Denning, Peter, and Jeffrey Spirn. 1973. Dynamic storage partitioning.
Proc. ACM SIGOPS SOSP (January), 73-79.

DYNAMIC STCORAGE PARTITIONING

Peter J. Denning
Department of Computer Sciences
Purdue University
W. Laftayette, IN 47907

Jeffrey R. Spirn
Division of Engineering
Brown University
Providence, RT 02912

Abstract:

variable storage partitioning is considered.

A model of paged multiprogramming computer systems using

A variable storage parti-

tioning policy is one which allocates storage among the active tasks

according to a sequence of fixed partitions of main storage.

The basic

result obtained is, mean processing efficiency is increased and mean
fault-rate decreased under a variable partition, provided that the
curves of efficiency and fault-rate as a function of allocated space

are concave up.

1 INTRODUCTION

In 1967 and 1969 Belady and Kuehner published
studies of dynamic space sharing in paged multipro-
grammed memory systems [1,2]. These studies inclu-
ded the then remarkable experimental observation that
by varying the partition of memory among the active
tasks, the processing efficiency of the system showed
an increase in the range 10-13% as compared with the
same system running the same tasks in a fixed parti-
tion. The capability of the system Lo process a
given set of active tasks in a given memory space
was increased by the simple expedient of varying the
memory partition.

Figure 1 shows a pair of hypothetical tasks, each
reqguiring 24 units of processing time to complete.*t
Both tasks have the fault-rate function £(x) and the
execution interval function 1/f{(x) shown in the table;
1/£{x) gives the expected length of the wvirtual time
(i,e., computation time) interval between page faults,
as a function of %, the memory allocation in page
frames. Tt is important to note that both f{x) and
1/£(x} are concave up. The basic system on which
the tasks are run has a single processor, and an
auxiliary memory which satisfies any page reguest
in 4 time units. The three timing diagramg show the
two tasks operating under three regimes: Regime I
will be called the fixed partition, Regime II the
variable partition; Regime TIIT will be explained
shertly. In Regime II, one task has 1 page, the
other 3 pages for most of the time; there is a

+We should like to express our appreciaticn to L. A,
Belady for directing our attention so elegantly to
the proper distinction between real and virtual time
by the example of Fig. 1 (which he sent us), and for
giving us permission to use the example here in

this paper.

73

changeover of memory allocations during the interval
(32,39). The table below the timing diagrams shows
the following measures for each regime:

1. Real time efficiency of the system. This is
the ratio of total processing time to the total
real time to complete the tasks.

2. Real time memory allocation of a task. This
is the mean amount of memory allocated to a task
across real time.

3. Virtual time memory allocation of a task.
This is computed by the formula { xt{x))/

¢ 3 t(x)), where t{x) is the total®virtual time
during which % pages are allocated.

4, Virtual time fault-rate of a task. This is
the ratio of the number of paging interruptions
in a task to the total virtual time of the task.

5. Real time fault-rate of the system. This is
the ratio of the total number of paging inter-
ruptions (between both tasks) to the total real
time required to complete beoth tasks.

It is important to note that Regime I1 has improved
all the measures favorably; and that the mean amount
of memory experienced by each task in its virtual
time is increased in Regime II, even though the

mean memory allocation in real time remained the
same as in Regime I.

The explanation offered by Belady and Kuehner
for this phenomenon was based on the observed con-
cave up property of the execution interval curve.
In their experiments they noted that, for a p-page
program, the mean time between page faults (using
a first-in-flrst-out replacement rule and demand

pjd
Text Box
Denning, Peter, and Jeffrey Spirn. 1973. Dynamic storage partitioning. Proc. ACM SIGOPS SOSP (January), 73-79.

paging) was approximated by the curve g{x}= cx s where
< is a constant depending on the program, and
0<x<p*'<p for some p'. (See Fig. 2,) The flattening
of the cobserved curve for p'<x<p follows from the
fact that execution intervals are bhounded by the
task's running time, and no page faults occur when
all p pages are loaded. The concave up property of
g{x) 1s expressed by the formula

q(xo-b)+g(x0+b)
2

for any b and x, satisfying b<x <p'~b. Tt is evi-
dent, therefore, that running a task for half its
execution intervals with memory allocation x.-b and
half its execution intervals with memory alldcation
+b will result in a mean executicn interval longer
tgan when the task is run for its entire execution
in memory zllocation x.. (Figure 1 has x.=2 and
b=1,) 0) 0

