




any length can be exchanged in the fixed time required to exchange
the address ofthe message header. The distributed memory architec-
ture gives each processor direct access to only one memory unit, the
local memory; access to other data is gained by sending messages
through the interconnection network. Message exchange time is
proportional to message length. This approach is economical if local
accesses are more frequent than other accesses.
The strategy of designing algorithms for full sharing of all

memory by all processors has an important fundamental limitation.
Because individual memory modules can be accessed by only one
processor at a time, all but one of the processors seeking access to a
given module will be blocked for the duration ofthat module's cycle
time. Baskett and Smith showed that when N processors share
access to M memories, the fraction of processors blocked during
each memory cycle is approximately (9, 10)

V'1 + (N/M)2 - NIM (1)

For N = M, about 40% of the processors will be blocked. The
designers of the BBN Corporation's Monarch machine (65,536
processors and memories, 1-ps memory-cycle time) claim they can
reduce this number to as little as 10% by having two ports into every
memory (11).
The critical issue is the memory address pattem generated by each

processor. Ifmost of a given processor's references are concentrated
in a small region of the address space, that region can be stored in a
fast local memory attached to the processor; blocking will be
negligible because interference will be limited to the few other
processors whose favored regions overlap (10). Because most paral-
lel algorithms can be designed to localize the reference patterns of
each processor, the distributed memory architecture will continue to
be favored by designers.

Coarse versus fine grains. In analyzing parallel algorithms, we must
distinguish two disjoint ways a processor can spend its time. One is
computation, the time spent performing instructions. The other is
communication, the time spent sending, receiving, or waiting for
messages from other processors; communication time may vary
according to path length to the processor holding the data and it
may take 1 to 1000 instruction times or more per message.
Although all algorithms have communication time for input and
output, the communication time required to synchronize the parts
of a parallel algorithm is a cost that is not present in sequential
algorithms.
The computational utilization Ui of a processor i is the fraction of

time that processor is executing computational instructions; thus,
1 - Ui is the fraction of time that processor is executing communi-
cation instructions or waiting for messages. The speed-up attained
by a computation with N processors is at most U1 + U2 + . . . +
UN; it may be less if portions of the computation are repeated in
several grains. The maximum speed-up ofN will be achieved by an
algorithm in which the computational utilization of each processor
is near 1 and there is little redundant computation.

In many algorithms for physical problems, each processor is
assigned a region of space containing a duster of points on the grid
over which the differential equations are solved. In a two-dimen-
sional grid, a square with k points on an edge will have computa-
tional work proportional to the number of points (that is, k2) and
communication work proportional to the perimeter (that is, 4k).
With k sufficiently large, the computational work will be large
compared to the communication work, which means that each U,
will be close to 1 and N such processors will produce nearly perfect
speed-up.
Now we see why grain size is important. The multiprocessor
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architecture will determine the cost of a communication step relative
to a computation step. Ifthe cost is high, the algorithm designerwill
favor large grains containing many instructions for each message;
the number ofsubprograms will be a small function of the problem
size. If the cost is low, the algorithm designer can afford small
grains, and the number of grains will be proportional to problem
size. In specifying algorithms that will scale for larger machines,
designers tend to choose grain sizes at the point of diminishing
returns between computation and communication; for this reason,
when given a machine with more processors, they use it for a larger
problem at the same grain size rather than for the same problem
with a smaller grain size (4).
The attraction offine grains is that they afford the largest possible

amount of speed-up. They are practical in certain limited cases
today, most often signal- and image-processing problems and
problems involving particle-tracing. Machines illustrating this are
the Connection Machine (12) and the Goodyear/National Aeronau-
tics and Space Administration (NASA) Massively Parallel Processor
(MPP) (13). In these cases, the machines are able to move a data
element between immediately neighboring processors in time com-
parable to the instruction time, and many computations over grids
of such elements will achieve individual processor computational
utilizations of 0.5 or greater at the finest grain.
SIMD versus MIMD. A fundamental question in the design of

parallel algorithms is how to guarantee that, when a processor
executes an instruction, the operands ofthat instruction have already
been computed by previous instructions. Without this guarantee,
the results ofthe computation can be indeterminate-depending on
the relative speeds of the processors (race conditions). The mecha-
nism that provides this guarantee is called synchronization.

