
Post-Autistic Software

Peter J. Denning1 and John E. Hiles2

1 Naval Postgraduate School, Monterey, CA USA, pjd@nps.edu
2 Naval Postgraduate School, Monterey, CA USA, jehiles@nps.edu

Draft 5 -- 12/1/05

1 Introduction
One of the biggest challenges facing computer science is that software is
autistic.

Medical autism is a terrible disease. Its main symptoms -- that the person
is inward looking, uncommunicative, and anti-social -- cause untold grief for
the families of its victims. We do not lightly make an analogy with software.

It is said that the main difficulty with software is that we have no design
processes that reliably lead us to software that is dependable, reliable, usable,
safe, and secure. These goals are complex and difficult to achieve. They are
evaluated along two dimensions, which we call engineering and social,
Success in the engineering dimension is evaluated by “correctness” -- that
software satisfies rigorous specifications on its function and performance.
Correctness is fiendishly difficult because most systems are complex, they
cannot be specified with sufficient rigor, the proofs are intractable, and testing
is inconclusive. Success in the social dimension is evaluated by “fitness” -- that
software match the practices, expectations, intentions, ambitions, assessments,
and experiences of users. Fitness is difficult because each individual evaluates
according to personal interests and concerns.

Given that most of our rigorous tools and methods are part of the
engineering dimension, it is little surprise that the most common complaints
about software are social -- fragile, brittle, low quality, anti-social, and autistic
(lacking context-awareness) are all good illustrations. We have few rigorous
tools and methods for evaluating and designing software in the social
dimension, where fitness rather than correctness is the dominant consideration.

Our objective in this paper is to propose a framework for understanding
and measuring fitness, and a design process for achieving it. We believe this is
the key to achieving a new, post-autistic generation of software. We will
discuss these claims:

• Lack of context awareness makes software autistic.
• A new measure, fitness, is needed to assess software’s social

interactions in its domain of action.
• Virtual memory systems are a case study showing autism (thrashing)

cured by context awareness from the principle of locality.
• Although unfit software is common, there are good examples of fit

software. They exhibit five levels of fitness.
• Software (and its designers) can achieve fitness by using the locality

principle to apprehend context.
• Designers of context-aware software must be aware of tradeoffs

between certain privacy concerns and the value brought by context-
awareness.

2 Lack of context awareness makes software autistic
Infantile Autism develops in children before 30 months of age. It is
characterized by impairments in verbal and non-verbal communication,
imagination, and social interaction. Autistic children are unable to develop
normal relationships with others. They remain aloof and prefer a world of their
own. They exhibit temper tantrums when required to change from a favored
pattern to something else. When they do respond verbally they often repeat a
question without answering it. Sometimes the people around an autistic child
“learn” the abnormal behavior, adapting to unreasonable requirements of the
child in order to avoid a tantrum. Autistic children often exhibit savant abilities
in some narrow areas. The essential factor in autism is that its victims have lost
their ability to connect with their context, and therefore to function well in it.

Contemporary software has many of these attributes. Socially impaired,
repetitive, aloof, and inward, our software exhibits savant abilities and yet
responds with tantrums or doesn’t respond at all when taken out of familiar
patterns. Software users “learn” the often-unreasonable requirements of
systems and interfaces, which require that people make continual adaptations to
avoid system tantrums. Like autistic children, most software is unaware of its
context and therefore malfunctions when there is even a small mismatch
between the assumptions built into the software and the realities of the
environment.

The unique power of computing machines is that they are able to
manipulate symbols mechanically, without regard to their meaning. Computers
can handle repetitive tasks without making errors from getting fatigued, bored,
or distracted. This power is also a severe limitation. Most software does not
adapt to its environment, and mostly cannot. The inability of contemporary
software to be context aware is, we believe, the crux of why software goals of
dependability and reliability have been so hard to reach.

The very fact that we can name the symptoms and identify their sources
also opens a path to finding a cure. We will cite examples of context-aware
software that are free of these symptoms. They reveal the path toward post-
autistic software.