(1.1}

> g(xo)

This paper extends the work- described above,
Before proceeding, we believe it important to empha-
size a central point: the arguments to be presented
depend cruclally on making a proper distinction be-
tween virtual and real time. If one fails tc make
the distinction properly, one can be led to apparent-—
ly strange and contradictory conclusions. TIn the
case of Filg. 1, for example, cne can argue, "If a
task is run for half its virtual time with memory

X,=b and half its virtual time with memory x_ +b,
tgat the fault-rate function is concave up will im-
ply an increase in the mean fault rate, not the
decrease suggested by applying the concave-up argu-
ment to the execution interval function." This ar-
gument is exact; the "contradlction" arises because,
to implement this policy, one would have to force *
the two tasks to operate under Regime III, which
leaves part of the memory unused; this regime is
clearly not one we would use in practice. The Regime
Il of Fig. 1 corresponds to running each task for
half its real time with memory x.-b and half its
real time with memory x,.+b, whlcg does allow full use
of memory. Regime III improved nothing but the real
time fault rate. A simple calculation for Regime II
shows that the mean virtual time fault rate is £=0.33
and that £(2.6)=0.30, f{2.6) being thte fault rate were
it possible to grant each task a flxed allocation of
2.6 pages of memory. However, 0.50=f(2)>F=0.33, so
that Regime ITI nonetheless reduced the fault-rate in
compar ison to Regime T,

2 DEFINITION OF A MODEL

We shall use the operator R(s) to signify the
expectation in real time of a guantity, and V() to
signify the expectation in virtual time of a quantity,
When it" is important to call attention to expecta-
tions referring to a particular task i, we shall sub-
script the expectation operations: R, and V - In
particular, R{x) and V{(x) will denote, respectlvely,
the mean memory allocation of a task in real time
and in- virtual time, where x is the random variable
of memory allocation; R{g) and V(g) will denote, res-
pectively, the mean value of a function g in real
time and in virtual time; and R({A} will denote the
expected real time to complete a virtual time inter-
val of length A, i.e., containing A references.

Laet T denote the mean main memory access time

per referfnee in the system. Let Tai denote the mean

74

auxiliary memory access time per page request of

task i. Define the speed ratio of task i bhe be a=
Tai/T « Virtual {or program} time 1s measured as

+Re nifmber of (virtual) address space references
completed by a task in a given interval of real time,
The fault-rate function f.{x} gives the rate of page
interruptions in the virtidal time of task i, when
the main memory allocated to it is x pages; in other
words, 1/f.(x) gives the expected number of refer-
ences between twe page interruptions. Note that

1=f£, (0)>f (x)>f_ (p,)=0 whenever task i contains p,
pagés, and 0<x< The efficiency function of a *
task 1 over an interval of execution containing A
of the task's memory references is defined by

(2.1) ei(x)

where R_(A)} is the expected real time for task i to
complete A references when x pages of main memory
are allocated to 1t. It is easy to show that

(2.2} R, (A) = AT +Af,{x)T = AT {1+a_f, (x))
i i i al m ii
whence
1
{2.3) e (x)] & ——
i 1+aifi(x)

Note that e, (x) measures the effect of the speed
reduction dile entirely to the virtual memory mechan-—
ism; it measures the ability of the task to make
progress in real time (neglecting queueing delays
for the processor), and it therefore provides an up=
per bound con the fraction of real time during which
the task 1s available to use the Processor.

For a set of n*2 active tasks, define a parti-
tion of main memory of size M pages among the tasks
at time t {(the parameter t will always be used to
dencote real time) to be:

(2.4) Z(Y) = (Zl(t),...,zn(t))
where Z.{(£)>1 is the block (the memory allocation)
of pageé granted to task i, for 1<i<n, and
(2,5) ZICt)+"'+Z (£l = M.

n
Because some of the subsequent comparisons involve
hypcthetical (i.e., not implementable) partitions
having nconintegral blocks, we have not included the
constraint that Z,(t) be an integer for each i. A
partition Z(t) isa fixed partition if Z(t)=Z for
some constant vector Z for all t in the time inter-
val under consideration; otherwise z{(t) is a varlia-~
ble partition. A special case of Fixed partition
ls the equipartition Z2=(M/n,...,M/n).

