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It is not literacy but practices that create
actions and constitute expertise. Literacy deals
with descriptions, practices with data, design,
uncertainty, trade-offs. Although schools stress
literacy, many important practices defy
description.

Can citizens distinguish the dross from the essential in the musings of
technology experts? Can they make sense of newspaper commentaries? Can
they understand a risk assessment or tell if it is reasonable? Although not
needing level of quantitative expertise of a scientist or engineer, the average
citizen does need to be able to cope with such questions every day.

For three decades | have been an engineer working with computing and
information technology. Quantitative methods are used extensively in my own
field. | have observed them in all the other engineering disciplines, in the
sciences, and in many other fields. They are practiced everywhere.

Yet | am concerned that the current discussion, focused on literacy rather than
practice, may not lead to the educational outcome it seeks. In my view, the
central question is, “What quantitative practices does a person need to know to
be effective?” A focus on literacy leads toward descriptions and observations of
practices, but not into the practices themselves. Literacy is like the menu in a
restaurant; it tells you about the dinner, but it cannot feed you. The world of
practices is messy: practices defy precise descriptions; new practices are
constantly emerging; others are becoming obsolete; practices evolve in harmony
with technologies. Despite the fuzziness and dynamics of practices, it is essential
for us to understand their importance in what it means to be educated. Then we
will be able to draw some new conclusions about “literacy” and about such
apparently mundane questions as whether students should be allowed to bring
calculators to exams.
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A Short Story

A few years ago, my elder daughter came to me with a request to help her do
her math homework; she was totally stuck with a set of word problems about
proportions. (Example: “You measure the length of the shadow of a 6’ vertical
stick as 10’. You measure the length of the shadow of a tree as 100°. How tall is
the tree?”) She said she understood the concept of proportions but couldn’t see
how to use it for the word problems. | asked her to explain the concept of
proportions. She said: “You’re given that A:B is the same as C:D. The word
problem gives you three of the four variables A, B, C, and D. You plug in the
values and solve for the missing value.” Sounded impressive. But she was
utterly unable to connect this with the word problems. She did not understand
how to represent entities in the word problem with symbols A, B, C, or D. |
asked her to draw a diagram of the situation behind the word problem. She
could not do it. She had the same difficulty with the other word problems. She
had no conception of how to assign variables or to draw a picture of the
situation.

So | said, “Look, I’'m going to solve the first five of these problems. I’'m going to
think out loud and draw pictures. You just watch me do it. Don’t try and figure
anything out, just watch.” By the time I’d finished the fifth problem she said, “I
think | see what is going on.” And she then went on to solve the other five
problems, each one with progressively less assistance from me.

After questioning her about all her mathematics classes, | concluded that she had
never seen a mathematician in action, solving problems. She had never
witnessed the practice of mathematics. She had never been involved in the
practices of assigning variables or drawing pictures. Without these practices, the
theory and principles were useless to her. She could not act effectively. She had
been shortchanged by her curriculum, which could not deliver what it promised.

| concluded from conversations with others that my daughter was not alone.
Many young people cannot practice mathematics after finishing the high-school
math curriculum. We call that “functional illiteracy” or sometimes “innumeracy”
[4]. High School Mathematics a beautiful curriculum that organizes the principles
in a very logical progression. But it does not teach the practice of mathematics.

It is as if the designers of the curriculum were stuck in the notion that practice is
the application of theory and will follow naturally when a person is well-
grounded in theory.