3 Fitness
We mentioned in the introduction that the concern of the social dimension of
software is the match between the software’s actions and the practices,
concerns, and expectations of the software’s users. We will use the term fitness
to evaluate in this dimension.

Since the earliest days of computer science, we have tied the success of
programs to correctness. Mathematics seemed to create criteria of crystalline
clarity of intended behavior and results of software. Engineering seemed to
offer means to realize software objects in a complex world. But real world of
users, with their idiosyncrasies, vagaries, and shifting interests, shatters the
crystal. We have been stranded because we as a community have no rigorous
tools and methods to address the social dimension.

Fitness, rather than correctness, ought to be the guiding principle for
software in its social dimension. Fitness requires apprehending (getting the
meaning of) the external environment of the software. Correctness looks at the
internal consistency of software. Obviously, we do not want to eliminate
correctness; but we do not want to apply it to the social dimension.

Every software system has an intended domain of action (DOA). (We will
discuss the structure of domains of action later.) The software performs certain
functions to assist users carry out actions within their range of expertise in the
domain. Users rely on those functions to perform as advertised (correctness);
and to refuse to perform under misuse or mistakes of use (fitness).

In its social dimension, modern software is autistic by the criteria medicine
uses to diagnose this disease in people. The key fighting autism in software is
to make software that can infer the user’s context and adapt to it. This goal is

feasible: working examples of non-autistic software already exist. A careful
analysis leads to the conclusion that these systems employ the principle of
locality to infer the context of their use. The locality principle opens the
possibility of significant progress toward fitness. Ultimately, software will
store discoveries about its experience with users in knowledge structures and
use it to adapt behavior to current context and reconfigure to future contexts.

Fred Brooks (2003) noted software at the human interface fails to be:

• Intuitive for the novice;
• Efficient in perception and motion for the expert;
• Robust under misuse;
• Facilitating in recovery from cognitive or manipulative mistakes;
• Helpful in diagnosing errors and suggesting corrective action; and
• Rich in incrementally learnable functions.

These are all important areas of misfit between software and the domains of
action of its users. Context is important context for each of these. How can
software recognize whether a novice or an expert uses it? What is misuse?
What constitutes cognitive mistakes? What corrective actions make sense in
the domain? What is the learning path of a practitioner in the domain? Brooks
cites these as major challenges because he does not see in software engineering
the intellectual framework that would allow a rigorous approach to them. The
engineering tools and processes for software development have barely been
able to provide more than token support for the social dimension. We will
comment later on how the framework we will discuss can help with these
challenges.

4 Case Study: Thrashing
It is instructive to examine one of the first cases of autistic software and how
the autism was cured. This was the operating-system software that ran the first
virtual memory systems in the early 1960s. That software was highly
susceptible to thrashing, a catastrophic, unexpected collapse of system
throughput. It was a major threat to the computing industry: who would buy a
multimillion-dollar, high-performance computing system that could suddenly
slow to an imperceptible crawl without apparent cause or provocation?

The story of thrashing and its defeat by the principle of locality has been
well documented elsewhere (Denning 1980, 2006, 2006). Thrashing was a
completely unexpected behavior. Engineers quickly determined that thrashing
systems had fallen into a persistent state of constant paging, which they called
“paging to death.” But they had no idea what was causing it.

The solution came after Belady (1966) and Denning (1968) discovered the
principle of locality and showed how operating systems could use it to measure
the working sets of processes and guarantee them space in main memory.
Operating systems incorporating working-set memory management did not, and
could not, thrash.

In the terminology of this paper, thrashing was a form of “a system
throwing a tantrum”. By measuring working sets, the operating system could
learn enough context to keep the peace among concurrent processes that would
otherwise clash unproductively while trying to load their pages into a limited,
shared memory.

