
DYNAMIC STORAGE PARTITIONING 

Peter J. Denning 
Department of Computer Sciences 

Purdue University 
W. Lafayette, IN 47907 

Jeffrey R. Spirn 
Division of Engineering 

Brown University 
Providence, RI 02912 

Abstract: A model of paged multiprogramming computer systems using 
variable storage partitioning is considered. A variable storage parti- 
tioning policy is one which allocates storage among the active tasks 
according to a sequence of fixed partitions of main storage. The basic 
result obtained is, mean processing efficiency is increased and mean 
fault-rate decreased under a variable partition, provided that the 
curves of efficiency and fault-rate as a function of allocated space 
are concave up. 

I INTRODUCTION 

In 1967 and 1969 Belady and Kuehner published 
studies of dynamic space sharing in paged multipro- 
grammed memory systems [1,2]. These studies inclu- 
ded the then remarkable experimental observation that 
by varying the partition of memory among the active 
tasks, the processing efficiency of the system showed 
an increase in the range 10-15% as compared with the 
same system running the same tasks in a fixed parti- 
tion. The capability of the system to process a 
given set of active tasks in a given memory space 
was increased by the simple expedient of varying the 
memory partition. 

Figure 1 shows a pair of hypothetical tasks, each 
requiring 24 units of processing time to complete. + 
Both tasks ~ave the fault-rate function f(x) and the 
execution interval function 1/f(x) shown in the table; 
1/f(x) gives the expected length of the virtual time 
(i.e., computation time) interval between page faults, 
as a function of x, the memory allocation in page 
frames. It is important to note that both f(x) and 
1/f(x) are concave up. The basic system on which 
the tasks are run has a single processor, and an 
auxiliary memory which satisfies any page request 
in 4 time units. The three timing diagrams show the 
two tasks operating under three regimes: Regime I 
will be called the fixed partition, Regime II the 
variable partition; Regime III will be explained 
shortly. In Regime II, one task has 1 page, the 
other 3 pages for most of the time; there is a 

+We should like to express our appreciation to L. A. 
Belady for directing our attention so elegantly to 
the proper distinction between real and virtual time 
by the example of Fig. 1 (which he sent us), and for 
giving us permission to use the example here in 
this paper. 

changeover of memory allocations during the interval 
(32,39). The table below the timing diagrams shows 
the following measures for each regime: 

1. Real time efficiency of the system. This is 
the ratio of total processing time to the total 
real time to complete the tasks. 

2. Real time memory allocation of a task. This 
is the mean amount of memory allocated to a task 
across real time. 

3. Virtual time memory allocation of a task. 
This is computed by the formula (~ xt(x))/ 
(~ t(x)), where t(x) is the totalXvirtual time 
during which x pages are allocated. 

4. Virtual time fault-rate of a task. This is 
the ratio of the number of paging interruptions 
in a task to the total virtual time of the task. 

5. Real time fault-rate of the system. This is 
the ratio of the total number of paging inter- 
ruptions (between both tasks) to the total real 
time required to complete both tasks. 

It is important to note that Regime II has improved 
all the measures favorably; and that the mean amount 
of memory experienced by each task in its virtual 
time is increased in Regime II, even though the 
mean memory allocation in real time remained the 
same as in Regime I. 

The explanation offered by Belady and Kuehner 
for this phenomenon was based on the observed con- 
cave up property of the execution interval curve. 
In their experiments they noted that, for a p-page 
program, the mean time between page faults (using 
a first-in-flrst-out replacement rule and demand 

73 

pjd
Text Box
Denning, Peter, and Jeffrey Spirn.  1973.  Dynamic storage partitioning.  Proc. ACM SIGOPS SOSP (January), 73-79.



paging) was approximated by the curve g(x)=cx 2, where 
c is a constant depending on the program, and 
0<x<p'<p for some p'. (See Fig. 2.) The flattening 
of the observed curve for p'<x~p follows from the 
fact that execution intervals are bounded by the 
task's running time, and no page faults occur when 
ali p pages are loaded. The concave up property of 
g(x) is expressed by the formula 

g(x0-b)+g(x0+b) 
(1.1) > 2 g(x0) 

for any b and x 0 satisfying b<x~p'-b. It is evi- 
dent, therefore, that running--a~task for half its 
execution intervals with memory allocation x0-b and 
half its execution intervals with memory allocation 
x_+b will result in a mean execution interval longer 
than when the task is run for its entire execution 
in memory allocation x 0. (Figure 1 has x0=2 and 
b=l.) 

