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SIGCSE: The Beginning

Peter J. Denning, Naval Postgraduate School

Where To From Here?  
Our curriculum is not up to the challenges the world is throwing at us.

When I received my doctorate in EE from MIT in 1968, 
the name of the young field of computer science was just 

getting settled. I was amazed at the audacity of the dreams of 
the founders and pioneers. I was completely drawn in and I 
developed a romance with computing that has never faded.

I have had the good fortune to witness the growth and 
maturing of this field of education and research for the entirety 
of SIGCSE’s fifty-year existence. My purpose here is to look at 
the high points of computing and computing education over 
the past fifty years. Several major forces shaped the computing 
curriculum we have today. Our curriculum is not up to the 
challenges the world is throwing at us.

SHAPING FORCES OF COMPUTING
Our modern age of electronic computing began in the late 
1930s and spawned computing education in the late 1940s. 
Computing in the sense of methods and machines to automate 
calculation and logical deduction is much older—it evolved 
over at least 40 centuries before our age. Prior developments 
such as procedures for doing algebra, solving equations, evalu-
ating series, Pascal’s arithmetic calculator, Napier’s logarithms, 
Newton-Leibniz calculus, LLull’s logic wheels, Babbage-Love-
lace analytical engine, slide rules, and human calculator teams 
set the framework of computational thinking that existed when 
computer science was founded in the 1940s. I will focus here 
on the main historical forces that shaped our field and how we 
approached our curriculum since that time.

Machinery and systems. The first electronic digital com-
puters were built in the 1930s and early 1940s—Zuse in Ger-
many in 1938, Atanasoff and Berry in the US in 1942, Eckert 
and Mauchly at Pennsylvania in 1945. All were engineers who 
believed that high speed computing would benefit science and 
engineering and would automate many human computational 
tasks that were prone to errors.

Their machines were great feats of engineering. They had 
to work out everything—how to represent data as signals in 
the machines, how to build reliable circuits that would per-
form logic operations on the data, how to store data, how to 
get data in and out of the machines, and how to design algo-
rithms that would control the machines. There was no theory 
to guide them.

Although Alan Turing proposed his Turing machine theory 
of computation in 1936, his work was initially known primarily 
by a handful of mathematical logicians and was completely un-

known to the engineers who built the first electronic comput-
ers [6]. Turing became more known among computer builders 
when he circulated his own detailed engineering design of his 
ACE computer, inspired by von Neumann’s notes on the design 
of the stored program computer in 1945. It was not until the 
1950s, when the first academic programs were being born, that 
Turing’s work offered the theoretical basis to make computer 
science credible as a new department in universities. In other 
words, as important as Turing’s work is, it did not inform or in-
spire the first electronic computers or the stored program con-
cept. Instead, the success of the first stored-program electronic 
computers created the opening for Turing’s theoretical work to 
become important.

For the first 40 years of computing, much of our energy was 
focused on advancing the technology for reliable computing 
and networking. Our early curricula reflected this by organiz-

ing around core technologies, such as programming languages, 
operating systems, and networks. The 1989 computing report 
named 9 core technologies [2]. The 2013 curriculum report 
named 16 core technologies among its 18 main knowledge ar-
eas [1]. Today’s curriculum bears the imprint of the engineering 
concerns that started the field.

Academic Resistance. The first computing and program-
ming courses appeared in the late 1940s. The first CS depart-
ments were Purdue and Stanford both in 1962. By 1982, there 
were about 120 departments in the US and Canada. Most of 
these early departments were formed amidst resistance from 
other departments in their universities, which saw computer 
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decommissioned because everyone got the networking they 
needed from the internet.

Computational Science. Scientists had a long-standing in-
terest in computation well before the 1940s. By the 1950s, with 
help from numerical analysts, they were using electronic digi-
tal computers for calculating prediction from complex models 

and for analyzing experimen-
tal data. By the 1980s they had 
gone well beyond this—they 
had developed their own brand 
of computational thinking that 
they saw as a new method of 
doing science. CS researchers 
responded with mixed reac-
tions. Some embraced compu-
tational science as a welcome 
expansion of computing; oth-
ers resisted it as the work of 
amateurs with little experience 
with computing. Eventually, 
CS researchers and educators 
overcame their reluctance and 
embraced it. Computational 
science appeared as a core area 
in the 2013 curriculum.

Formal Methods. A very large debate opened in the 1980s 
about the power of formal methods to give us reliable and de-
pendable software [9]. Proponents called it the most important 
of all computing research. Skeptics cited all sorts of reasons that 
mathematical proof was insufficient for the DRUSS software 
objectives. The sharp words from all sides eventually quieted 
down, but the underlying tension endured. It is the same ten-
sion as between the traditional math-science oriented comput-
er scientists and the software engineers. Formal methodists see 
mathematical proof as the only means to establish that software 
is error-free. Software engineers see formal methods as one tool 
of many—other tools are needed to address defects in hardware, 
deterioration of hardware, error confinement, and detection of 
malware. I wish the tension would go away, but it is still there. 
The two views are complementary and mutually reinforcing.