Locality is the principle that executing processes tend to cluster their
references into subsets of their objects for extended time intervals. It is a
package of three interlocking concepts. (1) A program’s dynamic behavior
could be described as a sequence

(L1,T1), (L2,T2), ..., (Li,Ti), ...

of locality sets and holding times (also called phases). The locality sets are
subsets of a neighborhood, which is the set of all objects required at one time or
another by a process. (2) The locality sets consisted of all objects within a
fixed “distance” from the computational observer. Distance can be temporal
(e.g., time since prior reference to the object), spatial (e.g., the number of hops
in a network to access the object), or cost (e.g., the storage cost of keeping the
object in memory without using it). (3) Memory management is optimal when
it guarantees each active program that its locality sets will be present in high-
speed memory. The operating system maximizes throughput by caching
locality sets close to the processor. Today, the ubiquity of caches stands as
grand testimony to the demonstrated utility of the locality principle.

The locality principle has been adopted universally by hardware, operating
systems, database, and network architects. It was rapidly adopted into practice,
in ever widening circles:

• In virtual memory to organize caches for address translation and to
design the replacement algorithms.

• In data caches for CPUs, originally as mainframes and now as
microchips.

• In buffers between main memory and secondary memory devices.
• In buffers between computers and networks.
• In video boards to accelerate graphics displays.
• In modules that implement the information-hiding principle.
• In accounting and event logs in that monitor activities within a system.

• In alias lists that associate longer names or addresses with short
nicknames.

• In the “most recently used” object lists of applications.
• In file systems, to organize indexes (e.g., B-trees) for fastest retrieval of

file blocks.
• In database systems, to manage record-flows between levels of

memory.
• In web browsers to hold recent web pages.
• In search engines to find the most relevant responses to queries.
• In classification systems that cluster related data elements into

similarity classes.
• In spam filters, which infer which categories of email are in the user’s

locality space and which are not.
• In “spread spectrum” video streaming that bypasses network

congestion and reduces the apparent distance to the video server.
• In “edge servers” to hold recent web pages accessed by anyone in an

organization or geographical region.
• In the field of computer forensics to infer criminal motives and intent

by correlating event records in many caches.
• In the field of network science by defining hierarchies of self-similar

locality structures within complex power-law networks.

We will argue in the remainder of this essay that the locality principle is a
powerful means of inferring context. The idea is that users function inside
neighborhoods of objects, which can be inferred from event sequences of user
actions. The inferred neighborhoods can be very useful to software that seeks
to adapt to the user’s context.

5 Autistic Software is Common
Most everyone can cite examples of software autism. In addition to thrashing,
here are our favorites.

(1) Blue Screen of Death. The Windows operating system occasionally,
without warning, completely freezes and the screen goes to a constant blue
color. Only powering it off can restart the computer. All work since the most
recent checkpoint is lost. Microsoft’s experts believe the problem is caused by
inconsistencies between the current version of the operating system and the
thousands of device drivers supplied by third party vendors. Microsoft has
mitigated (but not eliminated) the problem with a “certification program” that

checks device drivers for inconsistencies with the operating system and alerts
the user. A similar, but much less common, occurrence is the Mac OS X
“Kernel Panic”.

(2) Voice recognition units. Large numbers of companies have turned to
VRU’s (voice recognition units). The vendors of these systems promise huge
savings in call center staff -- because 85% of customer requests are typically
routed to automated systems, the center needs only 15% of its pre-VRU levels.
Many paths through these systems’ dense voice-menu trees lead to automated
systems consisting of a software agent interfacing with a database. Companies
reason that many customers ultimately prefer automated systems in the same
way they have come to prefer bank ATMs. But numerous surveys say that
customers using these systems are not satisfied. They complain frequently of
very long hold times, lack of options corresponding to their individual
problems, surly and overworked service agents, and the blatant insincerity of
the recordings provided (“we are experiencing unusual call volume, your call
will be answered in the order received,” and “we apologize for the delay, your
business is very important to us”). Customers complain that the automated
voice systems don’t work well for anything but the most routine inquiries; the
systems are easily confused if the customer does not use the right terminology,
speaks too fast, or has a non-standard request. It is very difficult to get these
systems to transfer to a live customer service agent. That so many users put up
with these systems while despising them so intently is a massive example of
adapting to autistic behavior.