Mathematics is more than that. It is a language, a discourse, and a set of
practices. If you don’t get a chance to observe a mathematician at work or work
with a mathematician, you won’t learn mathematical practices, and it may not
occur to you that mathematicians do anything of value. Every time | ask
someone to describe how they learned something they seem to do well, they
always recall a moment at the beginning when they observed people doing the
thing and producing useful results, and they recall later moments when they got
involved in doing it themselves; in fact, the practice kindled their interest in
learning the theory.
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The Importance of Practices

My daughter’s story recalls an important distinction between theory and
practice. To explore this distinction more deeply, | would like to replace
“theory” with the broader term *“descriptions.” Descriptions are the theories,
representations, models, data, facts, rules, and narratives of a domain. A practice
is a habitual pattern of action engaged in routinely by people in a domain,
usually without thought; practices include the standard patterns, routines,
procedures, processes, and habits of people acting in the domain.
Mathematicians and journalists operate primarily with descriptions. Managers,
sports professionals, and coaches operate primarily with practices. Engineers,
scientists, doctors, and lawyers deal with both.

Descriptions and practices overlap, but neither contains the other. Think of the
difference between the sports journalist and the basketball player, between the
financial analyst and investor, between the professor of engineering and the
licensed professional engineer, or between the menu and the dinner. The
journalist can tell us why the ball-player shoots well, but cannot himself shoot;
ball-players are notorious for their inability to describe what they do in ways
that help others imitate them. The financial analyst tells us why the stock market
is rising or falling but is quiet about his dismal record as an investor. A fluid
dynamicist describes in detail the method of calculating Euler flows around a
wing, but cannot get the algorithm to run fast on a Connection Machine.

We educators incline toward the domain of descriptions. It’s our stock in trade,
the stuff of lectures and presentations. It’s where we place all the models and
theories of the world that we want our students to learn. We contrast education
and training. We locate education in the more familiar territory of descriptions;
we harbor suspicions of training, which is about imparting specific practices. We
have been brought up on the theory that action happens when we apply a
(mental) model of the world to the situation at hand. Descriptions seem rational;
practices do not.

Quantitative Literacy concerns a student’s familiarity with numbers and
numerical manipulations. The term “literacy” already reveals a bias toward
descriptions. My purpose in the remainder of this essay is to suggest that there
is a great richness in practices of working with data and numbers, practices that
are not well captured as descriptions. | suggest that we should examine
“guantitative practices” rather than “quantitative literacy” to find the answers to
our questions about what to teach our students (see Figure 1).
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Figure 1. Descriptions are the representations, rules, facts,
data, facts, theories, models, and narratives of phenomena in a
domain. Practices are the standard patterns, routines,
procedures, processes, and habits of people in the domain.
These domains overlap, but neither contains the other.
Quantitative practices (QP) emphasize measurement,
evaluation, model validation, and design trade-offs.
Quantitative Literacy (QL) emphasizes familiarity with
descriptions and basic practices. The overlap of QP and QL
are the practices for which we have precise descriptions. Many
disciplines such as engineering, science, medicine, and
economics rely heavily on quantitative practices. QP rather
than QL should be the target of our educational objectives.

There are important quantitative practices for which we have no effective
description. By effective, | mean that someone else could take the description,
understand it, practice it, and finally appropriate the practice for himself or
herself. Here are a few examples of important practices in engineering and
science for which no effective descriptions are known:

Fractal art

Formulating a null hypothesis

Designing experiments

Collecting data

Knowing when you have enough data
Finding approximations for very large data sets
Constructing effective reports

Constructing and validating a model

Finding patterns in data

Classifying data into clusters

Estimating and removing measurement errors
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Human factors experiments
Designing and validating a heuristic algorithm
Evaluating trade-offs in designing a system

This list can easily be extended to include other domains; for example,

Determining whether a Fed interest rate hike will induce recession
Modeling a city (e.g., the game SimCity)

Predicting traffic jams during rush hour

Finding stock market cycles

Estimating when the river will crest after a flooding rain
Calculating the sag of a bridge during rush hour

Placing fiber optics links to relieve Internet traffic jams

Routing airplanes among cities and maintenance stops
Determining the throughput of an assembly line

Locating oil fields from test drillings

Projecting the financial position of a company for the next two years
Measuring chemical levels in a blood sample

Finding the pollen count

To the best of my knowledge, most approaches to quantitative literacy have
assumed implicitly that the quantitative practices with which students must be
familiar have effective descriptions. For the reasons stated above, | believe this
assumption is misleading at best and invalid at worst.