This paper extends the work described above. 
Before proceeding, we believe it important to empha- 
size a central point: the arguments to be presented 
depend crucially on making a proper distinction be- 
tween virtual and real time. If one fails to make 
the distinction properly, one can be led to apparent- 
ly strange and contradictory conclusions. In the 
case of Fig. I, for example, one can argue, "If a 
task is run for half its virtual time with memory 
x -b and half its virtual time with memory x +b, 
t~at the fault-rate function is concave up w~ll im- 
ply an increase in the mean fault rate, not the 
decrease suggested by applying the concave-up argu- 
ment to the execut%on interval function." This ar- 
gument is exact; the "contradiction" arises because, 
to implement this policy, one would have to force " 
the two tasks to operate under Regime III, which 
leaves part of the memory unused; this regime is 
clearly not one we would use in practice. The Regime 
II of Fig. 1 corresponds to running each task for 
half its real time with memory x_-b and half its 
r~al~e~ith~emory x0+b , which does al~owf~l use 
~em~ry. Regime III improved nothing but the real 
time fault rate. A simple calculation for Regime II 
shows that the mean virtual time fault rate is f=0.33 
and that f(2.6)=0.30, f(2.6) being t~efault rate were 
it possible to grant each task a fixed allocation of 
2.6 pages of memory. However, 0.50=f(2)>~=0.33, so 
that Regime II nonetheless reduced the fault-rate in 
comparison to Regime I. 

2 DEFINITION OF A MODEL 

We shall use the operator R(-) to signify the 
expectation in real time of a quantity, and V(-) to 
signify the expectation in virtual time of a quantity. 
When i~ is important to call attention to expecta- 
tions referring to a particular task i, we shall sub- 
script the expectation operations: R. and V.. In 

• 2 i . 
partlcular, R(x) and V(x) will denote, respectively, 
the mean memory allocation of a task in real time 
and in virtual time, where x is the random variable 
of memory allocation; R(g) and V(g) will denote, res- 
pectively, the mean value of a function g in real 
time and in virtual time; and R(A) will denote the 
expected real time to complete a virtual time inter- 
val of length A, i.e., containing A references. 

Let T denote the mean main memory access time 
m 

per reference in the system. Let T . denote the mean al 

auxiliary memory access time per page request of 
task i. Define the speed ratio of task i be be ai= 
T ./T . Virtual (or program) time is measured as 
al m 

the number of (virtual) address space references 
completed by a task in a given interval of real time. 
The fault-rate function f. (x) gives the rate of page 
interruptions in the virtulal time of task i, when 
the main memory allocated to it is x pages; In other 
words, 1/f. (x) gives the expected number of refer- 

i . . 
ences between two page interruptions. Note that 
l=f (0)>f (x)>f (p)=0 whenever task i contains p 

i -- --i i i 
pages, an~ 0<X< ~. . The efficiency function of a 
task i over an interval of execution containing A 
of the task's memory references is defined by 

AT 
m 

(2.1) ei(x) = R.~ 
1 

where R.(A) is the expected real time for task i to 
l 

complete A references when x pages of main memory 
are allocated to it. It is easy to show that 

(2.2) 

whence 

(2.3) 

R.(A)i = ATm+Afi(X)Tai = ATm(l+a.f.(x))l l 

ei(x ) 1 
l+a.f. (x) 

i i 

Note that e.(x) measures the effect of the speed 
reduction d~e entirely to the virtual memory mechan- 
ism; it measures the ability of the task to make 
progress in real time (neglecting queueing delays 
for the processor), and it therefore provides an up- 
per bound on the fraction of real time during which 
the task is available to use the Processor. 

For a set of n>2 active tasks, define a parti- 
tion of main memory of size M pages among the tasks 
at time t (the parameter t will always be used to 
denote real time) to be: 

(2.4) ~(t) = (Zl(t),...,Zn(t)) 

where Z.(t)>l is the block (the memory allocation) 
of pages granted to task i, for l~i<n, and 

(2.5) Zl(t)+...+Z (t) = M. 
n 

Because some of the subsequent comparisons involve 
hypothetical (i.e., not implementable) partitions 
having nonintegral blocks, we have not included the 
constraint that Zi(t) be an integer for each i. A 
partition ~(t) is a fixed partition if ~(t)=~ for 
some constant vector Z for all t in the time inter- 
val under consideration; otherwise Z(t) is a varia- 
ble partition. A special case of f~xed partition 
is the equipartition ~=(M/n,...,M/n). 