Synchronization is straightforward in standard sequential single-
processor machines, where instructions are executed one at a time.
The results of each instruction are left in registers or in memory for
access by later instructions. Optimizing compilers for such machines
may exchange the order of instructions that do not provide data to
each other. A direct extension of this mode for multiprocessing
appears on machines of the SIMD type, where each instruction is
simultaneously obeyed by all the processors. For example, suppose
that a difference equation on a grid calls for averaging the values
at the four nearest neighbors of a point; the programming language
expression for the operation to be applied at point (i, j) would
read

v(i,j) = [v(i - 1,j) + v(i + 1,j) + v(i,j - 1) + v(i,j + 1)]/4
(2)

On the SIMD machine, we can associate one data processor with
each point on the grid; its memory holds the value v(i, j). The
control processor broadcasts the instructions implementing Eq. 2 to
all the data processors, which obey them using their own particular
values of i and j. Programs of this kind are easy to understand
because they look almost the same as their counterparts for a single-
processor machine. According to Hillis and Steele, the best way to
think of SIMD programming is as sequential programming in
which each operation applies simultaneously to sets of data rather
than to individual data elements (14). It is impossible to program
races in SIMD algorithms.
Under the MIMD mode, each processor has its own separate

program of instructions to obey. The programs need not be
identical. Now the machine must provide explicit means for syn-
chronization. The hardware must supply buffers for passing mes-
sages between processors, flags to indicate the arrivals of signals and
messages, and instructions that stop and wait for the flags. The
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programmer must use these synchronization instructions where a
definite order of events must be established. For example, Eq. 2
becomes

PUT (v, i - 1, j)
PUT (v, i + 1, j)
PUT (v, i,j - 1)

PUT (v, i, j + 1)

v = [GET (i - 1,j) + GET (i + 1,j) + GET (i,j - 1) +
GET (i, j + 1)]/4

where PUT sends a message containing the value of v to a
designated processor and GET waits until a message is received from
a designated processor; a GET must match the corresponding PUT
on the sending processor. This increases the progranmning effort and
exposes the programmer to errors that arise when these new
operations are used improperly (for example, imagine if the four
PUT statements did not all precede the GETs).
The main limitation of the SIMD architecture is its restriction

that all processors must execute the same instruction. Even in highly
regular problems there are differences, such as the evaluation of
boundary conditions, that require different algorithms for some
processors than for others. The machine must shut off boundary
processors while broadcasting the instructions for interior nodes,
and it must shut off interior processors while broadcasting instruc-
tions for boundary nodes. The need to shut off some of the
processors lowers the utilization ofthe machine and the speed-up it
can attain. An MIMD architecture, which can execute the interior
and boundary algorithms in parallel, does not suffer from this
.lmitation.

Practical considerations. There are at least eight distinguishable
architectures corresponding to the various combinations of the
factors above. In practice, in scientific computing only three ofthese
possibilities have been used: (i) MIMD coarse shared (Sequent,
Encore, Alliant, Convex, Cray); (ii) MIMD coarse distributed
[hypercubes (Intel, Ametek, NCube)]; and (iii) SIMD fine distrib-
uted (Connection Machine, MPP). There are two reasons for this.
First, the shared-memory architecture has been of limited use in
large computations because fewer than 100 processors are enough
to saturate the common bus; such architectures do not extend to
thousands of processors. Moreover, there are no reported test cases
in which shared memory was a distinct advantage even when a small
number of processors was sufficient (5). Second, the grain size is
normally the consequence of the communication structure of the
machine and the nonlocal referencing patterns of the algorithm.
MIMD machines to date have used coarse grains because synchroni-
zation costs would be too high with fine grains. Only the SIMD
architecture has been successful with fine grains, and then only with
each processor having its own local memory.
The predominance of these three architecture types today does

not mean that others are forever impractical. The data flow architec-
ture (see below) is capable of supporting fine-grain parallelism
within the MIMD mode and may become practical by the end ofthe
decade.