Consider a vector x . =(x_,,.e.y% ,) where x, >1
for 1<i<n and x +...<xJ =427 By (2”4) and (2. %3, X
is a valid flxe&jpartltlén of memory. Now, Suppose
the dynamic storage allocation policy assigns a
sequence of partitions X ,...,x ssea abt times t,,44a,

yees; and suppose that X #FX for j>1. By the jth

1Aterva1 of allocation we eag }t) -= i.e.,
the real time interval in which tﬂe ﬁemory is alle-
cated among the n actlve tasks according to the
partition x,. For 1<i<n, therefore, x., is the
amount of mémory allocated to task 1 A7 the jt* inter-
val of allocation. The random variable %y denotes

the main memory allocatlion of task § 1t tzkes on
values in the sequence xii'xiE""’xij"" .

For any such dynamic partitioning pelicy, we
shall assume that each interval of allecatlon is of
sufficient duration that the fault rate function
and effliciency function of each task 1 converge to
the respective functions f, and e,. As noted ear-
ller, the experiments of Belady and Kuehner appear
to indicate that this assumption is not restrictive
in practice,

Cur subsequent results concerning increases in
efficiency for a given set of active tasks in a gi-
ven memory of size M under a variable partition will
depend on the assumption that the f and e functions
of each task are ceoncave up in the range of memory
allocations under consideration. A function g is
sald to be (strictly) concave up in an interval
(u,v) if for every choice of X.,e.ee,%_ in (u,v) and
every cholce of a set of weigh%s w ,.T.,w such that

wl+"'+wn=1 and O<wi<1 for 1<i<n, it is tPue that

n n
(2.6) 3 walx,) > g2l wx) .
m i1 1t

This definition is equivalent to the earlier one
(1.1), and is more convenient to work with. A func-
tion is sald to be concave down if the inequality

in {2.6) 1ls reversed, The function e(x) typically
is concave up for 0<x<p'<p in a p-page program, the
value of p' being closer to p as the speed ratio
gets large [1,2,3,4], The function f(x) typically .
is concave up for 0<x<p in a p-page program [4,5,6].

3 ANALYSIS COF SIMPLE VARIABLE PARTITION SYSTEM

Consider a set of n active tasks operating under
a variable partition policy which induces the se-
quence of partitions X,,ee.yX . 4-.. of M as described
earlier. We shall investigaté the behavior of this
system for a finite interval (t_,t_ .) where r>1,
and in which x.#x. . for 1<j<r. we'shall assume
that each allo&atign interval (t_,t, .) is suffici-
ently long that the fault-rate and éf;iciency func=-
tions of each task i converge to the functions £,
and e ., This system will be called the simple viri-
able partition (SVP) system, because queueing delays
(experienced by tasks waiting for the processor) and
swapping delays (experienced by tasks when the chan-
ges in partition x. to x +1 are lnconsistent with
demand paging) will be iénored. Swapping delays
will be accounted for in Section 4,

Consider a particular one of the tasks, it for
Ki<r let xy and A,, dencte, respectively, its
memory alloc;tion afd the virtual time it completes
in the j% allocation interval (t _,t,). (See Fig.
.3.} The total virtual time and geai+éime for task 1
in the interval (tl’tr+1) are, respectively,

P

(3.1) A, = A
i §=1 ij
s
(3.2) T = R(A,).
o1

75

It is especially important to realize that the expec-
ted real time of each task in each allecation interval
(t,,t, 1) is the same, since these intervals are com-
mon té’all the tasks; thus R(Ai }=R{ } for 1<i<n,

1<k<n, and 1<j<r. The mean vittual akd real time
memory allocations for task 1 are, respectively,

ﬁi Ai.
(3.3) v, {x,) = =
i1 3=1 Ai ij

r R(Ai.)
(3.4) Ri(xi) = z _]_T xij‘

=1

(=5

The mean real time efficiency of task 1 is-

(3.5) Ri(ei) = Ai/T.

