
acm Inroads • inroads.acm.org  17

SIGCSE: The Beginning

Peter J. Denning, Naval Postgraduate School

Where To From Here?
Our curriculum is not up to the challenges the world is throwing at us.

When I received my doctorate in EE from MIT in 1968,
the name of the young field of computer science was just

getting settled. I was amazed at the audacity of the dreams of
the founders and pioneers. I was completely drawn in and I
developed a romance with computing that has never faded.

I have had the good fortune to witness the growth and
maturing of this field of education and research for the entirety
of SIGCSE’s fifty-year existence. My purpose here is to look at
the high points of computing and computing education over
the past fifty years. Several major forces shaped the computing
curriculum we have today. Our curriculum is not up to the
challenges the world is throwing at us.

SHAPING FORCES OF COMPUTING
Our modern age of electronic computing began in the late
1930s and spawned computing education in the late 1940s.
Computing in the sense of methods and machines to automate
calculation and logical deduction is much older—it evolved
over at least 40 centuries before our age. Prior developments
such as procedures for doing algebra, solving equations, evalu-
ating series, Pascal’s arithmetic calculator, Napier’s logarithms,
Newton-Leibniz calculus, LLull’s logic wheels, Babbage-Love-
lace analytical engine, slide rules, and human calculator teams
set the framework of computational thinking that existed when
computer science was founded in the 1940s. I will focus here
on the main historical forces that shaped our field and how we
approached our curriculum since that time.

Machinery and systems. The first electronic digital com-
puters were built in the 1930s and early 1940s—Zuse in Ger-
many in 1938, Atanasoff and Berry in the US in 1942, Eckert
and Mauchly at Pennsylvania in 1945. All were engineers who
believed that high speed computing would benefit science and
engineering and would automate many human computational
tasks that were prone to errors.

Their machines were great feats of engineering. They had
to work out everything—how to represent data as signals in
the machines, how to build reliable circuits that would per-
form logic operations on the data, how to store data, how to
get data in and out of the machines, and how to design algo-
rithms that would control the machines. There was no theory
to guide them.

Although Alan Turing proposed his Turing machine theory
of computation in 1936, his work was initially known primarily
by a handful of mathematical logicians and was completely un-

known to the engineers who built the first electronic comput-
ers [6]. Turing became more known among computer builders
when he circulated his own detailed engineering design of his
ACE computer, inspired by von Neumann’s notes on the design
of the stored program computer in 1945. It was not until the
1950s, when the first academic programs were being born, that
Turing’s work offered the theoretical basis to make computer
science credible as a new department in universities. In other
words, as important as Turing’s work is, it did not inform or in-
spire the first electronic computers or the stored program con-
cept. Instead, the success of the first stored-program electronic
computers created the opening for Turing’s theoretical work to
become important.

For the first 40 years of computing, much of our energy was
focused on advancing the technology for reliable computing
and networking. Our early curricula reflected this by organiz-

ing around core technologies, such as programming languages,
operating systems, and networks. The 1989 computing report
named 9 core technologies [2]. The 2013 curriculum report
named 16 core technologies among its 18 main knowledge ar-
eas [1]. Today’s curriculum bears the imprint of the engineering
concerns that started the field.

Academic Resistance. The first computing and program-
ming courses appeared in the late 1940s. The first CS depart-
ments were Purdue and Stanford both in 1962. By 1982, there
were about 120 departments in the US and Canada. Most of
these early departments were formed amidst resistance from
other departments in their universities, which saw computer

By 1982, there were about 120
departments in the US and Canada.

Most of these early departments
were formed amidst resistance
from other departments in their

universities, which saw computer
science as a specialty of math

or electrical engineering, but not
as a separate department.

18  acm Inroads  2018 December • Vol. 9 • No. 4

The Beginning

Where To From Here?

decommissioned because everyone got the networking they
needed from the internet.

Computational Science. Scientists had a long-standing in-
terest in computation well before the 1940s. By the 1950s, with
help from numerical analysts, they were using electronic digi-
tal computers for calculating prediction from complex models

and for analyzing experimen-
tal data. By the 1980s they had
gone well beyond this—they
had developed their own brand
of computational thinking that
they saw as a new method of
doing science. CS researchers
responded with mixed reac-
tions. Some embraced compu-
tational science as a welcome
expansion of computing; oth-
ers resisted it as the work of
amateurs with little experience
with computing. Eventually,
CS researchers and educators
overcame their reluctance and
embraced it. Computational
science appeared as a core area
in the 2013 curriculum.