Neural networks can be used for special-purpose combinatorial
optimization and pattem recognition problems (15). They represent
another architectural type that can be used for highly parallel
computation. They are not of direct interest in the numerical
computations that predominate in computational science, but they
may be of indirect interest for ancillary combinatorial issues such as
generating grids and mapping grids to the nodes of a hypercube.
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Problem Classes
For a wide range of scientific problems, at least one of the three

architectural types noted above works efficiently on highly parallel
computers (5). Fox has proposed a dassification of problems into
three broad categories: synchronous, loosely synchronous, and
asynchronous (5). Synchronous problems are ones in which the
physical equations specify the behavior at every point in the data
space for every small increment of time. Loosely synchronous
problems are ones for which there are embedded time sequences
(renewal points) at which the physical equations specify the values
of the data elements; in between these times there is no global
specification of the data values in local regions of data space.
Asynchronous problems are all the rest. Fox says that most of the
results in the literature have been obtained for the first two classes of
problems and that we have not yet learned how to divide problems
into dissimilar pieces that can keep an MIMD machine busy.

Single-function problems. In many computational problems, a simple
procedure must be applied uniformly across a large number of data
elements organized within a data structure. We can specify the
procedure by a sequential algorithm in which each step is an
operation applied simultaneously to all the data elements. The
design of such "data-parallel" algorithms closely resembles ordinary
programming in languages such as Fortran or C.

Physical problems modeled by a set of differential equations are
common paradigms for data-parallel algorithms. The continuum
equations are modeled by a set of difference relations among
dependent quantities associated with points on a discrete grid. The
difference relations are usually the same for all points except the
boundaries. In a data-parallel algorithm, each grid point is assigned
its own processor that contains a program to evaluate the difference
relation. Because the difference relation depends only on the imme-
diately adjacent grid points, each processor need communicate only
with a small number of others in its neighborhood.
The class of problems amenable to data-parallel solution is by no

means limited to differential equation models. Other dasses include:
1) Searching. Find data elements satisfying a given property. If

processors are as numerous as data elements, the search can be
completed in a constant amount of time independent ofthe data set
and the result can be reported in an additional logN time.

2) Sorting. Arrange a sequence of data elements in order. If
processors are as numerous as data elements, the sort can be
completed in time proportional to log2N on N processors.

3) Joining tables in a database. Form a new table from two others
having a common column by combining a record from one table
with a record in the other whenever the two records have the same
value in the common column. This can be done in time proportional
to the size of the larger table if processors are numerous.

4) Computational geometry. Find the convex hull of a set of points.
With N processors and N points, this can be done in average time
proportional to log2N.

5) Solving linear equations. Find the solution of a set of equations
ofthe matrix form Ax = b. WithN processors andN unknowns, the
parallel Gauss-Jordan method obtains the solution in time propor-
tional to N2; with N2 processors, the time drops to N logN.

6) Fast Fourier transform. Find the one-dimensional Fourier trans-
form of a series of points. With N processors and N points, this can
be done in time proportional to logN.
This list is merely suggestive; a large variety of subproblems that

commonly arise in computational libraries are data-parallel and are
subject to considerable speed-up on machines containing large
numbers of processors (16, 17).

Practical data-parallel algorithms must be designed to adapt to the
number of processors actually available. For example, 1 million data
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elements can be searched by 1000 processor in time proportional to
loglOOO by performing a binary search on the 1000 elements
allocated to each processor. Optimal combinations of sequential
and parallel components are open problems in parallel algorithm
design.

It is important to remember that data-parallel algorithms cannot
be universally guaranteed to keep all the processors busy all the time.
An illustration is an image-processing algorithm that operates in
two passes. On the first pass, the algorithm determines local features
of chunks of the image, and, on the second, it locates contours by
joining the local features across chunks. Processors assigned to
chunks having few features will also have little work to do. Because
the proportion of processors that can be kept busy is dependent on
the input data, one cannot expect that the speed-up will be
proportional to the number of processors.

Multiple-fiunaion problems. Many computational problems involve
many functions composed together. Examples include finite element
analysis over nonhomogeneous rigid structures, multizone fluid-
flow calculations, circuit simulations, fluid flows in nonhomoge-
neous subterranean fbrmations, and multidisciplinary models. The
solution of these problems does not rely on data-parallel computa-
tion; instead, it relies on a network ofmachines performing different
functions and exchanging data. They correspond to Fox's asynchro-
nous problems. Today, their algorithms commonly are written in C
or FORTRAN. Many researchers believe that process-oriented
languages such as Occam (18) and functional composition languages
such as VAL (19) or FP (20) would produce more precise descrip-
tions of algorithms for these problems.