Artificial Intelligence and Machine Learning. AI was 
founded in 1954 in pursuit of the goal of general machine in-
telligence. It looked at language translation, image recognition, 
checkers, chess, problem-solving, robots, expert systems, and 
machine learning as steps on the way to that goal. By the mid-
1980s the field had delivered so little of its big promises that 
the research funding agencies began to withdraw their support, 
precipitating the long doldrums dubbed “AI winter.” The con-
troversial 1987 book Understanding Computers and Cognition 
[11] argued that the quest for machine intelligence was fatally 
flawed and proposed that we devote our energy to designing 
machines that support human practices. That advice became 
the key to a resurgence of machine learning (ML) in the 2000s, 
when researchers found that they could apply the technology 

science as a specialty of math or electrical engineering, but 
not as a separate department. Most early departments were 
therefore founded within the most hospitable school—some 
in science, some in engineering, and few in business. The ac-
ademic pioneers of the day—notably Forsythe, Newell, Perlis, 
Simon—spent a great deal of effort defending the new field 
against skeptics who thought 
it was neither a new field nor 
deserving to be called a science 
[5,7]. Their ideas guided the 
early development of comput-
er science education. Because 
most CS departments were in 
schools of science or engineer-
ing, the term CS&E (computer 
science and engineering) be-
came the collective term for all 
the departments. After 1989, 
at the recommendation of the 
ACM/IEEE computing-as-dis-
cipline committee, the term 
“computing” was used instead 
of “CS&E” [2]. Europeans pre-
ferred the name “informatics.” 
By 2000, the resistance was 
pretty much gone as biology, physics, aeronautics, and other 
fields declared they dealt with natural information processes.

Software Engineering. In 1968-69, software developers 
called for a new field, software engineering, because the exist-
ing approaches to software development were not able to take 
care of concerns for dependable, reliable, usable, safe, and se-
cure (DRUSS) production software. The founders of software 
engineering believed that engineering perspectives such as 
fault tolerance, redundancy, and interface design could help. CS 
departments responded by setting up a software engineering 
course and over time some developed “tracks” containing sev-
eral courses. Some universities set up a separate IT curriculum, 
sometimes as a track in the CS department and sometimes as a 
stand-alone department. In a few rare cases, software engineers 
formed their own departments where all the faculty could en-
gage with engineering perspectives without being constrained 
by the more abstract ways of CS departments. 

Networks. In the late 1970s many CS departments were un-
happy that only a few of them were connected to the ARPANET, 
which was restricted to defense contractors. They banded to-
gether and won National Science Foundation support to design 
and build CSNET (computer science network). I was one of the 
four co-PIs. By 1986 we had adapted ARPANET technology 
and built a CS research community network of 50,000 users at 
120 member institutions. The network significantly increased 
research productivity in all participating CS departments. CS-
NET gave NSF confidence it could manage a large network 
project, NSFNET, which became the backbone of the modern 
internet. Around 1989, ARPANET, CSNET, and NSFNET were 

Formal methodists see 
mathematical proof as the only 

means to establish that  
software is error-free. Software 

engineers see formal methods as 
one tool of many—other  

tools are needed to address defects 
in hardware, deterioration of 

hardware, error confinement, and 
detection of malware.



acm Inroads • inroads.acm.org  19

The Beginning

1989 the ACM and IEEE Computer Society (IEECS) cooperat-
ed on the first joint recommendation that emphasized the inte-
gration of theory, abstraction, and design—representing math, 
science, and engineering—in the core. They sought to ease the 
tensions between these three subgroups of the field. They be-
gan calling the field “computing” rather than “computer science 

and engineering.” Those ideas 
dominated the 1991 ACM/
IEEE computing recommen-
dations. ACM and IEEECS 
continued their cooperation 
and produced major updates 
in 2001 and 2013. The growth 
of the field can be seen in the 
increasingly complex recom-
mendations over the years. 
The 1968 curriculum had three 
major subdivisions; the 2013 
curriculum had 175.

In recent times, our vir-
tual machine technologies 

and platforms have improved so much, and chips and sensors 
shrank so much, that most designers of software are seldom 
aware of hardware. Some educators have argued that we no 
longer need to be concerned about hardware; we should drop 
our insistence that algorithms and software are intended to 
control machines. Instead, we should view algorithms and soft-
ware as expressions of methods to solve problems that can be 
shared and communicated with others, a view that dominated 
the design of the ALGOL language in the 1950s. In his 1968 
ACM A.M. Turing lecture, Richard Hamming took a dim view 
of the idea that we can abstract the machine out of the picture. 
He argued that the computer is at the heart of computing; with-
out it, almost everything computing professionals do would be 
idle speculation. Hamming’s insight remains valid today: there 
can be no computing without computers.

