and that every
untenured faculty member must be
given at least one year’s notice of
termination. (Taken together, these
two guidelines force many depart-
ments to make a promotion decision in
Year 5.) Most departments state in
their promotions regulations that pro-
motion and tenure will be awarded
only if the individual has made con-
tributions, in research, teaching, and
service, with significant contributions
in at least one of these three areas.

A strong demand for personnel in a
field generates distortions and diffi-
culties with respect to the AAUP
guidelines. In fields where PhD pro-
duction is adequate, there is no rush to
promote anyone. Many new PhDs
take postdoctoral research positions
for periods up to four years prior to
joining the faculty, giving them as
many as nine or ten years past the PhD
to establish themselves as researchers.
In the high-demand fields, there is a
rush to promote—if your institution
does not promote someone, another
will. Because of this, many young
faculty in our field expect early pro-
motion and some threaten to go else-
where if their departments do not take
up their cases sufficiently early. Amid
these tensions I see these difficulties:

(1) Paradoxically, the apparent ri-
gidity of the guidelines has produced a
perception among graduate students
that job security for assistant profes-
sors is low, which is one of the factors
that discourages them from consider-
Ing university careers. This perception
exists even though many who choose
industrial careers will switch jobs with-
in six years anyway. (The difference is
that the latter transition is voluntary.)

(2) In spite of their own regulations
on promotions, many departments put
most of the emphasis on research and
ignore teaching and service except
when there is negative evidence. The

COMPUTER

young faculty member fears a normal
teaching load not because he does not
like teaching (most do) but because he
feels he will not be rewarded as much
for each hour of teaching as for each
hour of research. Rather than reeval-
uating their practices for assessing
young faculty, many departments
have been moving to set up special
privileges for young faculty, which
have been causing other distortions. (I
will return to this later.)

(3) Many departments require re-
search to have ‘‘significance and im-
pact.”” Indeed! It is nearly impossible
for a young faculty member’s research
to have measurable impact in time for
the decision point in Year 5—most
reputable journals take upwards of
two years for the referee-print cycle
and most good ideas take five to ten
years after that to influence the direc-
tion of the field. Many departments at-
tempt to assess potential impact by
reading the papers themselves and
soliciting outside reviews but few study
citation indices and other objective
measures of ‘“‘impact.”” Much of the
research rewarded by promotion or
tenure is mediocre and unlikely to have
any impact.

(4) Many department heads do not
know how to argue tenure cases before
their university committees. The un-
stated rule of the game is to demon-
strate ‘‘peer recognition’’ and most
arguments therefore rely on the pub-
lications lists and outside letters. This
has given an edge to cases of theoreti-
cians. In fact, ‘‘systems oriented’’ and
“‘experimentally oriented”’ faculty can
be highly regarded by their peers
because they distribute top quality
software, they construct unusually
fine computer systems, they attract
grant money, they give excellent talks
and receive many colloquium invita-
tions, they attract good graduate
students, etc. These other forms of
peer recognition are excellent
arguments for promotion but are
often overlooked.

Solutions to these problems are dif-
ficult but not impossible. For example,
the concept of ‘“‘peer recognition’’ can
be clarified for experimental scientists,
leading to sound arguments for pro-

May 1985

motion from within this group. De-
partments should not be afraid to re-
ward excellent teaching and excellent
service more readily than medicore re-
search; they can, among other things,
be willing to give release time for cur-
riculum development, textbook writ-
ing, and departmental service. In gen-
eral, departments should not hesitate
to reward excellence wherever it ap-
pears. They should avoid basing ten-
ure cases on mediocre research.

Special treatment of junior
faculty

Many departments are establishing
special privileges for junior faculty, in-
cluding reduced teaching loads, guar-
antees to include graduate research

Departments should not
be afraid to reward
excellent teaching and
excellent service.

seminars in the assigned courses, per-
sonal equipment funds, and in some
cases special salary supplements. The
argument is that the young researcher
should be given every opportunity to
develop into a mature researcher and a
full teaching load and service assign-
ment will block this development. In
effect, we are trying to overlap a re-
search postdoctoral appointment with
an assistant professor appointment.

The administrative problem is that
someone has to teach the students and
staff the committees. So we often find
these privileges being granted at the ex-
pense of the research time of the senior
faculty, who, understandably, become
resentful. This problem is exacerbated
by the shortage of senior faculty—in
many computer science departments
half the faculty are untenured whereas
in most other disciplines the untenured
fraction is much smaller.