Define x¥, the effective memory allocation of task i,
to be thd value of x, for which e,(x,)=R,(e,); thus
the task would have the same efficienicy In & fixed
partition which allocated it x? pages, The mean
virtual and real time fault rates for task i are,
respectively,

r A,
- il
(3.8) Vi(fi) ;_‘ = fi(xij)
j=1 i
r Ai_
(3.7 Ry (£,) = Z, - £,y
j=1
{In (3.7), note that A,.f,{x,,) is the expected num-

ber of faults in the jiJailoéétion interval.] The
assumptions that each function e, and f, is concave
up over the range of memory alloCations used in the
partition sequence can be used to establish the
results {(3.8)-(3,15):+

1 - 1
(3.8) Ri(ei) 1+a, V,(£.) ei(xi) 1+a,f (x")
1'i71 A R
(3.9)

Vi(xi) > x-i > Ri(xi)

(3.10) ei(Vi(xi)) > Ri(ei) > ei(Ri(xi))

(3.1 fi(Ri(xi)) > Vi(fi) > fi(Vi(xi))

(3.12) vy (£)) > Ry (£))

The partition Bf(Rl(xi),...,R (x_)) is a valid parti-
tion of M: non

(3.13) lex1)+...+Rn(xn) = M,

*The proofs of these relations, which involve apply-
ing the defintion of concave-up function (2.6) to the
defintions (3.1-3.7) are omitted here, See [7].

An approximation for the total system real time pro-
cessing efficiency is

n
(3.14) e = 1- 11-(1-Ri(ei)) .

i=1

Finally, the total system page fault rate is

ﬁ n ‘.L-Ri(ei)
(3.15) RAE) = I —==e,
o1 i i1 %

The results (3.8)-(3,11) are illustrated in
Fig. 4 for n=2 and the partition sequence (x ,xz),
{(x,,x,)s« The important point to nocte frem t%is fig-
ure and from (3,10)-(3.12) is that the variesble par-
tition causes each task i to operate at higher effi-
ciency and lower fault rate than it would in a fixed
partition in which it was allecated space Ri(xi).

As has been noted, the conditions assumed for
(3,8)-(3,15) do not correspond exactly to those
which would prevail in a real system, since the anal-
ysis falls to account for delays experienced by
tasks queueing for the processor. Figure 5 shows
Regimes T and II redrawn for the Fig. 1 tasks under
conditions corresponding exactly to those used in
the 5VP model. Because there are no queueing delays
in Fig. 5, each task completes socner; thus R, (x.)
and Ri(e) from SVP are too large, which intrddudes
errors ifito the SVP estimates for f_(R,(x,)) and
e, (R (x.))., Also, relation (3.8) holds for Fig. 5
blt hot™for Fig. 1. It should be noted that the
approximation (3.14} giving the total system effi-
ciency does work well for the tasks of Fig. 1, be-
cause in this case the tasks are identical (in
Fig. 1, the total efficiency is 2R(e))., However,
except for (3.8) the above relations do hold quali-
tatively. These results are of course exact when
there is one processcr available for each task;
and they will serve as a good approximation when pro-
cessor gqueueing delays are small compared to page
wait times, or when the processor scheduling pol-
icy tends to make the total delay between task exe-
cution intervals the same in all tasks.

Relations (3.8)~(3,12) can be used to compare
the efficiency of the SVP system with three (hypo-
thetical) fixed partition systems:

1. Mean real time memory allocations, R=
(R, (x,)gneayR (x_)).
171 n ' 'n

2. Effective memory allocatlens, X*=
(x{,...,x;).

3, Mean virtual time memory allocations, V=
(Vl(xi),...,Vn(xn)).

These partitions are in general infeasible, since
their blocks are not necessarily integral numbers
of pages. Relation {3.10) tells us that the SVP
system increases processing efficiency owver the
fixed partition R, and the fixed partition V has
higher processing efficiency than the SVP system.
Similarly, the partition X* would perform the same
as the SVP systems The utility of the fixed parti-
tions V and X* is, the V-partition provides an up-
per bound on the improvement of the variable parti-
tion system, and the X*-partition provides a fixed
partition eguivalent to the variable partition.