Formal Methods. A very large debate opened in the 1980s
about the power of formal methods to give us reliable and de-
pendable software [9]. Proponents called it the most important
of all computing research. Skeptics cited all sorts of reasons that
mathematical proof was insufficient for the DRUSS software
objectives. The sharp words from all sides eventually quieted
down, but the underlying tension endured. It is the same ten-
sion as between the traditional math-science oriented comput-
er scientists and the software engineers. Formal methodists see
mathematical proof as the only means to establish that software
is error-free. Software engineers see formal methods as one tool
of many—other tools are needed to address defects in hardware,
deterioration of hardware, error confinement, and detection of
malware. I wish the tension would go away, but it is still there.
The two views are complementary and mutually reinforcing.

Artificial Intelligence and Machine Learning. AI was
founded in 1954 in pursuit of the goal of general machine in-
telligence. It looked at language translation, image recognition,
checkers, chess, problem-solving, robots, expert systems, and
machine learning as steps on the way to that goal. By the mid-
1980s the field had delivered so little of its big promises that
the research funding agencies began to withdraw their support,
precipitating the long doldrums dubbed “AI winter.” The con-
troversial 1987 book Understanding Computers and Cognition
[11] argued that the quest for machine intelligence was fatally
flawed and proposed that we devote our energy to designing
machines that support human practices. That advice became
the key to a resurgence of machine learning (ML) in the 2000s,
when researchers found that they could apply the technology

science as a specialty of math or electrical engineering, but
not as a separate department. Most early departments were
therefore founded within the most hospitable school—some
in science, some in engineering, and few in business. The ac-
ademic pioneers of the day—notably Forsythe, Newell, Perlis,
Simon—spent a great deal of effort defending the new field
against skeptics who thought
it was neither a new field nor
deserving to be called a science
[5,7]. Their ideas guided the
early development of comput-
er science education. Because
most CS departments were in
schools of science or engineer-
ing, the term CS&E (computer
science and engineering) be-
came the collective term for all
the departments. After 1989,
at the recommendation of the
ACM/IEEE computing-as-dis-
cipline committee, the term
“computing” was used instead
of “CS&E” [2]. Europeans pre-
ferred the name “informatics.”
By 2000, the resistance was
pretty much gone as biology, physics, aeronautics, and other
fields declared they dealt with natural information processes.

Software Engineering. In 1968-69, software developers
called for a new field, software engineering, because the exist-
ing approaches to software development were not able to take
care of concerns for dependable, reliable, usable, safe, and se-
cure (DRUSS) production software. The founders of software
engineering believed that engineering perspectives such as
fault tolerance, redundancy, and interface design could help. CS
departments responded by setting up a software engineering
course and over time some developed “tracks” containing sev-
eral courses. Some universities set up a separate IT curriculum,
sometimes as a track in the CS department and sometimes as a
stand-alone department. In a few rare cases, software engineers
formed their own departments where all the faculty could en-
gage with engineering perspectives without being constrained
by the more abstract ways of CS departments.

Networks. In the late 1970s many CS departments were un-
happy that only a few of them were connected to the ARPANET,
which was restricted to defense contractors. They banded to-
gether and won National Science Foundation support to design
and build CSNET (computer science network). I was one of the
four co-PIs. By 1986 we had adapted ARPANET technology
and built a CS research community network of 50,000 users at
120 member institutions. The network significantly increased
research productivity in all participating CS departments. CS-
NET gave NSF confidence it could manage a large network
project, NSFNET, which became the backbone of the modern
internet. Around 1989, ARPANET, CSNET, and NSFNET were

Formal methodists see
mathematical proof as the only

means to establish that
software is error-free. Software

engineers see formal methods as
one tool of many—other

tools are needed to address defects
in hardware, deterioration of

hardware, error confinement, and
detection of malware.

acm Inroads • inroads.acm.org  19

The Beginning

1989 the ACM and IEEE Computer Society (IEECS) cooperat-
ed on the first joint recommendation that emphasized the inte-
gration of theory, abstraction, and design—representing math,
science, and engineering—in the core. They sought to ease the
tensions between these three subgroups of the field. They be-
gan calling the field “computing” rather than “computer science

and engineering.” Those ideas
dominated the 1991 ACM/
IEEE computing recommen-
dations. ACM and IEEECS
continued their cooperation
and produced major updates
in 2001 and 2013. The growth
of the field can be seen in the
increasingly complex recom-
mendations over the years.
The 1968 curriculum had three
major subdivisions; the 2013
curriculum had 175.