There is nothing wrong with the ar-
gument that a young researcher needs
to be given a chance to get established.
The problems arise when this argu-

ment is carried to an extreme. (An
amusing example of an extreme is the
department that last year advertised a
“Distinguished Assistant Professor
Chair” to a new PhD—presumably
the distinction arose from holding the
chair, not from any prior accomplish-
ments.) When carried to extremes, the
special treatment of junior faculty
amounts to an implicit statement that
the department values research but not
teaching and service. This is most un-
fortunate because the best researchers
are often excellent teachers.

In seeking balance, departments
should aim to reward excellence in
teaching and service as well as re-
search. Special incentives should re-
place special privileges. A department
can offer reduced loads for a period to
any faculty member who can make a
good case that he can accomplish some-
thing that will benefit the department.
This can apply to teaching and service
as well as research. For example, a re-
duced teaching load can be granted for
course development, textbook writing,
or heavy administrative duties.

Long-range planning

Many department heads complain
that their administrations have re-
sponded only in part to their pleas for
increased resources and that their ad-
ministrations simply ‘‘don’t under-
stand”” what computer science is all
about. In many cases the problem is
not with the administration but with
the department.

Many departments would find it re-
warding to develop a written long-
range plan. The purpose of such a doc-
ument is to set forth the goals of the
department, its visions of the teaching
and research environment at key
points during the plan’s period, and
the personnel and resources required
to achieve these goals.

A group of us did precisely that at
Purdue in 1981. We discussed our vi-
sions of the classrooms, laboratories,
and research environment by 1986 and
1989. We proposed specific limits on
student enrollments and specific tar-
gets for staff size so that the teaching

107

loads would be comparable to other
departments in the School of Science.
We constructed the organizational
chart for the department’s support
staff in 1986 and 1989. We then con-
verted these requirements into acquisi-
tion plans for faculty, supporting
staff, equipment, and space. We were
sufficiently specific that we could put a
price tag on the whole project.

The result? Working with our dean,
we formulated written arguments to
overcome the most common objec-
tions to granting computer science
more resources. Our written plan be-
came the basis for a fund-raising drive
and Purdue is now renovating a build-
ing for computer science. This build-
ing and its associated labs will provide
Purdue with the resources to achieve
its goals in computer science beginning
in 1985.

Core curriculum

The core curriculum of most CS de-
partments is essentially a sequence of
programming courses. The argument
for this was first enunciated in the
ACM Curriculum 68: Programming is
at the foundation of everything we do
in computer science. Once a student
has mastered a core of programming
courses, he may opt for specialties
such as business data processing,
systems and architecture, scientific
programming, or artificial intelli-
gence. The curriculum for each spe-
cialty is a set of courses often struc-
tured as electives.

I believe this model of the CS core
curriculum has come to the end of its
useful life. Some of the indications of
this are based on widely held outside
perceptions of our field.*

(1) Many students from outside the
department wish to enroll in the CS
core courses to learn programming.
They and their advisors cannot dis-
tinguish between ‘‘service program-
ming courses’’ and ‘‘core programming
courses’ except that the latter are
deeper and more challenging.

*Peter J. Denning, **Science of Computing: What is
Computing Science?'’ American Scientist, Vol. 73,
Jan-Feb 1985, pp. 16-19.

108

(2) Scientists from other disciplines
are increasingly curious about the sub-
stance of computer science. When they
read our catalogs’ descriptions of the
core courses, they perceive little dif-
ference from what their lab technicians
do. Their skepticism toward computer
science remains high.

(3) Ask a dozen computer scientists
for a one-sentence definition of com-
puter science. You will get a dozen dif-
ferent answers ranging from ¢‘study of
algorithms’’ to ‘‘management of com-
plexity”” to ‘‘discrete problem solving.”

(4) Members of industry frequently
criticize computer science curricula for
being out of date. James Martin, for
example, says that most graduates of

Computer scientists are
projecting an illusion that
the field has nowhere the
same intellectual depth as

the physical sciences or

engineering.

CS departments know little or nothing
about ‘‘fourth generation’’ concepts
such as relational databases, struc-
tured design metholodology, distrib-
uted computation over networks, or
logic programming. He asks not for
““training’’ but for a solid intellectual
foundation in these areas. While he
agrees that teaching these concepts
would be easier in departments with
good experimental computer science
laboratories, he argues that a major
restructuring of the curriculum is
needed so that these, and future devel-
opments, can find their natural places.