Architectural matching. Single-function (data-parallel) problems are
well suited to the SIMD architecture, and multifunction problems
are well suited to the MIMD architecture. A major impediment to
solving multifunction problems has been the lack of programming
languages that express functional composition easily. The main
barrier to the widespread use of such languages is cultural. The
scientific community has used Fortran for so many years that
programming with new languages will remain untried as long as the
scientific investigator sees no value to learning these languages. The
ability to express solutions to multifunction problems may be a
sufficient motivation for learning new languages.

Connection Machine
To make concrete the previous points about solving single-

fimction problems on an SIMD machine, we will consider the
architecture and programming of a particular SIMD machine, the
Connection Machine 2 (CM2) (Thinking Machines Corporation).
The CM2 is an SIMD computer with 65,536 (216) processors

connected in a 16-dimensional hypercube network. Each processor
has 32 kilobytes of local memory; the entire primary memory of a
CM2 is 2 gigabytes (23' bytes). Collectively, the processors can be a
supercomputer that solves problems with data-parallel methods.
The CM2 cycles between intervals of instruction execution and

message exchange. At the start ofan instruction interval, the control
processor broadcasts an instruction to all processors; the subset of
them that are enabled then execute that instruction using data in
their local memories. During a message exchange interval, proces-
sors copy values required during the next instruction interval.
Compilers can determine the source and destination addresses of
these messages. If an algorithm uses many long paths in the
network, the message interval can be 50 to 250 floating-point
instruction times, severely limiting the computational rate of the
machine.
The CM2 configures algorithms for the number of processors
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Fig. 2. Experiments on a
Connection Machine re-
veal big differences in
performance and illus-
trate tradeoffs between
storage requirements
and rmning times on
parallel machines. The
graph shows running
time for three algorithms
for multiplying N x N
matrices on a CM2 with
215 processors. Each
curve is labeled with its
asymptotic growth rate
in N. The upper curve is
for the standard sequen-
tial algorithm that takes
time proportional to N3
using one processor. The
middle curve is an algo-
rithm that uses N3 pro-
cessors and takes time
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proportional to logN. The lower curve is an algorithm that computes each of
the N2 results on a separate processor; it takes time proportional to N. The
discontinuities in the two lower curves result from the simulation of virtual
processors. For each value ofN = 32, 40, 50, 64, 80, 100, 128, .. . in the
middle curve the next stage of virtual processor simulation starts, with
respectively 2, 4, 8, 16, 32, 64, 128, ... virtual processors per real processor;
at each step the running time doubles and at N = 256 the machine runs
completely out of memory. When N> 181 in the lower algorithm,
N2 > 215 and the running time doubles for the same reason.

actually present through the method of virtual, or simulated,
processors. The programmer designs an algorithm just once, assum-
ing that the machine has the required number of processors. The
compiler assigns sets of the programmer's virtual processors to each
available processor on the CM2, and each processor simulates the
execution of all the virtual processors assigned to it. The maximum
number of virtual processors is limited by the available memory. As
an example, we can assign a virtual processor to eve7 point in a
1024 by 1024 image (2 points); each ofthe CM2's 2 6processors
must simulate 16 virtual processors, each ofwhich is limited to 1/16
of the memory and 1/16 the speed of a processor.
Programmers use standard languages (Lisp, Fortran, C) on the

CM2. We will review how standard control statements operate on
the CM2. Consider a selection statement of the form "IF C THEN
A ELSE B":

1) The control processor broadcasts the instructions that evaluate
the test C; at the end of this sequence, each processor contains the
value TRUE or FALSE. The control processor broadcasts an
instruction telling all processors containing FALSE to turn them-
selves off.

2) The control processor broadcasts the instructions for the
clause A; those instructions will be obeyed by the subset of
processors still on. At the completion of this sequence, the control
processor broadcasts an instruction telling all processors to reverse
their status between on and off.

3) The control processor broadcasts the instructions for the
clause B; those instructions will be obeyed by the subset of
processors now on. At the completion of this sequence, the control
processor broadcasts an instruction telling all processors to tum
themselves on.
The CM2 implements the on- and off-status of processors with a

one-bit register per processor called the context flag. When the
context flag is FALSE, the associated data processor is off, and it
obeys only instructions that unconditionally manipulate context
flags.
An iteration statement such as "WHILE C DO A" works
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similarly. The control processor broadcasts the instructions of the
test C and then the command for all processors containing FALSE
to turn themselves off. It then broadcasts the instructions ofA, and
only the processors still on execute it. This is repeated until all
processors have shut themselves off. Then the control processor
instructs them all to turn themselves on again.

Because the programming syntax for the CM2 is basically un-
changed from that of sequential machines, many algorithms can
easily be converted for the CM2. Unfortunately, many sequential
algorithms converted in such a straightforward, mechanical way are
not efficient for a parallel machine. This point is illustrated for
matrix multiplication (Fig. 2) (21). For this reason, much of the
research to date in algorithms for parallel machines has been a
complete rethinking that has produced some unexpectedly new
designs that do not resemble their counterparts for sequential
computers (16, 17, 21, 22).

Data Flow Computers
Data flow computers are the most practical form ofMIMD fine-

grained parallel computers known. They limit the cost ofsynchroni-
zation and afford a high degree of parallelism by replacing control
flow with data flow. Under control flow, each processor has an
instruction pointer that designates which instructions are enabled
for execution. Under data flow, instructions become enabled for
execution by the arrival of required operands.
A data flow program consists of a set ofinstruction packets stored

in the memory of the data flow computer. An instruction packet is
disabled until all its required operands have arrived. Enabled
instruction packets are sent via a distribution network to an array of
processors where they are executed and their results distributed back
to instruction packets that await them. If a large number of
instruction packets are enabled, a data flow computer with a large
number of processors achieves high parallelism and high utilization.
A data flow computer can offer fine-grain parallelism because it can
exploit parallelism at the level of individual functions, expressions,
and subexpressions (23).
Program statements that operate on arrays of data will achieve

high speed-ups on a data flow machine. Consider again the earlier
example of a computation over a grid ofpoints v(i, j). In a data flow
computer, all the assignment instructions for all the grid points
would be enabled in parallel; each would await four operands
generated by its four neighbors and would then produce a new
result. The speed of the machine would be directly proportional to
NIM for N grid points and M processors. These findings were
confirmed by a study we performed jointly with NASA and the
Defense Advanced Research Projects Agency (DARPA) in 1984
(24). Benchmark studies on a prototype data flow computer at the
University of Manchester have indicated that many sequential
programs can also keep all the processors of a data flow computer
busy (25).
A data flow computer automatically solves the problem of

assigning virtual processors (here, instruction packets) to the real
processors of the machine: as soon as a virtual processor is enabled
by the arrival of needed operands, it is sent to a real processor for
execution. Although the ratio of computation to communication
time per virtual processor may be low (0.01 to 0.1), utilization of
the machine can nevertheless be close to 1 if the program has
enough instructions enabled at the same time.

Aside from a few university and commercial prototypes, no
serious commercial data flow machine is available. There are several
reasons for this. The SIMD machine is simpler to build and can be
programmed within familiar language concepts; the data flow
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machine requires new languages and new compiling technologies
based on unfamiliar concepts (19). The SIMD machine uses a
hypercube interconnection network, which is cheap to build; the
data flow machine depends on a high-speed packet-switched net-
work, a technology that is only now becoming inexpensive.
Some researchers are studying data flow languages as source

languages for SIMD architectures. Experience with these languages
will benefit the programmning of all parallel machines.

Conclusions
The sequential computer has been the dominant paradigm since

the first ENIAC was brought on-line in 1946. We are fast approach-
ing the physical limits of this technology while our computational
needs continue to grow. After two decades of experimentation,
successful computers containing thousands of processors operating
in parallel have been built and are for sale in the market, and early
experience with these machines in practice has been highly encour-
aging. Many challenges lie ahead in computer architecture, algo-
rithms, programnning languages, compilers, operating systems, per-
formance evaluation, software engineering, and the vast number of
applications of parallel computation.
The new breed of massively parallel machines will, in the long

run, have an impact as profound as microcomputers. These ma-
chines are forcing us to rethink our approaches to algorithms: any
technology that brings about a change in the manner of organizing
work will have far-reaching effects.
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