In recent times, our vir-
tual machine technologies

and platforms have improved so much, and chips and sensors
shrank so much, that most designers of software are seldom
aware of hardware. Some educators have argued that we no
longer need to be concerned about hardware; we should drop
our insistence that algorithms and software are intended to
control machines. Instead, we should view algorithms and soft-
ware as expressions of methods to solve problems that can be
shared and communicated with others, a view that dominated
the design of the ALGOL language in the 1950s. In his 1968
ACM A.M. Turing lecture, Richard Hamming took a dim view
of the idea that we can abstract the machine out of the picture.
He argued that the computer is at the heart of computing; with-
out it, almost everything computing professionals do would be
idle speculation. Hamming’s insight remains valid today: there
can be no computing without computers.

Along the way there has been an ongoing debate about
what programming language(s) to use in CS courses. Should
they be languages used heavily in industry, such as C, Java, or
Javascript? Or languages designed for easy learning of basic
programming concepts, such as Pascal or Python? It is ironic
that on the one hand computer languages are equivalent in ex-
pressive power, while on the other hand language choice is the
most fiercely debated issue in teaching computing. This debate
is unlikely to end.

QUEST FOR COMPUTING EVERYWHERE
The idea that computing is universally valuable pervaded the
thinking of the founders of computer science. Beginning in
1960, pioneer Alan Perlis repeatedly said that computer au-
tomation would spread to many fields and draw many people
into “algorithmizing”—his term for what we now call compu-
tational thinking.

of neural networks to large classes of pattern recognition and
prediction, with astonishing success. In recent years Machine
Learning and Big Data Analytics (BDA) have come to depend
closely on one another. Referring to the success of ML and BDA
as “AI” is a misnomer because neural networks are unintelligent
pattern recognizing machines.

Parallel and distributed
computing. From the 1960s
computer scientists developed
strong interests in compu-
tations performed by many
processors working together.
Because of their significantly
greater speed, parallel proces-
sors became the mainstay of
supercomputing, which be-
came very popular in science,
engineering design, medical
and drug research, entertain-
ment, and more, and fomented
the revolution of computation-
al science. Also, from the 1960s, computers distributed into
many physical locations connected by a network provided ac-
cess to remote services and showed great resiliency to failures.
The 1960s dream of computer utility matured into the modern
distributed systems making up “the cloud.” This long line of de-
velopments left a permanent imprint on our curricula.

EVOLVING VIEW OF WHAT COMPUTING IS
The question of whether computer science was unique or was a
science persisted for many years. Our views of what computing
is evolved through four stages over the years [4].
• In 1960s, we said we studied phenomena surrounding

computers.
• In the 1970s, we said we studied programming and all that

entailed about algorithms, analysis, and correctness.
• In the 1980s, we said we studied automation, what could be

efficiently automated by digital computers.
• In the 1990s, as other fields of science started to claim

their fields included naturally occurring information
processes, we said we studied information processes natural
and artificial. After that, the old debate about whether
computer science is science, or deserves its own academic
department, completely faded.

The curricula we taught evolved along with these maturing
views of the nature of the field. In 1968, ACM produced its first
curriculum recommendation, the first attempt at standardizing
what a computer science degree meant. In 1972 the NSF-spon-
sored COSINE (computer science in engineering) project advo-
cated placing systems courses in the core curriculum, alongside
the traditional math courses already there; operating systems
was the first systems course to be accepted into the CS core. In

The idea that computing is
universally valuable pervaded the

thinking of the founders
of computer science. Beginning

in 1960, pioneer Alan Perlis
repeatedly said that computer

automation would spread
to many fields …

20  acm Inroads  2018 December • Vol. 9 • No. 4

The Beginning

Where To From Here?

ducing several proposals for teachers to choose [3].
Even with all this backing the new curricula have been slow

to find their way into K-12 schools and some of the teachers are
still concerned about what they should teach and how to assess
whether students have learned it.