Tools

Practices are usually supported by tools and in many cases are impossible
without the tools. Typing, a central practice in using computers, is an example.
Its essential tool is the keyboard: you cannot type without a keyboard. And not
just any keyboard: you will have difficulty with a Dvorak keyboard if you were
trained on a Qwerty keyboard. As a physical object, a keyboard has no meaning
to someone without the practice of typing: it would appear as an utter mystery
to a time traveler from the Middle Ages. You are unlikely to succeed at using a
computer today without knowing how to type: as you learn computers you
cross-appropriate typing from another domain.

Practices and tools live in a symbiotic relationship: each needs the other, and
neither is meaningful without the other. Tools evolve in harmony with practices.
The desire for better, faster, cheaper results stimulates technologies to enable
practices to be more effective. Modern banking, budgeting, and financial
reporting are impossible without the spreadsheet; accounting and financial
reporting have made enormous advances since the spreadsheet was invented in
the 1980s. Yet a financial spreadsheet is meaningless to someone who has never
seen a list of accounts.
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Tools enable practices, but do not confer them. People learn practices from other
people. The hand calculator and spreadsheet, which did not exist half a century
ago, are essential tools for modern quantitative practice.

Competence

Think of a highly competent person, one whom you might describe as a virtuoso
or even a master. What do we mean when we say this person is competent in a
field? We mean that that person understands the history, methods, practices,
boundaries, current problems, and relationships to other fields. More than that,
we mean that the person can perform effectively in that field. The actions of the
highly competent person impress us with their skill and finesse.

The important observation is that we associate competence, effectiveness, and
knowledge with actions. We do no expect to be able to perform like the experts
simply from listening to their descriptions of their actions or mental processes.
Indeed, it is quite normal that the highly competent person is unable to give a
clear description of how he does it.

Since the 1960s, the philosopher Hubert Dreyfus has investigated human
competence, inspired by the question of whether expert systems (and other
machines intended to mimic human behavior) can in principle become as
competent as human experts. He identified six competence levels,
corresponding to ever-higher demonstrated capabilities for performance:
beginner, rookie, professional, expert, virtuoso, and master. Dreyfus
demonstrated that it takes time for a person to acquire the new skills required
for each higher level, and that the highest levels may take many years of practice
to attain. His surprising conclusion is that that rule-following behavior is not
present at the expert, virtuoso, and master levels. Consequently, expert systems
could never become “expert” [3]. In fact systems based on rules can hardly be
expected to attain the competence level of a professional. In so doing, Dreyfus
challenged the conventional wisdom that expert behavior can be described
formally with enough precision that a machine could do it or that someone else
could learn the same behavior from the description. His claims have stood the
test of time.

Dreyfus’s conclusion is important in the present discussion. Many important
practices are not the “application” of rules. They cannot be learned from
descriptions. To be “literate” is to be versed in descriptions. The only way to
learn the necessary practices is to do them.

Obsolescence

Some people say that many high school graduates are (quantitatively) illiterate
because they cannot “do arithmetic”, meaning that they cannot do routine
arithmetic calculations by hand, with pencil and paper. These critics say that
calculators are crutches that should not be allowed for exams. 1 find this whole
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discussion rather muddled. It does not identify the domain (context) in which
the calculations are important or the criteria of effectiveness. Where calculations
are important, effectiveness is usually correlated with the number of error-free
calculations completed. Therefore a person skilled with a calculator will be more
effective than a person who does the arithmetic manually, and a person skilled
with a spreadsheet will be more effective than the one with the calculator. Even
the mundane business of purchasing groceries for a large family with a tight
budget can benefit from a shopper who can do arithmetic with a calculator. The
important thing is that the person embody effective practices and have the tools
(such as calculators or spreadsheets) to support those practices.