(3) On-line help systems. Many businesses have turned to on-line
systems for technical support. They no longer distribute printed manuals;
instead they provide short help files behind a search engine that retrieves the
files most relevant to keywords supplied by the user. Many have on-line, web-
accessible “knowledge bases” containing thousands of documents and emails
about troubleshooting various problems, again with a search engine front end.
Many people find these systems marginally helpful at best. Customers who do
not know the jargon often find that their keywords don’t match the database.
The searches produce dozens of matches that can take a long time to review and
mostly do not answer the original question. They contain no way to search for
situations that resemble the user’s situation. Indeed, they do not even ask about
the user’s situation.

(4) Eliza and its descendants. In 1966, Joseph Weizenbaum created the
program Eliza to carry on a conversation in the style of a Rogerian
psychotherapist. It used simple context-free substitution rules to generate
responses to keywords in user input. Although Weizenbaum intended it to
discredit the Turing test because it was obviously unintelligent, many took it to
be proof that Turing’s conjecture of an intelligent system by the year 2000 was

feasible. Since 1991 the Loebner Prize has recognized the best Turing Test
entrant. The winners fool their human interrogators for a few minutes at most
and are not noticeably more intelligent than Eliza. The experience is of talking
to a person who is easily distracted, zeroes in on words of no real importance to
you in the conversation, and frequently changes the subject. These programs
are hardly closer to the sustained-conversation goal than their predecessors 40
years ago. This has not stopped companies from installing similar, context-free
voice recognition systems in their customer-service interfaces.

The common feature of these problems is lack of context awareness and
the inability to gain relevant context information. Michael Dertouzos devoted
his last book to these problems (Dertouzos 2002). He was concerned with the
same kinds of behaviors that we have labeled autistic. He advocated a much
more human-centered design process to alleviate those behaviors. For example,
he advocated information devices that interact in natural language with users,
data systems that record a user’s information once and pass it to all programs
that need it, tracking the trustworthiness of information sources, and
personalizing software configurations. While such can be helpful, we believe
they will not guarantee that the software will be context-aware.

6 Examples of Context Aware Software
Although much less common, context aware software does exist. The
following examples are ordered by increasing sophistication of their context
awareness.

(1) ATMs, Spreadsheets, Tax Preparers, etc. Some software is designed
for the standard practices of a well-understood domain of action. The
automatic teller machine (ATM) is a good example. It implements the standard
actions of bank tellers -- deposits, withdrawals, account balances, transfers.
The spreadsheet implements standard accounting practices -- storing numbers
in columns, arithmetically manipulating numbers, calculating account balances,
and the like. Tax preparation software implements standard tax preparer
practices -- providing forms, interviewing taxpayers to find out what forms they
need, transferring data to forms, and filing forms with tax authorities. Because
the domain is explicit and well understood, these systems incorporate all the
context information they need. They do not try to learn about the external
environment.

(2) Mac OS X operating system. This system adapts to novices by
offering a graphical interface based on a familiar metaphor of manipulating
documents on a desktop. Advanced beginners can customize menus and
shortcut keys and instantly find files containing any given keyword string.

Experts can access the Unix system at its kernel. The system does not detect a
user’s sill level; it accommodates advanced levels by offering functions that
users can learn when they are ready.

(3) Thrashing controllers. Virtual memory systems measure working
sets and guarantee executing processes enough space to contain their working
sets, thereby optimizing system throughput and preventing thrashing. Shared
communication channels can suffer from thrashing. When contention gets high
enough that transmitters are likely to jam each other, the entire system can enter
a persistent state in which transmitters cycle endlessly between trying,
discovering a jam, and then retrying. Ethernet solved this problem with a back-
off protocol that makes a transmitter wait progressively longer each time it
retries unsuccessfully. A similar problem, with similar solution, was
encountered in database systems when many concurrent transactions could
contend for the same record lock.