The definitions of CT in these proposals are quite narrow
compared to the breadth of pressing computational issues in
the world—they do not apply to complex systems, reliability
concerns, hardware, or emerging technologies such as quan-
tum computing. CT is not the defining characteristic of com-
puter science. Neither is it “the way of thinking of computer
scientists” because many in other fields have contributed sig-
nificantly to our understanding of computation.

EDIFYING CONVERSATIONS ON BIG QUESTIONS
We arrive at our 50th anniversary of the founding of SIGCSE
with a curriculum specifying what (and how) we teach comput-
er science, a curriculum that evolved over half a century. The
specification was shaped by many factors noted here.
• Strong emphasis on building technologies at the beginning
• Resistance to forming CS departments from other academic

departments that did not accept computing as a legitimate field
• Developing our own community network at the dawn of the

internet era
• Being torn by intense debates over the roles of science,

math, and engineering in our field, manifested as struggles
over how to teach software engineering and information
technology, and how much to trust formal methods for
software development

• Coming to grips with the emergence of computational
science and now the penetration of computing into nearly
every field of human endeavor

• The death of artificial intelligence and its resurrection as
machine learning and its claims about automation and the
future of humanity

This battle-hardened inheritance does not help us with
many of the pressing issues of the world emerging around us.
The worldwide connectivity we helped bring about through the
Internet has brought many benefits from shrinking the world
and globalizing trade. But it has also spawned conflicts between
non-state organizations and traditional nations, trade wars,
protectionism, terrorism, widespread detachment, fake news,
political polarization, and considerable unease and uncertainty
about how to move in the world. Access to troves of informa-
tion via the internet has begun to show us that knowledge does
not confer wisdom, and we long for wise leaders who have yet
to appear. The world we encounter in our daily lives is full of
surprises, unexpected events, and contingencies that not even
our best learning machines and data analytics can help us with.
We are now finding that many resources including sea and air
access are contested among nations; we lack means to resolve
the resulting disputes and we worry that the resulting conflicts

Computing educators became interested in the 1970s in
bringing computing’s general-purpose thinking tools into K-12
schools. That was a major challenge: few schools had teachers
with computer science knowledge. Computer literacy was seen
by many as a gentle first step toward getting computer courses
into grade schools. The first attempts at literacy courses were
little more than training in how to use word processors and
spreadsheets. They were not popular with students or teachers.
A turning point came in 1999, when a task force of the Na-
tional Academy of Engineering issued a report reframing the
goal from literacy to fluency. Larry Snyder, the chair of the task
force, wrote Fluency in Information Technology, a textbook that
became popular with high school teachers [8].

Also in the 1990s, the College Board became interested in
an upgrade to the advanced placement test in computer sci-
ence. With help from ACM and IEEE, they launched around
2000 an advanced placement (AP) curriculum focused on ob-
ject-oriented programming with the Java language. Within a
few years, AP enrollments plummeted as students and teach-
ers discovered the material was too complex for beginners. The
College Board, in cooperation with the US National Science
Foundation, undertook a new advanced placement curriculum
organized around computer science principles, which it hoped
would provide a better return on their investment. The upgrade
was rolled out in 2016.

In 2006 Jeannette Wing reframed the issue again around
“computational thinking” (CT) which she characterized as
the thought processes that computer scientists used to solve
problems [10]. This formulation resonated with many people
who saw computing permeating into their fields and wanted
to learn how to harness the technology. As an assistant direc-
tor for the Computing & Information Science & Engineering
(CISE) directorate at the National Science Foundation, Wing
mobilized many people and resources around the goal of get-
ting a computing curriculum based around computational
thinking into every K-12 school. They sought to train 10,000
teachers in computer science. They supported the develop-
ment of the CS principles advanced placement curriculum and
concurrently the development of a new genre of CS principles
first courses in universities. Many organizations stepped up
to define K-12 curricula around computational thinking, pro-

We arrive at our 50th anniversary of
the founding of SIGCSE

with a curriculum specifying what
(and how) we teach computer

science, a curriculum that evolved
over half a century.

acm Inroads • inroads.acm.org  21

The Beginning

• Is civilization so dependent on computing that an attack
on a component of infrastructure, like electric grid, could
collapse civilization?

• What is the difference between wisdom and knowledge?
How are we fooled into thinking that massive internet
information is wisdom?