I conclude that computer scientists
have no clear picture of the nature of
their own field, which leads those from
other disciplines to confused percep-
tions about us. We are projecting an il-
lusion that we are mostly technicians
and that our field has nowhere the
same intellectual depth as the physical
sciences or engineering. Computer sci-
ence stands alone among science and
engineering disciplines: Our curricu-
lum has the technology in the core
courses and the science in the electives!

I believe the time has come to seri-
ously reexamine our approach to the
core curriculum. In the process we can
come to understand our own discipline
better. Our core curriculum must be a
clear statement, to ourselves and to
outsiders, of the nature of our dis-
cipline.

In most physical sciences and engi-
neering, the core curriculum is re-
garded as a survey and tutorial of the
discipline. Its goal is to provide the stu-
dent with a solid conceptual frame-
work, sharp analytic skills, and an
ability to communicate ideas effec-
tively. Course design clearly separates
intellectual content (the core courses)
from the technology (the lab courses).
The typical pattern is three or four
three-credit-hour courses, in which the
students encounter every important
concept of the discipline. Associated
with each core course is a one-credit-
hour lab (that meets for three hours
weekly) in which the students conduct
experiments illustrating the concepts
covered in class. The first lab is tightly
supervised; students are given detailed
instructions on how to carry out each
experiment and the types of results ex-
pected. The later labs are much less
structured; students are given problem
statements and are expected, with ad-
vice from lab instructors, to design and
carry out experiments that solve the
problem.

To apply this model in our disci-
pline, we need to begin with a list of the
principal areas of computer science in
which we have discovered fundamen-
tal concepts. These certainly include

¢ Algorithms,

* Applicable discrete mathematics,
Artificial intelligence,
Computer communications,
Complexity of computation,
Computer architecture,
Data structures,

Database systems,
Operating systems,
Programming languages,
Parallel computation, and
Scientific computation.

Next, an order of presentation of the
concepts must be determined and the
concepts assigned to the core courses.

COMPUTER

The associated labs must be designed
to give direct experience with the con-
cepts in the courses.

For example, Course 1 will almost
certainly contain algorithms and data
structures. It would include a study of
the most efficient algorithms for im-
portant classes of problems. Lab 1
would have the students learn to use an
operating system, editor, compiler,
loader, and debugger to create imple-
mentations of algorithms covered in
class. They would be closely super-
vised by lab instructors who would en-
sure that basic principles (such as loop
invariants) are actually being used in
the programs. Note that Course 1 may
cover concepts such as sequencing,
cases, iteration, and loop invariants,
but it will not cover specific details of a
programming language. Lab 1 will
cover specific details of a program-
ming language and the operating sys-
tem with which the students interact.

A later course will cover the funda-
mental concepts of operating systems;
in the associated lab, the students can
set up a network connection between
two computers and measure the per-
formance of protocols covered in
class. A later course will cover the con-
cepts of cooperating sequential pro-
cesses; in the associated lab, students
can observe race conditions and other
anomalies resulting from improper
synchronization. Many other ex-
amples of this type exist.

The important feature of this model
is that the core courses deal solely with
fundamental concepts and their his-
tory. The detailed, experimental,
“hands-on,”’ technology-dependent
aspects of the field show up in the
labs. The labs are every bit as impor-
tant in a student’s education as the
core courses, but are separate and
distinct.

As in other sciences and engineer-

ing, a substantial investment in labor-
atories is required to support this type
of core curriculum.

An interesting aspect of this model
of a core curriculum is that it can be
implemented without significant im-
pact on the elective structure of the re-
maining curriculum. The electives are
the places where students dig deeply
into subjects covered in the core.

Relations with other
disciplines

I have hinted above that computer
science does not enjoy the respect of
other sciences or engineering as a peer.
Many physical scientists have no clear
picture of our conceptual base and sus-
pect it is shallow. Many engineers re-
gard us as a field of mathematicians
and programmers who have little ap-
preciation for reality. Many outsiders
perceive us as a field of technicians and

-~

~

San Diego
Supercomputer Center

GA Technologies Inc., a diversified high technology
research company, will be developing and operating

a Supercomputer Center for the National Science
Foundation and 18 academic and research institutions
throughout the United States. The facility will be
located on the campus of the University of California,
San Diego, and will feature a Cray X-MP/48 super-
computer to supply advanced computational
resources to a nationwide network of scientific and
engineering users.