(4) Linkers and Loaders. These workhorse systems have been part of
operating systems environments since the 1960s. They gather library modules
mentioned by a source program and link them together into a self-contained
executable module. The libraries are neighborhoods of the source program.

(5) Bayesian spam filters. These filters use Bayes’s law of conditional
probability to guess whether a given email is in the user’s locality space of
interest or not. It builds its capability over time by watching which emails the
user classifies as spam. The inference system learns from observations about
the user rather than applying a pre-set filter.

 (6) Semantic web. Semantic web, an R&D project of the World Wide
Web Consortium (W3C), is a model of contexts that can be explicitly
described. Using the extensible markup language (XML), one can explicitly
declare structural relationships that constitute context of objects and their
connections. Application programs can read and act on this information. An
early example of this are that preferences in the Mac OS are stored as XML
files so that the operating system and applications can instantly configure itself
for the user.

(7) Google. This search engine gathers data from the Web. Web pages
are ranked by a weighted combination of the ranks of other pages linked to
them. Keyword queries retrieve lists of web pages containing the words
ordered according to the ranking policy. In effect, this policy uses the links
implanted by other users to infer a “community sense” of which web pages are
most relevant given the keywords. It obviously works because most people say
that Google gives them useful and relevant information very quickly and
frequently on the first try.

 (8) Amazon.com. This company was the first to offer a virtual world
representing a first-class bookstore with over 2.5 million titles in stock. They
pioneered the on-line shopping cart. They provided a database so that books
could be looked up quickly with fragmentary information about author and title.
They now fully content-index many books so that customers can find books
containing phrases not mentioned in the title. They offer discussion groups and
user reviews. The system collects data about user purchasing histories and
recommends other purchases that resemble the user’s previous purchases, or
purchases by other, similar users. The Amazon.com virtual world reaches out
and incorporates some user context.

(9) Games. Computer games produce imaginary worlds of action and
draw players into them. The game remembers what the player has learned and
adapts to the player’s demonstrated level of skill. The game pushes users
toward higher levels of skill. The same game can give different experiences to
different players and can incorporate multiple players of different experiential
backgrounds. Although games are best known for entertainment, they have
been quite valuable as training aids. It is often the case that a user’s world can
be described as a game and thus a software game can be a valuable way to learn
to play the real thing. Because games draw users into a world created by the
game’s author, game software creates and maintains its own context and does
not have to make inferences about the user’s context outside the gaming world.

(10) Forensics. At present, forensics is not a software system, but a
human activity that infers criminal motives by correlating a lot of data across
different observations of localities in which the criminal operated. This science
has been a big success because of the ubiquity of caches in computer systems
and networks. The caches were put there to optimize performance of
applications. The totality of the event sequences recorded in them can be
astonishingly revealing. Even when a user deletes a file, the storage medium,
consistent with the principle of locality, still contains faint traces of the most
recent versions; they can be retrieved by advanced signal processing methods.

The common feature of these examples is that the software is designed to
fit its context. Except for the first case (ATMs etc), the software learns about
its context of use and adapts to it. These systems collect data by observing the
working sets of the software (thrashing), establishing direct connections to a
user’s neighborhood objects (linking), consulting user declarations in the
environment (semantic web), observing a user’s purchase patterns (Amazon),
observing a user’s skill at performing actions (games), and making inferences
from cached event data (forensics).

Computer games are a special case. Games draw their users into a world
created by the game’s author. The game world embodies all the objects,

relationships, rules of action, and rules of strategy of the real social system
simulated by the game. The game software thus defines its own context and
does not have to make inferences about the user’s external context. The other
categories of context aware software are different because they make inferences
about the user’s world outside the software and adapt to it.

The vast majority of software is not this way. We believe this is so
because that few people recognize the principles behind the successes.