76

A further interpretation of (3.8)-(3.12) is the
following. Suppose 5=(s,,.s.,s) 1is a given fixed
partition, and we are abie to find a sequence of
partitions x_ ,...,x_and a 5VP system for which
R=S5; then we know that the svp system will provide
higher efficiency (relation (3.10)) and lower fault
rate (relations (3.11) and (3.12})) in each task than
the fixed partition system using 5. Moreover, if
S happens to maximize the figure of merit

Ei(si)+"'+en(sn)

which represents the expected number of processors
that could be fully utilized by the active tasks,
then any variable partition system in which R=5
will increase this figure of merit and would there-
fore improve over the best fixed partition system.

We have not investigated how to find a SVP sys-
tem such that R=S fer some given arbitrary 3. If,
however, S is aﬁ_équipartition, an answer is easily
obtained. Define a round robin partition to be a
SVP which cycles a set of memory SiZes X, yeee,X
among the tasks using equal real time intervals of
allocation —— i.e.y R(A, . }=T/n.% Other cases in
which round robin parti%lons will improve over
equipartitions include the case of n identical tasks
where the length of the allocation interval 1s de—
termined by the passage of K page faults, or by K
units of virtual time, in the task having the lar-
gest memory allocation (K is a parameter). This
corresponds very closely to the experiment reported
by Belady and Kuehner, and thus corroborates their
observation.

4 SWAPPING EFTECTS

The foregoing analysis has not accounted for the
possibility that the partition sequence induced in
a SVP system is inconsistent with demand paging ~—
e4gey Memory allocations are changed at non-page-
fault times, or a task's new allocation differs in
size by more than cne page from its previous allo-
cation. Thus with two tasks, for example, it is
possible to conclude that the partition sequence
(0,M) (M,0) repeated indefinitely by a round robin
partition — which corresponds to a pure swapping
strategy — would maximize the gain in efficiecy,
R, (e,)~e.(R,(x.))s That this need not be so can
bg e%tabiisﬁedlby correcting our previocus analysis
for the effect of swapping. Let F, denote the
effective number of page faults induced in task i
by swapping in the time Iinterval (t_,t 1) under
consideration. The actual efficiency B4 this
task is thus

Ay Ay
(4.1) R;_(Ei) = m (-l-qi)-T—
iti
where
_ My
93 T+a,F, *
ii

*To put this more precisely, let X={X,,-ee,%) Do a
valid partition. Define the permutation operator P
such that P(x)=(%_,.ees%_,%,); define also PK(x)=
P(Pk'i(ﬁ)) for ¥>4. One’possible round rchin par-
tition would use the partition sequence X, ,..4,%
cyclically, where 5.:PJ'1(£) for 1<3i<n; another

would use the SequUElCe X, yeee X X cegX,
q =’ ==ttt

In (4.1), q is the fraction of time during which
swapping rehnders the task idle, Since R.{e,)=A /T,
our previous results permit us to conclude Snly
that R‘(e)= (l-q R, (e,) > (1—q)e (R {x.)), whence
it is possible £3r i

{4.2) ei(Ri(xi)) > Ri(ei) > (1~qi)ei(Ri(xi)).

Evidently, the maximum amcunt of swapping which can
be tolerated in the interval (t t } corresponds
to the larges q, for which e, (R (x }<(1-qi R (e.),
which iz equivalent to the condltlon t

(4.3) q. <

A proposed SVP system using swapping would have to
be evaluated against (4.3) to determine if in fact
a gain of processing efficiency would result.

5 CONCLUSION

The simple variable partition (SVP) system model
considers an arbitrary sequence of valid partitions
induced on a multiprogrammed memcry shared by the
active tasks. Under the assumptions that the effi-
ciency and fault rate functions both are concave
up —- assumptions which the Belady and Kuehner ex-—
periments indicate are restrictive in practice --
the SVP model predicts an increase in real time
processing efficiency and in virtual-time memory
allocation in each task, compared with a fixed par-
tition in which each block's size i1s the same as
the corresponding mean block size in the variable
partition, The SVP has two limitaticns: it fails
to account for possible losses of efficiency, due
to swapping induced by the variable partitioning
scheme and to queueing of active tasks for the pro-
cessor. The first limitation is easily removed by
a simple extension of the arguments.

(x
! 1 5
S actual
L]
g(xO—b)+g(xO+b) :
2 .
g(xo) / :
o i x
-] 1
X0 28] X x0+b P ho)
Fig., 2. Mean execution interval curve.