We are looking for individuals with experience and
knowledge in the following areas:

¢ Advanced computers and multiple
processor computing systems
Large-scale computing applications
Mass store data systems

Remote communications and networks
Graphics

Systems applications software

Positions available include SOFTWARE PROGRAM-
MING, USER SERVICES, ENGINEERING/OPERATIONS
and NETWORKING APPLICATIONS. Experience with
Cray, DEC, and IBM equipment is preferred; along with
working knowledge of the corresponding operating
systems: CTSS, VMS and MVS.

In addition to the Southern California climate and
academic atmosphere of the UCSD campus, the San
Diego Supercomputer Center offers personal and
professional advancement, along with a compre-
hensive salary and benefits plan. Candidates should
send a resume to:

GA Technologies Inc.

Department MGS

P.O. Box 85608

San Diego, CA 92138
Equal Opportunity Employer M/F/H/V

May 1985

109

““hackers’” and they wonder whether
our discipline will eventually be ab-
sorbed back into its progenitors.

There is a fairly clear strategy to
overcoming the poor relations with the
physical sciences. We need to develop
a clear statement of our conceptual
basis and incorporate it into a model of
core curriculum closer to the one they
use. We need to enter into interdisci-
plinary research projects where the re-
search team includes computer sci-
entists and engineers and works on
fundamental questions in other disci-
plines. In my limited experience at the
NASA Ames Research Center, where
most projects are interdisciplinary, I
have been very encouraged to discover
the high degrees of mutual respect that
develop in multidisciplinary projects.
Much can be achieved by a less paro-
chial attitude toward the other sci-
ences.

Overcoming the problem with engi-
neering may be more difficult. One
complicating factor is the engineering

110

disciplines’ traditional desire for a high
degree of autonomy and self-suffi-
ciency. Thus they prefer to teach their
own physics courses for solid-state en-
gineering, their own chemistry courses
for chemical engineering, and their
own applied math courses for general
engineering rather than ask the Phys-
ics, Chemistry, or Mathematics De-
partments to do these things. There
have always been turf battles between
the sciences and engineering; skir-
mishes over computer science are no
exception. Moreover, because com-
puting is an integral part of many en-
gineering disciplines, it is fruitless to
tell engineers that computer science
must be separated from engineering.

Another complicating factor is that
the country’s top engineers are often
not associated with any university.
These are the engineers who deal with
the design of real products, real pro-
duction lines and manufacturing pro-
cesses, real issues of quality control
and human interface, real complexity
and uncertainty, and real tradeoffs.
Many students do not come into con-
tact with these engineers or their ex-
periences. One effect of these factors
is that the research in engineering
departments and computer science
departments is strongly similar—a
blend of applied science and theoret-
ical engineering. Many industrial
observers do not think computer sci-
ence and engineering departments are
pushing the frontiers of research. (For
example, many departments are now
undertaking projects to develop win-
dow packages for workstations, even
though within a year there will be at
least a dozen commercial workstations
offering window packages backed by
several years of engineering.)

So, to achieve greater respect among
engineers, computer scientists need to
stop arguing for separation and to
start seeking closer working contacts
with industry. At the university level,
we must work for policies that allow
cooperative joint ventures with in-
dustry. At the department level, we
must allow for teaching about the
technology without giving the impres-
sion it is part of the intellectual core.

Nature of research

I suggested above that much com-
puter science research is a blend of ap-
plied science and theoretical engineer-
ing that does not reach out very far
into the physical sciences or real engi-
neering.

With better contact in the com-
puter manufacturing industry,
we would see more research on circuit
design, ‘‘silicon compilers,’”’ better
instrumentation for controlling micro-
circuit manufacturing lines, better
methods for testing integrated circuits,
better methods of building reliable
machines, robotics, automatic manu-
facturing systems, and the like. With
better contact in the sciences, we
would see more research on airflow
simulation in three dimensions,
calculating chemical properties of
materials from basic principles, sim-
ulated laboratory experiments, sim-
ulation of basic processes underlying
genetic engineering, astrophysical
simulations, new algorithms for solv-
ing the open problems of critical
phenomena throughout physics and
chemistry, and the like. The research in
the field would be much, much broader
in its scope.

The pressures on young researchers
to produce results within a short time is
not helping this problem. Interdisci-
plinary projects can take a long time
for the researcher to gain a critical
mass of knowledge and begin making
basic contributions. The mass of medi-
ocre research being churned out by
congeries of young researchers under
duress to demonstrate promotability
threatens to bury the high-quality out-
put of our most creative researchers. [

Acknowledgment

I am especially grateful to R. Ashen-
hurst, A. Borodin, D. Denning, and
G.S. Graham for their comments on
this material.

COMPUTER