Along the way there has been an ongoing debate about 
what programming language(s) to use in CS courses. Should 
they be languages used heavily in industry, such as C, Java, or 
Javascript? Or languages designed for easy learning of basic 
programming concepts, such as Pascal or Python? It is ironic 
that on the one hand computer languages are equivalent in ex-
pressive power, while on the other hand language choice is the 
most fiercely debated issue in teaching computing. This debate 
is unlikely to end.

QUEST FOR COMPUTING EVERYWHERE
The idea that computing is universally valuable pervaded the 
thinking of the founders of computer science. Beginning in 
1960, pioneer Alan Perlis repeatedly said that computer au-
tomation would spread to many fields and draw many people 
into “algorithmizing”—his term for what we now call compu-
tational thinking.

of neural networks to large classes of pattern recognition and 
prediction, with astonishing success. In recent years Machine 
Learning and Big Data Analytics (BDA) have come to depend 
closely on one another. Referring to the success of ML and BDA 
as “AI” is a misnomer because neural networks are unintelligent 
pattern recognizing machines.

Parallel and distributed 
computing. From the 1960s 
computer scientists developed 
strong interests in compu-
tations performed by many 
processors working together. 
Because of their significantly 
greater speed, parallel proces-
sors became the mainstay of 
supercomputing, which be-
came very popular in science, 
engineering design, medical 
and drug research, entertain-
ment, and more, and fomented 
the revolution of computation-
al science. Also, from the 1960s, computers distributed into 
many physical locations connected by a network provided ac-
cess to remote services and showed great resiliency to failures. 
The 1960s dream of computer utility matured into the modern 
distributed systems making up “the cloud.” This long line of de-
velopments left a permanent imprint on our curricula.

EVOLVING VIEW OF WHAT COMPUTING IS
The question of whether computer science was unique or was a 
science persisted for many years. Our views of what computing 
is evolved through four stages over the years [4].
•  In 1960s, we said we studied phenomena surrounding 

computers.
•  In the 1970s, we said we studied programming and all that 

entailed about algorithms, analysis, and correctness.
•  In the 1980s, we said we studied automation, what could be 

efficiently automated by digital computers.
•  In the 1990s, as other fields of science started to claim 

their fields included naturally occurring information 
processes, we said we studied information processes natural 
and artificial. After that, the old debate about whether 
computer science is science, or deserves its own academic 
department, completely faded.

The curricula we taught evolved along with these maturing 
views of the nature of the field. In 1968, ACM produced its first 
curriculum recommendation, the first attempt at standardizing 
what a computer science degree meant. In 1972 the NSF-spon-
sored COSINE (computer science in engineering) project advo-
cated placing systems courses in the core curriculum, alongside 
the traditional math courses already there; operating systems 
was the first systems course to be accepted into the CS core. In 
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ducing several proposals for teachers to choose [3].
Even with all this backing the new curricula have been slow 

to find their way into K-12 schools and some of the teachers are 
still concerned about what they should teach and how to assess 
whether students have learned it.

The definitions of CT in these proposals are quite narrow 
compared to the breadth of pressing computational issues in 
the world—they do not apply to complex systems, reliability 
concerns, hardware, or emerging technologies such as quan-
tum computing. CT is not the defining characteristic of com-
puter science. Neither is it “the way of thinking of computer 
scientists” because many in other fields have contributed sig-
nificantly to our understanding of computation.

EDIFYING CONVERSATIONS ON BIG QUESTIONS
We arrive at our 50th anniversary of the founding of SIGCSE 
with a curriculum specifying what (and how) we teach comput-
er science, a curriculum that evolved over half a century. The 
specification was shaped by many factors noted here.
•  Strong emphasis on building technologies at the beginning
•  Resistance to forming CS departments from other academic 

departments that did not accept computing as a legitimate field
•  Developing our own community network at the dawn of the 

internet era
•  Being torn by intense debates over the roles of science, 

math, and engineering in our field, manifested as struggles 
over how to teach software engineering and information 
technology, and how much to trust formal methods for 
software development

•  Coming to grips with the emergence of computational 
science and now the penetration of computing into nearly 
every field of human endeavor

•  The death of artificial intelligence and its resurrection as 
machine learning and its claims about automation and the 
future of humanity