7 Levels of Fitness
The examples above have been listed in an increasing order of their
sophistication in gathering information about context and adapting to it. We
have identified six distinct degrees of sophistication:

• Rank 0. Software is structurally designed to match a static analysis of
the domain of action. No event traces are collected. Examples: ATM,
spreadsheet, tax preparation, Mac OS.

• Rank 1. Event traces are recorded outside the application and acted on
by outside agents. The application itself does not have to change or
adapt. Examples: thrashing controllers.

• Rank 2. Event traces are recorded within the application, which passes
the information to an outside agent for action. The application does
not act on the context information it has gathered. Examples: linkers
and loaders, spam filters.

• Rank 3. Event traces are recorded outside the application, then are
read and acted on from within. The application relies on outside
agents to learn context, and then acts on that information. Examples:
Semantic Web, Google.

• Rank 4. Event traces are recorded within the application and are acted
on from within. The application is self-contained with respect to
adapting to its context. Example: Amazon.com, games.

• Rank 5. Event traces from multiple applications are integrated and
correlated to form a larger picture of the intentions of the user of those
applications. Example: forensics.

8 A Model of Locality for Apprehending Context
We said above that adaptation means to formulate actions based on analyses of
relevant event traces. This is a sweeping statement. How do event traces
reveal context? Do they reveal everything about context? What events must be

recorded? We do not want to leave the impression that we think that inferring
context is easy. Although we cannot learn everything about context from event
traces, what we can learn can be quite useful.

Inferring context is an inherently hard problem. The philosopher Martin
Heidegger devoted an entire book to the subject, concluding that action always
occurs in a framework of interpretation, that the framework depends on the
observer’s history, that the rules and assumptions of the framework can never
be completely revealed, and that a person’s actions can reveal some context of
which the user is unaware (Dreyfus 1990). Noting that computing machines
are capable only of processing context-free rules, Winograd and Flores showed
software will fail if is expected to grasp context (1987). Their main example
was expert systems, which try to simulate behavior of human experts; but
lacking the ability to sense and interpret context, the system’s performance
cannot match the human expert’s. Dreyfus cites the example of the Cyc
system, an effort to accumulate trillions of facts about the world in the hope
that a logic system with access to all those facts would exhibit common sense
(Dreyfus 2001). He does not think this will happen: common sense is not
reducible to facts.

All this leads to unnecessarily pessimistic conclusions about the ability of
software to learn enough about human context to be useful. From long
experience with the principle of locality, however, we think such conclusions
are unjustified.

In its original form, locality meant that computations clustered their
references into subsets of their pages. The working set inferred the contents of
locality sets by recording page references in a backward window. Over time,
we extended the principle into many areas. In all cases the systems infer a
neighborhood of objects based on observations of what objects the computation
was actually using. The inferred neighborhoods are stored in caches for fast
access by the computation.

In the case of humans interacting with software, the neighborhoods belong
to the user, not the software; and they depend on the user’s level of skill. Thus
our model of context of human interaction with software is (1) A domain of
action in which (2) an observer operates (3) at an expertise level (4) within a set
of neighborhoods and (5) with an expectation of optimal performance if
neighborhood objects are cached nearby. These five components are elaborated
below. (See Fig. 1.)

(1) The domain of action is the scope in which players carry out moves in
pursuit of some overall purpose.

(2) The observer is the user who is trying to accomplish tasks with the help
of software, and who places expectations on its function and performance. In
some cases, especially when a program is designed to compute a precise,
mathematical function that is the same in all contexts, the observer is built into
the software itself.

(3) A level of expertise is a degree of skill that a user demonstrates in the
domain of action. The criteria for these levels are part of the domain definition.
In general terms, the three most common levels are:

• A novice sees only the rules of acceptable or disallowed moves in the
domain; action consists in the applications of rules.

• A competent user sees situations and applies associated rule sets,
mostly without thinking; action consists in satisfying requests from
other people in the domain.

• An expert is able to expand the repertoire of situations in which he can
act proficiently, is able to alter the rules applying to a situation, and is
able to devise new strategies based on overall assessments of action
flow in the domain.