Consider a vector x.=(x~.,...,x .) where x..>l 
for l<i<n and x +...+~].=M~] By (2~) and (2.~? x j 
is a ~a~id fixer partitl~n of memory. Now, suppos~ 3 
the dynamic storage allocation policy assigns a 
sequence of partitions x~,...,x.,.., at times t~,..., 
t.,...; and suppose tha~ix.~x.--~ for j>l. By t~e j~ 
interval of allocatlon we ~ea~ ~t.,t. ~) -- i.e., 
t~e r~al ~e interval in which the ~emory is allo- 
cated among the n active tasks according to the 
partition x,. For l<~<n, therefore, x.. is the 
amount of ~mory all~ted to task i in]the j~ inter- 
val of allocation. The random variable x. denotes 

1 

74 



the main memory allocation of task ; it takes on 
values in the sequence xil,xi2 ,... ,xij, .... 

For any such dynamic partitioning policy, we 
shall assume that each interval of allocation is of 
sufficient duration that the fault rate function 
and efficiency function of each task i converge to 
the respective functions f. and e i. As noted ear- 
lier, the experiments of Bellady and Kuehner appear (3.3) 
to indicate that this assumption is not restrictive 
in practice. 

Our subsequent results concerning increases in (3.4) 
efficiency for a given set of active tasks in a gi- 
ven memory of size M under a variable partition will 
depend on the assumption that the f and e functioh~s 
of each task are concave up in the range of memory 
allocations under consideration. A function g is (3.5) 
said to be (strictly) concave up in an interval 
(u,v) if for every choice of x~ ,...,x in (u,v) and 

• n 
every choice of a set of welgh~s w~ ,...,w such that 
w +...+w =I and 0<w <I for i<i<n. ~t is true that 
1 ,. i ----" 

n n 

(2.6) Z wig(x i) > g(~ wix i) • 
i=l i=1 

This definition is equivalent to the earlier one (3..6) 
(1.1), and is more convenient to work with. A func- 
tion is said to be concave down if the inequality 
in (2.6) is reversed. The function e(x) typically 
is concave up for 0<x<p'<p in a p-page program, the (3.7) 
value of p' being closer to p as the speed ratio 
gets large [1,2,3,4]. The function f(x) typically • 
is concave up Yor 0<x~p in a p-page program [4,5,6]. 

3 ANALYSIS OF SIMPLE VARIABLE PARTITION SYSTEM 

Consider a set of n active tasks operating under 
a variable partition policy which induces the se- 
quence of partitions x~,...,x.,.., of M as described 
earlier. We shall in~stiga~ the behavior of this 
system for a finite interval (t~,t ~) where r>l, 

• . ± +i 
and in which x.~x. ~ for l<i<r. ~e shall assume 

-- -- +i ° 
that each allo~at~on interval (t.,t. ~) is suffici- 
ently long that the fault-rate a~d ~iciency func- 
tions of each task i converge to the functions f. 
and e.. This system will be called the simple v~ri- 
able partition (SVP) system, because queueing delays 
(experienced by tasks waiting for the processor) and 
swapping delays (experienced by tasks when the chan- 
ges in partition x~ to x are inconsistent with 

-- +1 
demand paging) wi~ be ignored. Swapping delays 
will be accounted for in Section 4. 

Consider a particular one of the tasks, i: for 
l<'<r~.3_ let x..i and A i. denote, respectively, its 
memory alloc~tion and the virtual time it completes 
in the jtb allocation interval (t.,t. ~). (See Fig. 

• + 

3.) The total virtual time and ~ea~ ~ime for task i 
in the interval (tl,tr+ 1) are, respectively, 

r 
(3.1) A. = ~ Aij 

J=1 

(3.2) T 
r 

j=l 
R(Aij)- 

It is especially important to realize that the expec- 
ted real time of each task in each allocation interval 
(t.,t. ~) is the same, since these intervals are com- 
mob t~+ill the tasks; thus R(Ai.)=R(~.) for l<i<n, 
l~k<n, and 15j~ro The mean vi~ual and real t~m~ 
memory allocations for task i are, respectively, 

Vi(x i) = ~ xij 
3=I i 

r R(A) ij 
Ri(xi) = j~=1 T xij" 

The mean real time efficiency of task i is, 

Ri(e i) = Ai/T. 

Define x:, the effective memory allocation of task i, 
1 

to be the value of x. for which e.(x.)=R.(e.); thus 
.l l 1 l the task would have %he same efficiency in a fixed 

partition which allocated it x: pages. The mean 
virtual and real time fault rates for task i are, 
respectively, 

Vi(fi) = j~=i ~ fi(xij)i 

r A. • 

R.(f ) = ~ -~- fi(xij). i j=l T 

[In (3.7), note that A..f.(x..) is the expected hum- 
3 l bar of faults in the j~ a~loc~tion interval.] The 

assumptions that each function e. and f. is concave 
i . i . up over the range of memory allocations used in the 

partition sequence can he used to establish the 
results (3.8)-(3.15): + 

1 i 
(3.8) