
Computing as a Discipline: Interview of Peter J. Denning
Interviewed by Sebastian Dziallas of University of Kent
January 29, 2015

This interview was part of a research project about ACM curriculum
recommendations for computer science since 1968, and the corresponding
shifts of perspectives about the nature of computer science. The full study
was published as:

Dziallas, S. and Fincher, S. 2015. ACM Curriculum Reports: A Pedagogic
Perspective. Proceedings of the Eleventh Annual International Conference
on International Computing Education Research (New York, NY, USA, 2015),
81–89.

Interviewer: Let’s begin with a broad question. I know you were responsible for

the ACM/IEEE report “Computing as a Discipline” in 1988, but you

had been active with education in ACM long before that, and you

remained active after for example as Chair of the Ed Board. I

wonder if you could talk a little about your perspective over the

course of those 30 years.

Denning: Certainly. I’ve been involved with the ACM and curriculum ideas for

a very long time. My first formal contact with ACM curriculum efforts

came in 1970 in conversations with Sam Conte of Purdue, who was

a member of the famous ACM Curriculum 68 committee. He was

interested in having me come to Purdue and he finally recruited me

to leave Princeton in 1972. He frequently sought my ideas and

advice about computing curricula. Our conversations put the idea

in my head that I could contribute to the computing curriculum in

some way.

2	

	

 I was involved in curriculum design before meeting Sam Conte. In,

1969 Bruce Arden invited me to chair a task force for the NSF

COSINE (computer science and engineering) project. They were

trying to bring Computer science into engineering schools. I guess

computer science was more accepted in a school of science or a

school of mathematics at that time than it was in a school of

engineering. The COSINE effort was intended to bring more

computer science into engineering.

 They asked me if I would chair a task force to develop a

recommendation for a core course on operating systems. This

was, at the time, a radical idea. The core of computer science at

that time consisted of mostly mathematical courses that were

applicable to computer science -- for example, automata, switching

theory, discrete math, parsing theory, numerical analysis, and

computability. But all matters involving programming, programming

languages, compilers, systems, and software development were

considered applications and were outside the core. Even compilers

were outside the core. Although everyone saw compilers as a very

mathematical subject, compiler courses were seen as an

application of mathematics rather then the development of

mathematics.

 Operating systems was even further away from being a core

subject. It looked like a hotch-potch of systems programming

tricks, and it did not seem to have a set of core principles. But

because of the success of the 1967 Symposium on Operating

System Principles, organized by Jack Dennis and Walter Kosinski,

the leaders of the COSINE committee were convinced that there

were core principles in operating systems. They asked me to

organize a task force to specify a course in operating system

3	

	

principles that would strike the academics of the day as worthy of

being in the core curriculum.

 Programming languages were another important topic that was at

the time outside the core of computer science.

 I put together a small task force of OS leaders -- Jack Dennis,

Butler Lampson, Dennis Tsichritzis, Richard Muntz, and Nico

Habermann. We quickly came up with a recommendation on a

core course in operating systems. The COSINE committee

accepted the recommendation and publicized it. Within very few

years there were several textbooks on operating systems that used

our report as the framework for their tables of contents. The first

was by Nico Habermann, a member of the task force. A copy of

the report is available from my website,

http://denninginstitute.com/pjd/PUBS/cosine-8.pdf

Interviewer: You said COSINE was an NSF-funded project. What did they pay

for? Was Habermann’s book part of the project? Was there any

other post-project work by members of the team?

Denning: Yes, the National Science Foundation supported the COSINE

project. Most of the budget was travel expenses so that the task

forces could meet and develop their recommendations. The project

also paid for the printing and distribution of the task force reports.

Habermann’s book was not part of the project; it was his personal

effort after the task force was disbanded.

 In 1972 I wrote a follow-on paper for the Spring Joint Computer

Conference with a long title, “Operating System Principles and

4	

	

Undergraduate Computer Science Curricula.” I laid out the

argument for including operating systems in the core and outlined

the principles we recommended. I also argued that there would be

a trend to include more systems courses in the core. Much to my

surprise they selected that paper for the best paper in the

conference. I guess the idea that the core of computer science

contains a system course resonated with the mood of the times.

 I think this answers your question about when I started getting

involved in computing curricula. I got involved immediately after

ACM Curriculum ‘68 and my first contribution was to help out with

the operating system core course. I didn’t stop being interested at

that point. I did other things in next ten years’ time. I was a

member of the ACM education board, I helped get SIGCSE

founded, and I was active in promoting computer science through

the National Science Foundation.

Interviewer: Yes, that answers the question. Say more about promoting

computer science through NSF.

Denning: In the late 1970s, there was a lot of concern in the computer

science field because it seemed like we were losing systems faculty

to industry way faster than we could recruit replacements. Systems

faculty worked on operating systems, database systems, network

systems, graphics systems, robotics systems, and a few others.

Industry needed people who could design and build systems, and

they could offer these faculty much better salaries. We were

worried that we would not be able to teach systems courses or

advise students in systems oriented projects. The process was

seen as a brain drain that threatened the health of the young field

of computer science.

5	

	

 Computer science in universities had a great history of contributing

to early computing systems -- for example, the projects at MIT,

Harvard, University of Pennsylvania, Princeton, Cambridge, and

Manchester. Universities were very proud of their involvement in

the birth of the field. In the late 1970s it seemed like the people

who could be involved in the next wave of innovative systems were

being recruited to industry. The computer science departments

could lose their engineers, developers, and experimenters, leaving

only the mathematicians to teach computer science. I have nothing

against mathematicians, but with many others including

mathematicians I was concerned about the balance on the faculty

and our ability to grow the discipline and over the core material,

which by then included a lot of systems.

 Jerry Feldman at University of Rochester organized a small team to

prepare a report on this problem. NSF supported their work. They

examined what they called experimental computer science and

raised a red flag of concern that that part of computer science

would wither away from the universities. They called on NSF to

help stem the drain with new programs and initiatives. They also

called on university promotion committees to look for wider

indicators of peer acceptance than journal publications because the

experimentalists published in software magazines, distributed their

software through the Internet, and showed their software at major

conferences. They wanted experimentalists to have an equal shot

at promotion and tenure in an evaluation system that favoured the

mathematical and theoretical.

 The Feldman committee showed how this collection of issues was

conspiring to support the systems brain drain. They called on NSF

ought to way to make experimental computer science research

6	

	

respectable in computer science departments, and help prevent

this brain drain from getting worse.

 I was elected ACM President in 1980, soon after the Feldman

report. I asked the ACM Executive Committee wanted to take a

position, which they did, endorsing the Feldman Report. In 1980 at

the Snowbird meeting of the CS department chairs, I joined with a

few other leaders and helped produce a consensus report from the

meeting, “A Discipline in Crisis.” It was published in the CACM in

June 1981. By that time the leadership at NSF had heard these

and other loud voices and said they wanted to help. The NSF

created the Co-ordinated Experimental Research Programme,

CER. They sought proposals from university coalitions to undertake

basic and applied experimental research in computing systems.

 With NSF behind experimental computer science, there was a

strong positive response from the universities and eventually the

brain drain was reversed.

 As part of its determination to help the CS community, the NSF

took a big interest in the CSNET effort. I joined with three other

department chairs to advocate that NSF and DARPA find a way to

make the ARPANET available to all universities, not just the

handful who had DOD contracts. We worked for 18 months to build

a community consensus behind a proposal that NSF accepted in

1981. By 1986 CSNET had grown to connect all CS PhD-granting

departments and research labs in the US and Canada, and a few in

Europe, including altogether about 50,000 faculty, researchers, and

students. CSNET connected them with a network based in

ARPANET technology with different bandwidths according to the

needs and means of individual departments. Small departments

with limited budgets connected by PhoneNet and large

7	

	

departments connected by means of a TCP/IP we developed to run

on the GTE Telenet X.25 packet network. CSNET provided a

coordination center (the first ISP) and organized a consortium of its

members to manage the network. By 1986, CSNET was

completely self-supporting from dues collected from its members.

 The CSNET success gave NSF the confidence that it could engage

in networking projects. NSF embarked on the NSFNET project,

which eventually became the backbone of the Internet and brought

networking to all scientific research. NSF was a major factor in the

growth of computer science and the early Internet.

 A little-known historical fact is that CSNET negotiated an

agreement between NSF and DARPA to allow NSF contractors to

use the ARPANET. That was the first time the ARPANET allowed

non-DOD traffic. It laid the groundwork for NSF to work with

industry and eventually allow commercial traffic on the NSFNET

backbone. By the time the World Wide Web began emerging in

1993, the principle of commercial traffic was established and

enabled the quick adoption of the Web by commercial companies.

The Internet (and Web) ceased to be a domain solely inhabited by

researchers; it became a flourishing medium of commerce.

 So in the decade following the Feldman Report, NSF and the CS

departments produced quite a transition, putting computing in the

middle of many innovations in research, networking, and

commerce. CSNET was a key bridge from the old, closed

ARPANET to the fully open Internet. CS faculty and researchers

played key roles in inventing the technologies and participating in

the many international committees working for their adoption. The

mood of the CS community transformed from dejected and

discouraged in 1979 to update and ambitious in 1989.

8	

	

Interviewer: If everything was so upbeat, why did you sound an alarm that led to

the 1989 report?

Denning Although we had turned the tide and were receiving new resources,

hiring systems faculty, and getting involved in challenging and

innovative research, the prevailing mood in the CS community

bothered me. In 1984 I gave a speech at Snowbird, “Ruminations

on Education”, in which I called on my colleagues to give up the

sour mood and take advantage of the new environment. My

ruminations were published in IEEE Computer magazine in May

1985. I said that the traditional programming-heavy model

dominating CS curricula was reaching the end of its useful life and

we needed a new model that brought forward the principles of

computing in all areas, not just programming. I also said that we

needed to cultivate good relations with other fields, notably

engineering and sciences.

 The ACM Education Board (chaired by Joe Turner) was intrigued

by this and asked me to organize an ACM/IEEE committee to

examine computing as a discipline and suggest new directions for

curriculum.

 I organized the panel and we started work in 1987, finishing in 1988

with a report “Computing as a Discipline”. We noted that it was

hard to distinguish computer science and computer engineering,

which was why many people at the time referred to our field as

CS&E, computer science and engineering. We abbreviated this to

“computing”, a term that stuck and became equivalent to the

European “informatics”.

9	

	

 We noted that computing has deep roots in mathematics, science,

and engineering and yet is different from each of those fields

because of its special focus on information processes. We

believed that computing had grown into its own discipline distinct

from its roots. We proposed a map of the field in the form of a 9x3

matrix -- 9 rows enumerating core technologies and 3 columns for

theory, abstraction, and design (the three roots). In each box of the

matrix we made detailed entries of the concerns, accomplishments,

and literature. With this map we were able to answer the nagging

education questions of the day, is computer science engineering?

Science? Mathematics? Where does it fit in a university?

 This was the first time ACM and IEEE spoke with one voice about

the field. ACM and IEEE have cooperated ever since on joint

computing curriculum recommendations, notably in 1991, 2001,

2005, and 2013.

 That is the genesis of our report. It began when spoke out against

the mood of dejection and resignation. I just did not want us to

become the victim of other people’s stories about us. There was so

much we could do for ourselves. I wanted to help computing find

its own voice.

 I think that our report was the beginning of finding our voice. We

were able to say who we are, why we are new and not part of older

more familiar fields. I think other people began to see what was

different about computing and why we are not a subfield of

mathematics, science, or engineering. We certainly have much to

offer to mathematics, science, and engineering, but we are different

because computing deals with information processes and machines

that transform them. No other field has that as a focus of concern.

10	

	

We also felt that our report gave grounding to our claim that

computer science is not programming, contrary to a myth of the

day. I might note that the myth that “CS = programming” has come

back and in my opinion we need to fight against it.

Interviewer: Was that myth a problem for the field?

Denning I think so. Whenever someone asked “What is computer science?”

our main answers were about programming computers. Many in

our field celebrated great programming as the epitome of

computing. Within the field, we all understood that this was an

ideal, celebrating our greatest algorithm designers and system

builders. Most of the progress in our field did not come from

advances in programming, and yet our answers made it sound like

we believed they did. We did not know how to speak in broader

terms about what we do.

 On top of that, the US and UK Labor Departments, which had been

slow to recognize any computing occupations, began to list

computing job titles. To the extent that they considered

“programmer” to be a job, they defined it as a “coder” -- someone

who writes the code in a language representing someone else’s

design, compiles it, and debugs it. The official public definitions of

programmer came to mean coder, which was much, much narrower

than what our ideal of programmer was.

 Without realizing that the word “programmer” meant something very

different to us than to our non-CS listeners, we continued to speak

about CS being programming. Our listeners thought that all we did

was code and occasionally advance technology. They knew we

had theoreticians, but thought of them as mathematicians rather

than computer scientists. They knew we had computer builders,

11	

	

but thought of them as electrical engineers. They did not think we

were much interested in science.

 I think our report gave us a way of talking about our discipline that

made clear we have strong elements of mathematics, science, and

engineering, blended in a new way, and that we are not simply

coders or technology hackers. We wanted to overcome the

disconnect between the public view of computing and the real guts

of our field. Characterising the field as a field of programmers is

just a giant mistake.

Interviewer: Yes. I’m curious about the composition of the task force. How did

you choose the members? How did thy get involved?

Denning: The ACM Education Board chartered our committee. As I noted

they were intrigued with the ideas I proposed in my “educational

ruminations”. They wanted us to do a report that would define a

conceptual framework about a separate discipline they could use in

the next curriculum revision planned for 1991. They felt that the

discipline was outgrowing the 1968 framework.

 Joe Turner, chair of the Education Board at the time, and I drew up

a list of people we could invite to the committee. We wanted

people who resonated with the idea of our field being a discipline

and would propose a framework that would be useful for many

years. We also wanted to reach out to IEEE and have them join

the effort; we were all thinking of the field as “computer science and

engineering” and we could hardly leave them out. Once we agreed

on the names, Joe and I set out to invite them. I think everyone we

invited joined us. The IEEE Computer Society decided that they

would send a single representative since they viewed this as

12	

	

primarily an ACM committee. They chose Mike Mulder. Mike and I

were already good friends. Our friendship helped promote good

will between the two societies, which was essential later to get their

endorsements for the report.

 Once the committee got rolling, we sought feedback from anyone

and everyone who might wish to comment on the ideas that we

were examining. I remember distributing draft reports and

collecting a lot of comments. I also remember a Town Hall meeting

at a SIGCSE conference where we presented the draft and took

extensive notes on the audience’s reactions and suggestions.

While small, our committee benefited from the thoughts of many

others.

Interviewer: You mentioned trying to gain recognition for architecture and

systems. But I was also wondering, was there a pedagogical

component to the committee’s work?

Denning It was intentionally minimal. We felt that our primary charter was to

articulate a framework for the discipline, not to design a curriculum.

The job of designing a curriculum would fall to the ACM curriculum

1991 committee after we were done. We did bow slightly to the

pressure to say something pedagogical by outlining a first course in

computing based on the framework we developed. We de-

emphasized that part by putting it into an appendix as a speculation

for a possible first course. The 1991 curriculum committee

subsequently designed a more detailed recommendation for a first

course based on that example. After our report was released, there

was a lot of interest in that appendix, more than we wished. We

wished people would instead pay attention to the framework and

not worry yet about the first course.

13	

	

 I believe that our fear about going into course content was justified.

A few years later there was a big argument about whether our idea

for a first course was sound. We speculated about a first course

that would survey the field and orient students to its many parts.

The Curriculum 1991 committee worked with our speculation to

propose what they called a “breadth first” approach to contrast with

the more traditional first course in programming, which they called

“depth first”. The tradition inherited from Curriculum ‘68 was that

we would start our students with a lot of programming, achieving

some depth at that core skill; once they got programming under

their belts, they would branch out to other parts of computer

science. We did not actually propose a breadth first approach; that

was the idea of the Curriculum 1991 committee. The critics called

the 1991 approach “a mile wide and inch deep” and claimed it

would produce shallow students who could not handle the more

advanced topics later in the curriculum. I think people are still

arguing over that distinction to this day. Our intuition was to stay

away from that, concentrate on the framework, and confine our

comments about pedagogy to an appendix on a possible first

course. Our speculation was our answer at the time to the

question, How would we introduce the field of computer science if

we only could do it in a single course?

 Such was our pedagogical component.

Interviewer: It sounds like you were not entirely happy about the emergence of

this breadth first terminology.

Denning: We were always interested in computing as good science and good

mathematics, and as applications with good engineering. We did

not invent the breadth-first idea or even come close to discussing it.

14	

	

 It always seemed to me that if we were going to design a

curriculum based on the framework we proposed, we would have to

start with an introduction to the framework. The curriculum that

followed would then progress deeper and deeper into the topics.

That is what we had in mind when we speculated about a first

course.

 If you use the same logic with the older tradition of a programming

heavy computing curriculum, it makes sense to start with

programming and progress deeper and deeper into it. Other topics

would eventually grow out of that core for students who had

acquired sufficient programming experience to handle those topics.

 The curriculum 1991 committee may have tried to preserve a lot of

the traditional structure in their curriculum. In that case, replacing

the programming focused first course with a computing-field

focused first course would indeed seem like a switch from depth-

first to breadth-first. But then you would have a mismatch between

the rest of the curriculum and the first course.

 I think that the ensuing debate was not so much about the terms

breadth and depth, but about the philosophy of the curriculum itself.

Do we want to emphasize programming and get the students

deeply into the practice of programming? Or do we want to

emphasize the science and engineering and view programming as

one of several important computing practices? I think that debate is

still going on today.

Interviewer: Based on the history of computer science, I could see why your

committee wanted to recognize the three historical roots in

mathematics, science, and engineering. How did you get from

15	

	

these ideas to the terms you actually used, theory, abstraction, and

design?

Denning Adopting the term theory was pretty easy since there is obviously a

lot of theory in computing and there was vocal “foundations of

computing” community constantly reminding us of that. We

associated the term with the paradigm of mathematics.

 The term abstraction was a compromise. We wanted to include the

science root. Science includes a lot of modelling. Models are

abstractions. The word abstraction already had a lot of appeal

within computing. So we chose that term and associated it with the

paradigm of science.

 The term design was actually a new insight. I remember a meeting

in which Mike Mulder was shaking his head on account of all the

attention we had been paying to theory and abstraction. He said

that emphasis will never fly with his engineering colleagues. Then

he said, “Design would work. It is a deep value of engineering and

appears in the accreditation criteria. It is integral to software

engineering.” That moment of insight caused the entire committee

to coalesce on design rather than engineering, and we sketched

out a design paradigm.

 We used the term paradigm more like a “process of thought” rather

than a belief system as it was more commonly understood. We

sketched each paradigm with four simple steps and displayed them

side by side. We said that computing combines all three

paradigms. We said that the combination is unique among

disciplines and is a distinguishing feature of computing. We also

noticed that each paradigm included steps where the other

paradigms might guide the step, for example, when an engineer

runs a model to guide a design decision.

16	

	

 We were all very pleased with this formulation. Everyone in

computing seemed to identify with at least one of the three

paradigms, and could therefore see that a substantial part of the

field aligned with what they thought was important. Mike Mulder

reported later that his IEEE colleagues accepted this formulation

and from that moment we had a solid basis of working together.

 And after that, we were all comfortable with the term computing for

the whole of the framework, rather than “computer science and

engineering”.

Interviewer: It makes sense.

Denning: It is interesting that some of the key ideas in the final report

emerged as “accidental insights” in our conversations. One was

the design insight we just discussed. Another is the 9x3 matrix.

We were in the process of drafting a presentation for a Town Hall

meeting and were having difficulty figuring out how to get all the

ideas we have come up with into a few clear slides. We had to

draw the slides by hand -- no Powerpoint at the time -- and so

being clear and concise was of great value.

Allen Tucker came up with the idea of displaying all the pieces in

the form of a 9x3 matrix. He said something almost offhand, “How

about we display it as a matrix?” The rest of us instantly saw that

this provided a nice image that connected the parts. Our Town Hall

presentation fell quickly and neatly into place after that.

Interviewer: I see. (Laughter). You were just talking about working with Mike

Mulder from the IEEE side. I know that the ’91 report was the first

17	

	

curriculum report on which ACM and IEEE worked together. Was

that collaboration an outcome of your committee’s work?

Denning: Yes, indeed. The collaboration we started then continues to this

day. All the subsequence curriculum recommendations and

updates – 1991, 2001, 2005, and 2013 -- were collaborative efforts

between ACM and IEEE. Mike Mulder and I were both

“collaboratists”. We both believed that we do better work when we

think together rather than alone. I have been immensely gratified to

see that the two societies wanted to continue the collaboration

begun at that time. I, myself, have always done better work when I

operate in that mode. Even my sole-authored papers benefitted

from extensive consultations with other people.

 In the early days of the collaboration, Mike was the main point of

contact for IEEE and I for ACM. We both turned our networks in

the two societies for readings and reactions on the latest ideas we

were considering in the committee. Over the years we broadened

way beyond two points of contact interacting. Now the entire

boards do that.

 When we finished, ACM published the report as a booklet. We

made an executive summary and published it in CACM in January

1989. The IEEE Computer Society published a condensed version

in Computer magazine in February 1989.

Interviewer: Okay. That takes us up to late 1980s and early 1990s. Let’s talk

about your perspectives on the more recent efforts, I believe you

were the Chair of the Education Board during the 2001 report and

you had retired from that post by the time of the 2005 update. Then

18	

	

of course was the major update in 2013. What was your

involvement in those reports?

Denning: From my perspective the 2001 report was a more or less routine

update to a curriculum recommendation. It was chaired by Eric

Roberts and Russ Shackelford. It was also a collaborative effort

with the IEEE. They used a lot of Town Hall meetings to give

progress reports, gather people’s reactions, and find areas of

consensus.

 They expanded the list of core areas of computing from the 9 we

had in 1989 to 14. They drew up a summary of the 14 areas and

their major sub areas, listing 130 sub areas in all. Since it would be

impossible to cover all the sub areas in a single four-year

curriculum, they took votes to find the consensus on what areas

absolutely must be included in every curriculum. That shorter,

must-have list was about 60 topics -- still a lot. What emerged was

a much more detailed picture of how a computer science

department could embrace a computer science curriculum.

 The 2001 committee also recognised that there were several

related disciplines under the single computing umbrella -- computer

science, computer engineering, software engineering, information

systems, and business oriented computing. The ACM and IEEE

followed up with an update in 1995, in which they offered give

separate volumes customized for each of these five sub disciplines.

They achieved a pretty comprehensive set of recommendations for

everybody in computing.

 The more recent report, in 2013 one, in my view, followed a similar

pattern of identifying major areas and sub areas. The field

continued to expand. They showed 18 major areas and 175 sub

areas. Through a consensus voting processes, they classified the

19	

	

sub areas into must-have, nice-to-have, and optional. They also

recognized that computing interacts with many other fields and

gave recommendations on how to organize those interactions.

 You can see the growth at a finer level too. Take a look at the

operating system course. Today one of the most popular books is

the Stallings book, which over seven editions has grown to about

700 pages. In the US the book costs $160 for the book. There is so

much material, the students simply cannot grasp it all. The same

thing is true with the algorithms book for the algorithms course; it’s

in its fifth or sixth edition now, and it just keeps getting thicker and

thicker, all great stuff, but students cannot grasp it all. The

standard texts for single courses have reached this thickness of

Allen Tucker’s Handbook of Computer Science, or Anthony

Ralston’s Encyclopaedia of Computer Science. Individual

textbooks have become encyclopaedia in their own slices of

computer science. We’ve go to do something to help our students

grasp all this.

Interviewer: Wow. What is the significance of this growth?

Denning: These curricula clearly demonstrate the growth of the computing

field over the years. They confirm our sense that the field is too

large to be completely covered in a four-year curriculum.

It has been interesting to me that the names of the major areas in

these curricula are all core technologies. These are the

technologies we have grown up with and perfected. Our

accumulating picture is a field of technologies in rapid growth.

I think this accumulating picture has been an impediment to our

acceptance by other fields as a legitimate field in its own right. If

20	

	

the others cannot see past the technologies to the base principles

of the field, they will persist with a perception ours is a technology

field but not a science. They say, “These guys are just

technologists. They have a few good mathematicians and

engineers, and maybe even rarely a scientist, but they’re basically

technologists.” I think this is the source of the continuing question,

“Is computer science a science?” I’ve heard critics in other fields

saying that computer scientists are really technologists misusing

the term science. They think of computer scientists as advanced

programmers, but not as scientists.

 For this reason I believe the historical progression of focus on

computing as a series of technologies has begun to outlive its

usefulness. It’s certainly true that computing has been a driving

force in technology advancement and the agent of many major

advances and innovations. We do not want to throw away the

technology history we are. But my fear is that our curriculum has

gotten so technology oriented that it’s short-changing important

parts of the field, especially the many growing interactions with

other fields and the rising importance of design in our field.

 I also see the architecture and systems part getting overwhelmed

by the programming part. You may have noticed in the last three or

four years there has been an explosion of interest in “coding

academies”. It is pretty amazing -- kids all over the world are

signing up for hackathons, hour of code, coding clubs after school,

coding weekends, coding summer work camps, and more. It is

great that, after so many years of our wrestling with student non-

interest, computing is catching on in a big way.

The rhetoric that comes this growth is expansive. It says that

coding is an essential part of the future of civilisation. Coding is the

21	

	

language we will need to live in a world dominated by computing

technology. We need to start learning coding in middle school age,

if not sooner. If coding is not already offered in those schools, it

should become a formal part of the school system.

 This coding movement appeals to our collective desire to know

more about the way digital technology is shaping the world. We

want to be part of it and to shape it.

Interviewer: Is there a downside?

Denning: I worry that this is a resurrection of that old story, “CS equals

programming”, which is now being retold. We fought hard to dispel

this myth in our 1989 report because it was casting our field as

much narrower than it really is and it was hampering our efforts to

establish peer relations with other fields seeking collaborations with

computing. I am concerned to see it coming back.

The current version of the story is now focused on coding, not even

the ideal of programming we discuss within computer science. This

story claims that coding is the basis of computer science, and that

learning coding is all you need to get access to the rest of computer

science. Coding opens the door to computer science for kids. To

me, there is a steep staircase just after the door opens to

computing. Opening the door does not help you up the stairs.

There is so much more to computing than coding. What comes

after the coding academy? How do we help our young people fulfil

their interest in computing?

 Along with this positive change of mood toward computing among

young people has been a genre of new popular books focusing on

the way that computer technology has advanced and shaped the

22	

	

world. These books show a special reverence for the algorithm.

For example, John McCormack of Princeton wrote a book “Nine

Algorithms that Changed the Future”. It’s a really nice summary of

nine algorithms that most people have heard of in one way or

another. However, behind the book lurks an assumption that

programmers and algorithm designers are the driving forces behind

progress in computing technology that all the great computing

advances have been algorithm breakthroughs. An example is the

claim that Google’s page rank algorithm changed the world.

 If you take a closer look at what Google actually did, you see that

they spent a long time and a lot of investment building their data

warehouses, which are the bases for the fast searches we now see

and are the platforms for other Google services. Google developed

the MapReduce paradigm and the distributed computing platform to

support it. They would not be the success they are today without

that platform. In so doing, they pioneered new directions in

computer architecture and operating systems. Their architectures

are important for the analysis of “Big Data” and for “Cloud Storage”.

None of those advances has anything to do with the page rank

algorithm. Operating systems, networks, architecture, and data

management are all part of computer science, but they are not

advances in algorithms. The story “Page rank algorithm changed

the world” is quite misleading. It is the beginning of the Google

story but is a small component of what Google has achieved.

 I’m seeing hints that students are getting disillusioned by the gaps

between the expectations these stories generate and the realities of

the computing field. The algorithms stories are like hero stories

where the rest of the world disappears and you do not see the

support system that makes the hero possible. One of my co-

workers has a son who went to Berkeley’s CS department. He was

23	

	

turned on by the summaries of the magic and joys of computing

presented to him in his first course by Dan Garcia. Then her son

found himself buried for two years in courses that demanded

intensive programming. He was transformed into a good

programmer but that was not his real interest and he began to

resent it. He wanted to study artificial intelligence and human

interaction but was disappointed that he did not have the time or

prerequisites to take those courses until he was well into upper

division. Finally, he switched majors to cognitive science and is

loving it.

I know this is an anecdote, but it worries me that the heavy

emphasis on programming in computing curricula can drive good

students away. Programming is an important part of computing,

but my colleague’s son wanted to defer some of the programming

so that he could study the things that turned him on, and he could

not.

 You have probably heard senior leaders in the field calling for more

attention to design. This is motivated by the need for reliable and

dependable large systems, and for systems that support the

everyday practices of their user communities. How to build such

systems from thousands of components and with large numbers of

coders and implementers involved, is perhaps the most challenging

area of computer science. The problems of design are much more

challenging than those of computational complexity. Very few

computer science departments deal with design; very little is said

about design in the ACM curriculum recommendations. An

overemphasis on coding and programming distracts from issues of

design, and I think that’s going to come back and bite us.

24	

	

 You have probably also heard about the severe problems of the CS

Advanced Placement Curriculum managed by the Educational

Testing Service. The idea is that getting a good score in the AP

exam will get you credit for the first computing course when you go

to college. Since the first computing course is about programming,

it would make sense that the AP curriculum and test are about

programming. Around 2000 there was a committee formulating just

such a new AP curriculum based on object oriented programming.

I was chair of the ACM Education Board at the time and we sent

several representatives to the committee. We endorsed their

recommendations to build AP around object oriented programming.

Well, it took a few years to roll that out, and it was soon apparent

that it was a disaster. The Education Board had not made a good

call. Teachers who hardly knew programming were being asked to

teach advanced programming; they just could not do it. The CS AP

curriculum and exam have become immensely unpopular among

teachers and their students. There is a new committee now

building a new AP recommendation around “CS principles”. It will

be a few more years before that is rolled out. I hope that the

principles are more than just programming principles. I’d like to see

architecture and design principles covered too.

Interviewer: Oops.

Denning: Yes, that object oriented AP was a sad story. The entire Ed Board

was seduced by the argument and supported it. The problem was

that we overestimated our ability to communicate a rather

sophisticated and complex technology in a way that students and

their teachers could grasp. Teachers found they could not

understand the material and its nuances, and there were few

25	

	

training workshops to help them come up to speed. From the

perspective of the teachers, object oriented programming was a

much more advanced concept than we thought.

 So the teachers and their students did not get it. This AP

curriculum became very unpopular very rapidly. Jan Cuny at NSF

was concerned that the AP was not attracting students and

teachers. NSF had a goal of qualifying 10,000 new computing

teachers for the K12 schools; that AP curriculum was scaring them

off. NSF sponsored the development of five pilot first courses

based on CS principles and helped persuade the Educational

Testing Service to commission a committee to design a new AP

curriculum around CS principles. Dan Garcia’s course at Berkeley

was one of the five pilots. I was very glad to see this happen

because I believe that a curriculum based on computing principles

will be more effective than one limited to technologies.

I do however, have a concern over the choice of principles. These

pilots emphasized programming and coding principles, such as

recursion and divide-and-conquer. They had very little about

systems and nothing about design.

 As you know from the previous conversation, I’ve long been a

champion for computing principles and I’ve always sought

framework of principles that covered everything from algorithms to

architectures and design. I believe that a framework that

emphasizes programming is imbalanced and plays into that

unwanted perception that “CS = programming”. I have been

promoting the Great Principles project since 2004 in order to

demonstrate a balanced framework. My book with Craig Martell.

Great Principles of Computing, was just published by MIT Press.

The computing field is big and it keeps getting bigger; it has a very

26	

	

deep set of principles and they’re not all programming principles.

You really can’t understand the field without understanding the

whole set of principles. I hope we are not heading for a train wreck

when a narrow external perception of our field crashes into the real

complexities of computing and design.

Interviewer: Why would you speculate that such a train wreck is possible?

Denning: It just seems to be a drift. I think helps to understand the drift if you

step back and view our history. We have grown up in a machine

age, where our technologies, not just computing, have become

better and better at automating tasks. In computing, we have seen

the progression of bigger and bigger and faster and faster

computing machines. Today’s epitome of that progression is giant

supercomputers. China, US, and Japan have been trading

positions as the country with the fastest supercomputer. These

machines carry out about 10 to the 15th power operations per

second, or 1 peta-op. Ten years ago we thought such speeds were

just dreams. These machines are used for the biggest and hardest

computational problems we have, such as weather forecasting,

climate modelling, oil exploration, aircraft design and simulation,

and hunting through huge data sets for faint signals. These

machines perform deterministic computations and have no

intelligence.

 These machines are among the billion or so machines of all kinds

connected together in the Internet. The machines and network

connect over 4 billion people, and the numbers continue to grow.

The Internet is a constant dance between humans and machines,

amplifying each other. In this network new kinds of computations

are emerging, such as crowd sourcing, ride sharing, temporary

27	

	

rentals, and the so-called sharing economy. These networks now

perform tasks that a decade ago we had no idea were possible.

 I call this growing network of machines and humans “the organism”

because it behaves more like a living organism rather than a

machine. The organism is becoming part of our lives with more

and more people connecting with each other using their mobile

devices. The organism is not deterministic. It is intelligent -- the

combined, amplified intelligence of four billion people. It is

unpredictable and the world has much more uncertainty than ever

before.

 We are trying to learn to navigate in the organism using an

understanding of computing that belongs to the machine age. One

of my favourite examples is our belief that we are now capable of

building accurate, large scale models of global systems and solving

them precisely with our advanced machines. In other words, we

believe that the machines give us the capability of overcoming

uncertainty. But exactly the opposite is true. The organism is more

uncertain and less predictable and no mathematical model will

overcome that. I think that a lot of people hope that they can solve

the increasingly hard problems in the world with better

mathematical models and more powerful computers. They put a lot

of faith in their ability to design models and algorithms. That belief

is impeding us from learning how to navigate in the organism with

all its inherent uncertainty.

 The world we grew up in is all about machines. It is natural that the

computing curriculum is technology oriented and focuses on

controlling the machines with good programs. We have not yet

developed the skills to function in the organism and we are hoping

that our standard curricula will prepare our students for that. I’d like

28	

	

to see a new curriculum effort that recommends a computing

curriculum for the organism age.

 When we see drifts in the world we want to apply computing

technology to channel the drifts in better directions. But these drifts

are made of many unpredictable behaviours of individuals and

machines. We need to be looking not at control or precise

prediction, but at channelling and shaping the drift. We need to

emphasize design that responds to concerns rather than

programming that builds control systems or automates routine

tasks. Few of our curricula pay any attention to design.

I know it’s hard to talk about this. My mind is also a product of the

machine age and I find it hard to think inside the new world of the

organism. Many of our young people are moving more naturally

with it than I, probably because they do not have my history with

the machine age. I see young people gravitating toward design

and getting disgruntled with programming-heavy curricula.

 So that’s where I think the future of education needs to be looking,

aiming to understand the organism age and help our students

escape from what seems to them to be the prison of the machine

age. I am eager to help out with these new investigations.

Interviewer: This is very helpful I do appreciate your unique perspective, from

the very beginning up until now, going beyond. Thank you.

	