• What are the social implications of brain-computer
interfaces and implants into our brains and bodies?

I do not believe any of us has answers to any of these ques-
tions. But we need to be having the conversations about them.
In so doing we need to embrace the mathematicians, scientists,
and engineers in our field. It is time to give up the old tensions
that we inherited from times long past, and work together as
brothers and sisters, mothers and fathers, old and young on
these big questions.

Acknowledgements
I thank Matti Tedre for historical and technological insight in our conversations about
the topics discussed here. I also thank Fernando Flores for giving the name “edifying” to
the kind of conversation we need more of in education, and for edifying conversations
to better understand the world our technology has shaped.

References
 1. ACM. Computer Science Curricula 2013; https://www.acm.org/binaries/content/

assets/education/cs2013_web_final.pdf. Accessed 15 Feb 2018.
 2. Denning, P., Comer, D.E., Gries, D., Mulder, M. C., Tucker, A., Turner, A. J, Young, P. R.

Computing as a discipline. Communications of ACM 32, 1 (1989), 9–23.
 3. Denning, P. Remaining trouble spots with computational thinking. Communications

of ACM 60, 6 (2017), 33–39.
 4. Denning, P. and Martell, C. Great Principles of Computing. (MIT Press, 2015).
 5. Forsythe, G. E. (1968). What to do till the computer scientist comes. American

Mathematical Monthly 75 (May 1968), 454–461.
 6. Haigh, Thomas. Actually, Turing did not invent the computer. Communications of

ACM 57, 1 (2014), 36–41.
 7. Newell, A., Perlis, A. J. and Simon, H. A. Computer science. Science 157, 3795 (1967),

1373–1374.
 8. Snyder, L. Fluency with Information Technology: Skills, Concepts, and Capabilities,

7th Edition (Pearson, NY, NY, 2017).
 9. Tedre, M. The Science of Computing: Shaping a Discipline. (CRC Press / Taylor &

Francis, New York, NY, USA, 2014).
 10. Wing, Jeannette. Computational thinking. Communications of ACM 49, 3 (2006),

33–35.
 11. Winograd, T. and Flores, F. Understanding Computers and Cognition, (Addison-

Wesley Professional, 1987).

Peter J. Denning
Naval Postgraduate School
Monterey, California, 93943 USA
pjd@nps.edu

Peter J. Denning (pjd@nps.edu) is Distinguished Professor of Computer Science and
Director of the Cebrowski Institute for information innovation at the Naval Postgraduate
School in Monterey, CA. He is Editor of ACM Ubiquity and is a past president of ACM.
The views expressed here are his alone and are not necessarily those of his employer or
the U.S. Federal Government.

DOI: 10.1145/3191833 ©2018 ACM 2153-2184/18/12

could trigger wars or economic collapses. We see that collective
human action affects the global environment but have yet to
find ways to protect the environment we will bequeath to our
children and grandchildren.

This leaves us with a big question—how shall we shape com-
puting education so that our graduates can develop the design
sensibilities, wisdom, and caring they will need to navigate in
this world of which they will be citizens? Our current curric-
ulum, chock full of courses covering the 2013 body of knowl-
edge, is not up to this task.

A place to start would be to open space in our crowded cur-
riculum to have conversations on big questions about the con-
sequences of computing throughout the world. These conver-
sations need to be interdisciplinary and intergenerational. Their
purpose would not be to solve problems but to edify—develop
mutual understanding, appreciation, and respect around these
issues. Some examples of big questions are:
• How far can automation take us? Can everything be

automated? Is there always something important left over
that cannot be automated?

• Will AI displace more jobs through automation than it
generates?

• How can we help people whose jobs are displaced by
software and hardware we have designed?

• How do we cultivate good designers?
• Can we trust decisions by neural networks when given

inputs outside their training sets?
• Will drones and robots combine to create an automated

surveillance society?
• Is there a technological solution to the cybersecurity

problem?
• Can we make our world work when computers have been

embedded into almost all devices connected to the global
network?

• Can blockchains and cryptocurrencies solve our problems
with trust in central authorities? Are they too expensive to
maintain?

[H]ow shall we shape computing
education so that our graduates can

develop the design sensibilities,
wisdom, and caring they will

need to navigate in this world
of which they will be citizens? Our
current curriculum, chock full of

courses covering the 2013 body of
knowledge, is not up to this task.