User expectations and modes of interaction will vary according to their skill
levels. Some software is already designed to accommodate a range of user skill
levels, as we noted earlier in our example of the Mac OS X operating system.

(4) A neighborhood is a relation linking an observer to objects; some
objects may be in the same computer system as the observer, others distributed
throughout the Internet. An observer operates in one or more neighborhoods
while using the software to carry out or coordinate actions. The language used
by the observer to express actions depends on the neighborhood; the actions
that cause state changes in the neighborhood can be observed and recorded as
event records in the observer’s computer system.

(5) The expectation of optimality is that the software will complete work
in the shortest time if neighborhood objects are ready accessible in nearby
caches. For practical software it is impossible to know the full contents of
neighborhoods. This does not matter because the user is likely to need only a
small subset of a neighborhood at a time. The principle of locality comes into
play for inferring the subsets of neighborhoods that must be cached. The
inference will correlate the (dynamic) event trace with other (static) information
available such as values of environment variables, declarations about structures
of objects, current time and place, and criteria for levels of expertise.

Fig. 1. The modern view of locality is a means of inferring the context
of an observer using software, so that the software can dynamically
adapt its actions to produce optimal behavior for the observer.

9 Designing for Fitness
The critical step toward context-aware (Post-Autistic) software involves
discovery of the observer’s world outside the software and maintaining an
awareness of it. Virtual memory, one of the earliest developments in computer
systems, illustrates how this might work and suggests a path that could work for
other software. First-generation virtual memory systems exhibited thrashing
because the virtual memory software had no insight into the actual amount of
memory that application software needed for efficient operation. With the
locality principle, second-generation virtual memory software could estimate
the neighborhoods by monitoring recent past page references. By caching the
estimated neighborhoods close to the processor, this scheme also yielded near-
optimal throughput.

The locality principle worked because processes had significant holding
times in neighborhoods. The recent past references revealed the content of the
neighborhood; the long holding times made it quite likely that in the immediate
future the program would access the same neighborhood. The same is true for
a user’s neighborhoods. We can record event traces (from inside or outside the
application) and use the recordings to estimate the user’s current
neighborhoods. The application software or its runtime system can usefully act
on that information because the neighborhoods do not change too fast.

Today’s systems yield richer sources of reference events than early storage
systems. They can monitor accesses to database references, files, devices, and
web objects. They can also correlate event sequences of different, but
interacting observers, to learn about common neighborhoods.

When the software examines event-trace data to estimate neighborhoods, it
can apply a distance metric to decide which objects mentioned in the trace are
close to the observer. As in storage systems, the distance metric can be
temporal, spatial, or cost, whatever is most convenient or effective for the type
of neighborhood.

However, there is no reason to limit neighborhood estimation to simple
distance measures. Any kind of inference can be useful. Bayesian spam filters
illustrate that Bayesian inference can estimate the most likely hidden states
(spam or not) given the past data about which objects the observer considers to
be spam.

Just knowing the neighborhoods in which an observer is operating can
enable the software to adapt and exhibit enough context-awareness to be useful
and not autistic. It can also help optimize performance because the objects in
current neighborhoods can be placed into caches for the fastest possible access.

Ultimately, the road to Post-Autistic Software will go past immediate
discovery-response behavior. Advanced social responses require that software
store its discovered knowledge in structures that can be referenced in future
situations. If the new situation resembles a past one, the software can propose a
similar action. The software can adapt and reconfigure the structure as more
data are collected. If a user’s current actions do not fit the expected profile, the
software could query the user -- for example, “Never before have you sent
email messages to every one in your address book – are ‘you’ there?” This can
work in the opposite direction as well: if software is not responding, the user
could query the accompanying social structure to get ideas on what is wrong.

Some readers will be concerned that context-aware software may pose
certain privacy risks. Given the current dismal record of organizations at
safeguarding personal information and of issuing software that surreptitiously

collects it, distrusting them is understandable. Some people would go further
and say that it would be prudent to keep our software unintelligent, in which
case we would need only to confront software stupidity rather than software
autism.