When a practice is no longer effective, we say that it (and its tools) have become
obsolescent. Thirty years ago, the practices of slide-rule calculations and drafting
were central to engineering. Today the calculator and spreadsheet are central
and the slide rule is an historical curiosity; the CAD program has pushed drafting
into the dustbins of history. The word processor has made the typewriter
obsolete, and the speech-recognizer is likely to make the practice of typing at
keyboard obsolete within the next generation. The practice of writing letters and
business memos is being replaced by electronic mail and Internet
communication. The important point is that as some practices become obsolete,
they are replaced by new practices that make people more effective. The degree
of skill expected of the practitioner goes up. The new practices are supported by
more sophisticated technology.

Should we worry about students relying so much on calculators that they cannot
do their banking or buy their groceries without taking a calculator along? |
think not. We should worry instead about students who are not facile with the
calculator. Modern shoppers shop for balanced meals within fixed budgets --- a
more sophisticated practice than arithmetic calculation. Working adults must
manage cash flows within budgets and properly report income on their tax
forms --- also a more sophisticated set of practices than arithmetic calculation.
The job of the shopper is greatly facilitated by the calculator, and of the working
adult by the automated checkbook (e.g., Quicken). The person who is
competent solely at arithmetic cannot perform at the same level as the person
who is competent with the calculator or spreadsheet. And so it may well be that
the skill of manual arithmetic will become obsolete.

Quantitative Practices in Practice

Many of the foregoing statements are general. | would like to illustrate them
with a closer look at several disciplines, beginning with my own, computing. |
do not intend to be exhaustive, but | want to illustrate well enough to drive
home the point that quantitative practices are pervasive.

Computing

The discipline of computing has been defined as the body of knowledge about
the automation of step-by-step procedures -- i.e., the set of phenomena
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surrounding computers. It is the discipline whose practitioners help other people
take care of their concerns about representing, storing, retrieving,
communicating, and processing data, and in coordinating their actions with each
other through exchange of data. The subject matter of the discipline can be
represented as a matrix depicting eleven major subareas and the three processes:
theory, experimentation, and design [1,2].

Theory Experimentation Design

Algorithms & Data Structures

Programming Languages

Architecture

Numerical & Symbolic Computation

Operating Systems and Networks

Software Methodology & Engineering

Databases & Information Retrieval

Artificial Intelligence & Robotics

Human Computer Communication

Computational Science

Organizational Informatics

In each of the squares, you might imagine a detailed description of the kinds of
problems addressed, the accomplishments, and the open questions. In every
case, the processes of experimentation and design rely extensively on
guantitative practices. Let me give some examples.

When selecting an algorithm, a designer needs to know how fast the
algorithm will be or how much storage it will require; although many of
these questions can be answered mathematically, it is increasingly common
to answer them with experiments and simulations, especially when the
algorithm relies on approximations or heuristics.

It might seem that designing a computer microchip is mainly an exercise in
computer-aided design and logic simulation. In fact, it has turned into a
highly quantitative exercise. Designers hesitate to place an instruction in the
computer’s instruction set unless they can demonstrate that real programs
will run faster. Assessing this requires detailed statistical analyses of
frequencies of instructions in actual programs.

Programs such as Mathematica, Maple, or Reduce that manipulate, evaluate,
and display mathematical expressions rest heavily on quantitative methods,
especially in determining the error of a computation and in computing the
graphs of a function.

The Internet is a complex web of interconnected computers and network
protocols. Network engineers are constantly measuring network traffic,
managing routing, and reconfiguring line capacities to minimize traffic delays
and response times. They use sophisticated heuristic algorithms to find near-
optimal line capacities. Capacity planners frequently use queueing models to
calculate throughput and response times of local computer systems attached
to the network.
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Software engineers subject their programs to rigorous tests, seeking to
determine if the proper internal control paths are followed for each possible
pattern of input data.

The algorithms used to search very large data bases and to correlate values
between data bases are heuristic, and can be validated only by extensive
experimentation and testing.