77

The second limitation can be removed by consider-
ing a queueing network model in which the tasks ¢y-
cle between the processor and the auxiliary memory
device, each task's service time at the processor
being a function of the memory size allocated to it,.
Our investigations of queueing network models have
for reasons of tractable analysis been limited to
the rather elementary case of two identical tasks;
we have not completed a study to determine whether
or not the concavity properties the model requires
for variable partitioning to be more efficient are
met in practice. We are also investigating how
severe a limitaticon the omissicn of queueing effects
from the SVP model is. Since the results are pre-
liminpary and so far are inconclusive, we have not
included them here.

As noted before, the SVP results are exact when
there is one prowessor available for each task; and
they will serve as a good approximation when pro-
cessor queueing delays are small compared to page
wait times, or when the processor scheduling policy
tends to make the total delay between task execu-
tion intervals the same in each task.

REFERENCES
1. L. A+ Belady, “"Biased replacement algorithms

for multiprogramming,” IBM T. J. Watson Research
Center, Research Note NC697 (March 1967).

2, L. A. Belady and C. J. Kuehner, "Dynamic space
sharing in computer systems." Comm. ACM 12, 5
(May 19€9), 282-288,

3, W. W. Chu and H. Opderbeck,
frequency replacement algorithm,”
Proc, 41 (1972 FICC)}, 597-609.

"The page fault
AFPIPS Conf.,.

4, J. R. Spirn, "Program locality and dynamic memn-
ory management." Ph.D. thesis, Dept. Elec. Eng'g,
Princeton University (March 1273),

5. L. A. Belady,
for virtual storage computers,"
(1966), 78-101.

"A study of replacement algorithms
TBM Sys. J. 5, 2

6. E. G. Coffman and L. C. Varian, "Further experi-
mental data on the behavier of programs in a paging
environment." Comm. ACM 11, 7 (July 1968}, 471=474.

7. P. J. Denning and J. R. Spirn, "Behavior of vari-
able storage partitions." Computer 5Sclence Dep't,
Purdue University, TR-102 (Aug 1973).

space

real
time

task

W executing

task

:j waiting

Ea P 7
W A ’ ’ /
; Z Z
A A, . NZ 07
0 10 20 30 40 50 60 70 80
Regime T
7
j LW q %
| 7 77 77, 4 n-
¢ 10 20 30 40 50
Regime IT
N R/
A 20wty
Q 10 20 30 40 50 60 70 BO S0
Regime ITT
REGIMES
Memory Fault Execution M I 1x ITI
Size x Rate Interval Sasures
{pages) £{x) 1/£(x) 1. R time eff, syst 0,65 0,69 0.55
2. R time mem, task 2.0 2.0 1.5
1 1.00 1 3. V time mem, task 2,0 2.6 2.0
2 0.50 2 4, V time flts, task 0.50 0.33 0.58
3 0.17 6 5. R time flts, syst 0.324 0.23 0.318
Fig. 1. Example.
S S T S S Tir
i i o i ot
i1 i2 i3 Ay
tl t2 t3 tj tj+1 tr tr+1
! : X
Pig. 3. One task under variable partitioning.

78

el(Vix})

R{e)

e(R(x))

el(x)
f£(x)
/ £(R(x))
vV(f)
£{vi{x))
g X N
%, R(x) V(X)) xy X, R{x) x* V(O x
(a) efficiency of a task {b) fault rate of a task
Fig. 4. Interpretation of results for n=2.
pages
a]
T A 0 0 Y U E 27
11 B Z :22 ’j Z ZzRZ i 77 W 72 ’: i “ .
10 20 30 40 50 &0 70
Regime T
4]
3. /
2] ////
11 VA ¥ 7 } . —
0 10 20 30 40 50 &0 70
Regime II
MEASURES FOR ONE TASK
Fig. 5 Fig. 1
Vix) 2.6 2.6
Rix) 2.3 2.0
£(R(x2) 0.40 0.30 Fig. 5. Example.
v{f) 0.33 0.33
FIVIx)) 0.30 0.30
e(Vv(x)) 0.45 0.45%
R{e) 0.43 0,34
1
1+aVvi(f) 0,43 0.43
2R(e) - 0,69
1-(1-R(e))> 0.69 -

7%