This battle-hardened inheritance does not help us with 
many of the pressing issues of the world emerging around us. 
The worldwide connectivity we helped bring about through the 
Internet has brought many benefits from shrinking the world 
and globalizing trade. But it has also spawned conflicts between 
non-state organizations and traditional nations, trade wars, 
protectionism, terrorism, widespread detachment, fake news, 
political polarization, and considerable unease and uncertainty 
about how to move in the world. Access to troves of informa-
tion via the internet has begun to show us that knowledge does 
not confer wisdom, and we long for wise leaders who have yet 
to appear. The world we encounter in our daily lives is full of 
surprises, unexpected events, and contingencies that not even 
our best learning machines and data analytics can help us with. 
We are now finding that many resources including sea and air 
access are contested among nations; we lack means to resolve 
the resulting disputes and we worry that the resulting conflicts 

Computing educators became interested in the 1970s in 
bringing computing’s general-purpose thinking tools into K-12 
schools. That was a major challenge: few schools had teachers 
with computer science knowledge. Computer literacy was seen 
by many as a gentle first step toward getting computer courses 
into grade schools. The first attempts at literacy courses were 
little more than training in how to use word processors and 
spreadsheets. They were not popular with students or teachers. 
A turning point came in 1999, when a task force of the Na-
tional Academy of Engineering issued a report reframing the 
goal from literacy to fluency. Larry Snyder, the chair of the task 
force, wrote Fluency in Information Technology, a textbook that 
became popular with high school teachers [8].

Also in the 1990s, the College Board became interested in 
an upgrade to the advanced placement test in computer sci-
ence. With help from ACM and IEEE, they launched around 
2000 an advanced placement (AP) curriculum focused on ob-
ject-oriented programming with the Java language. Within a 
few years, AP enrollments plummeted as students and teach-
ers discovered the material was too complex for beginners. The 
College Board, in cooperation with the US National Science 
Foundation, undertook a new advanced placement curriculum 
organized around computer science principles, which it hoped 
would provide a better return on their investment. The upgrade 
was rolled out in 2016.

In 2006 Jeannette Wing reframed the issue again around 
“computational thinking” (CT) which she characterized as 
the thought processes that computer scientists used to solve 
problems [10]. This formulation resonated with many people 
who saw computing permeating into their fields and wanted 
to learn how to harness the technology. As an assistant direc-
tor for the Computing & Information Science & Engineering 
(CISE) directorate at the National Science Foundation, Wing 
mobilized many people and resources around the goal of get-
ting a computing curriculum based around computational 
thinking into every K-12 school. They sought to train 10,000 
teachers in computer science. They supported the develop-
ment of the CS principles advanced placement curriculum and 
concurrently the development of a new genre of CS principles 
first courses in universities. Many organizations stepped up 
to define K-12 curricula around computational thinking, pro-
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•  Is civilization so dependent on computing that an attack 
on a component of infrastructure, like electric grid, could 
collapse civilization?

•  What is the difference between wisdom and knowledge? 
How are we fooled into thinking that massive internet 
information is wisdom?

•  What are the social implications of brain-computer 
interfaces and implants into our brains and bodies?

I do not believe any of us has answers to any of these ques-
tions. But we need to be having the conversations about them. 
In so doing we need to embrace the mathematicians, scientists, 
and engineers in our field. It is time to give up the old tensions 
that we inherited from times long past, and work together as 
brothers and sisters, mothers and fathers, old and young on 
these big questions.  
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could trigger wars or economic collapses. We see that collective 
human action affects the global environment but have yet to 
find ways to protect the environment we will bequeath to our 
children and grandchildren.

This leaves us with a big question—how shall we shape com-
puting education so that our graduates can develop the design 
sensibilities, wisdom, and caring they will need to navigate in 
this world of which they will be citizens? Our current curric-
ulum, chock full of courses covering the 2013 body of knowl-
edge, is not up to this task.

A place to start would be to open space in our crowded cur-
riculum to have conversations on big questions about the con-
sequences of computing throughout the world. These conver-
sations need to be interdisciplinary and intergenerational. Their 
purpose would not be to solve problems but to edify—develop 
mutual understanding, appreciation, and respect around these 
issues. Some examples of big questions are:
•  How far can automation take us? Can everything be 

automated? Is there always something important left over 
that cannot be automated?

•  Will AI displace more jobs through automation than it 
generates?

•  How can we help people whose jobs are displaced by 
software and hardware we have designed?

•  How do we cultivate good designers?
•  Can we trust decisions by neural networks when given 

inputs outside their training sets?
•  Will drones and robots combine to create an automated 

surveillance society?
•  Is there a technological solution to the cybersecurity 

problem?
•  Can we make our world work when computers have been 

embedded into almost all devices connected to the global 
network?

•  Can blockchains and cryptocurrencies solve our problems 
with trust in central authorities? Are they too expensive to 
maintain?

[H]ow shall we shape computing 
education so that our graduates can 
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