Designers of learning machines make heavy use of heuristic algorithms for
everything from searching for the best next move in a chess game to the
Turing test itself (“for how long can a machine fool a human interrogator?”).
Designers of graphical interfaces resort to human factors measurements to
assess how well a design feature or display method works in practice.
Scientific programmers nearly always begin with a mathematical model of
the physical phenomenon they wish to study, and then construct software
programs for supercomputers to evaluate and display those models. Since
the models almost always contain approximations, these programmers must
also validate their models against real data.

Other Fields

Engineering. Civil engineers carry out surveys, design experiments to minimize
errors in surveying instruments, test structural plans against computer-based
models, calculate quantities of materials needed, and estimate costs of
construction. Electrical engineers simulate logic circuits, analyze instruction
frequencies in program codes, experiment with cache sizes on microchips,
analyze buses for contention among processors connected to them, analyze
communication channels for errors, measure and reconfigure networks for
maximal information flows, and assess reliability of power and telephone grids.
Mechanical engineers build models to compute dynamic and static stresses in
structures, estimate throughput and response time of manufacturing lines, build
models that are incorporated into feedback control systems, calibrate
instruments, machine to ever-finer tolerances, and compute the lifts, drags, and
turbulences affecting aircraft. Chemical engineers estimate flow and reaction
rates in petroleum plants, calculate optimal yields of chemical production
processes, compute the properties of materials (such as heat shields) in
inaccessible places (such as Jupiter’s atmosphere), compile detailed assays of the
chemical composition of unknown substances. Petroleum engineers estimate the
yields of oil fields from soils dug up from drill-holes.

Astronomy. Astronomers use sophisticated algorithms to detect very faint
objects in the visual fields of telescopes. They search for evanescent signals from
extra terrestrial intelligences. They calculate whether split images of distant
galaxies might be caused by an intervening black-hole lens. They model the
evolution of the universe and gather data to support or reject hypotheses about
the birth and death of the universe. They track local objects such as comets and
asteroids and alert the public to their positions.
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Environment. Atmospheric scientists monitor rainfall, project periods of drought,
track the status of the Ozone Hole, and compute pollution alerts for urban
centers. Meteorologists forecast weather conditions based on current
measurements. Oceanographers measure ocean currents and temperatures and
use them to project fish movements and conditions (such as El Nifio) that will
affect weather. Geologists predict earthquake probabilities and calculate flows of
toxins through underground waterways. Global climate modelers project long
range weather conditions by combining these models.

Bioinformatics. Genetic engineers use computer models to calculate which DNA
sequences are most likely to endow an organism with a desired property. They
conduct statistical analyses and cross-correlations of DNA sequences recorded in
very large databases. Epidemiologists use computer models to estimate the
spread of diseases. AIDS researchers use computer models to estimate the most
likely mutations of the HIV in preparation for designing drugs and vaccines.

Medicine. Biomedical engineers seek out and then incorporate rules of thumb,
heuristics, and medical guidelines into “intelligent machines” that make good
diagnoses. Medical researchers conduct statistical analyses and correlations of
medical data, looking for confirmation of hypotheses about the causes or
inhibitors of disease. They perform controlled experiments on new drugs or
proposed medical procedures. Lab technicians measure blood chemical
compositions. Instrument builders construct noninvasive methods of measuring
various conditions in the body.

Finance. Financial advisors build spreadsheet models of an individual’s assets
incomes and expenses to devise plans for attaining wealth targets for retirement.
Accountants compile cost and revenue projections of a company for several
years in advance, and analyze sensitivity of results to assumptions used in the
forecast. Bankers monitor and calculate cash reserves and the present values of
future investments and liabilities.

Economics. Economists build models to enable forecasting national and global
economic systems and determining the possible effects of public policies on
growth or shortages. They analyze stock market data to look for trends that
would interest investors. They calculate the optimal interest rates and money
supplies to control inflation.

Management. Management scientists study which reporting methods are most
effective. They map out organizational coordination processes, measure them,
and project whether proposed reorganizations will help. They build models of
their organizations as large feedback systems that can be evaluated to project the
long term effects of current policies.