These are really the same risks and concerns that arise around all software
systems. We believe that context-aware software as described here may
actually help decrease the risks because it makes explicit that the software is
measuring context and forces the maker to adhere to higher standards for
privacy protection.

We believe that, as with any software function, context-awareness ought
not be part of software unless there is value in having it. We are aware that
autistic software is common and causes much grief and frustration. It seems
that many people actually want software to be more aware of context and more
intelligent, less likely to cause breakdowns for its users. The consumer demand
is already building and software makers will move toward more context-aware
software. We hope that they learn to do so intelligently and in a way that
mitigates risks.

10 Concluding Remarks
We have proposed that a new criterion, fitness, augment the historical criterion
of correctness in our thinking about well-functioning software. Fitness
measures how well the software is able to adjust to the intentions and
expectations of its users -- that is, to the context of its use. We proposed the
principle of locality as a tool for achieving fitness because it gives the means to
infer the neighborhoods in which a user is operating. Much software today is a
poor fit with user situations and intentions. The existing examples of context-
aware software suggest that locality principles can help software gather event
data, infer user neighborhoods, and adapt its structure and behavior to align
with the user. Designing for fitness would close the gap between software’s
presumptions (built in by designers) and the user’s intent. Table 2 summarizes
how the software designer can learn about the elements of context used by the
application.

At the beginning of the article we mentioned six challenges that Fred
Brooks saw for those designing interactive software. Context aware software
as discussed here can go a long way toward meeting Brooks’ challenges. See
Table 3.

We offer these observations and speculations, not as a final answer to the
challenge of context-aware software, but as a promising direction for
exploration and research.

Table 2: Discovering the elements of context

Item Means of discovery

Domain of action Prior (static) analysis of domain

Criteria for levels of expertise Prior (static) analysis of domain

User’s level of expertise (1) watch actions, compare with criteria
(2) user declares
(In either case, system adapts by hiding
or revealing functions.)

Neighborhoods (1) tagging objects by class (static)
(2) inference from event traces (locality)

Table 3: Context-Aware Software and the Design Challenges

Brooks’ Challenges for
Discipline of Design

How Context-Aware Software
Meets the Challenges

Intuitive for novice to learn Software detects presence of novice
and guides choices offered

Efficient for expert to use Software detects expert presence and
clears out interface noise

Robust against misuse Software compares requested actions
for fit to domain of action, warns of
anomalies

Helpful in resolving errors Software calls attention to atypical or
ruinous steps

Incrementally learnable functions User interface presents choices,
action paths, and functions consistent
with user’s current level of expertise

Facilitates recover from manipulative
or cognitive mistakes

Software assess requested actions for
fit, warns of potential ruinous ones;
can be trained to learn common
mistake patterns and corresponding
recovery patterns

11 Bibliography
Belady, L. A. “A study of replacement algorithms for virtual storage computers. IBM

Systems J. 5, 2 (1966), 78-101.

Brooks, F. P. Jr. Three great challenges for half-century old computer science. J. ACM
50, 1 (Jan 2003), 25-26.

Denning, P. J. The working set model for program behavior. ACM Communications
11, 5 (May 1968), 323-333.

Denning, P. J. Working sets past and present. IEEE Transactions on Software
Engineering SE-6, 1 (January 1980), 64-84.

Denning, P. The Principle of Locality. ACM Communications 48, 7 (July 2005), 19-
24.

Denning, P. Locality. In Festschrift Honoring Erol Gelenbe (J. Barria, ed.). Imperial
College Press (2006). To appear.

Dertouzos, M. The Unfinished Revolution. Harper Business (2002).

Dreyfus, H. Being in the World: A commentary on Heidegger’s Being and Time. MIT
Press (1990).

Dreyfus, H. On the Internet. Routledge (2001).

Winograd, T., and F. Flores. Understanding Computers and Cognition. Addison-
Wesley (1987).