Law. Lawyers conduct extensive database searches for court rulings that might
set precedent for a current case; these searches often include statistical analyses
of the results. They are helping to build software programs that do routine legal
tasks (such as wills, deeds, and powers of attorney) on home computers.
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Literature. Literacy scholars analyze texts for the frequency of occurrence of
letters, words, and phrases; they use the results for everything from tracking
evolving meanings to testing whether a given person might have authored a
document (e.g., were the works of Shakespeare really written by Shakespeare?
Was Joe Klein really the anonymous author of a political book?). They can then
catalogue guidelines for style and related words into style checkers and
automated thesauruses for desktop computers.

Implications

Quantitative practices pervade a wide variety of fields. The practices show up in
the ways people deal with data, measurements, instruments, experiments,
evaluations, models, predictions, forecasts, and trade-offs. Quantitative
questions arise even in fields such as law, literature, and medicine, which
traditionally have not been regarded as quantitative disciplines. The computer
creates a rich variety of opportunities for people in these disciplines to import
guantitative methods. Students of the traditionally non-quantitative disciplines
are finding themselves engaged increasingly in quantitative practices in their
daily routines. It gives them a competitive edge.

Students of the traditionally quantitative disciplines (e.g., science, engineering,
mathematics, statistics, and computing) must master the quantitative practices
that are so important for their daily routines. Much of the university curriculum
in these disciplines is organized to help students learn these practices. For this
reason, the faculty are concerned that entering students come with basic
guantitative practices. These include numeracy, working knowledge of algebra
and calculus, and some exposure to statistics -- the practices of gathering and
recording data, monitoring errors in measurements, and extrapolating trends.

The foregoing analysis strongly suggests that we need to look differently at the
role of quantitative literacy in education. We need to reframe the question,
focusing not on quantitative literacy but on quantitative practices. Much of what
looks like “functional illiteracy” is in fact an absence of relevant practices.
Curriculum changes intended to eliminate “functional illiteracy” should get
students involved in the practices; merely offering better descriptions will not
help.

Quantitative practices deal a lot with numbers, uncertainty, errors in data, design
of experiments, creation of models, validations, drawing conclusions from data,
making trade-offs, and the like. They cannot be taught at blackboard. Teachers
must engage their students with labs, field work, simulation games, and other
means of involving them in the practices.

However, we should not confuse tools (e.g., calculators, computers) with
practices. Tools enable and support practices; but it is people who have the
practices and teach them to other people. Giving tools to students, and even
showing them how to use them, is not sufficient to teach practices. Involvement
with the practices is the only way.
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We must not forget that what constitutes an effective practice is domain-
dependent. Practices are also time-dependent because what is effective today
may be obsolete next year. To some educators, this lack of “timelessness”
makes practices seem ephemeral and not a worthy part of a curriculum. But
practices as a phenomenon are timeless, even if particular practices change over
time.

In education and society, we need to grant practices an equal level of respect
with descriptions. There are many important practices that do not have precise
descriptions and cannot be learned by listening to and memorizing descriptions.
This means we will have to give up our aversion to “training”. Training -- the
learning of important practices -- is part of education. The masters are skilled
performers. Children cannot attain mastery by studying descriptions.

Engineering, sciences, mathematics, statistics, and computing are pervaded by
guantitative practices. These disciplines cannot exist without them, and any
young person aspiring to a technology profession will need to know quantitative
practices. These days, with the help of the computer, practitioners of other
disciplines and professions are finding that knowledge of quantitative methods
gives them a competitive edge in their fields. Most non-technical citizens also
need some quantitative practices to help them cope with life and work in a
technological society, to make sense of the data they encounter, and to evaluate
risks.

Quantitative practices are the dinners served at the educational table, the morsels
described by the menus of quantitative literacy. For life and work, for

citizenship and education, students need immersion in the messy world of
practice as much as in the packaged world of literacy.
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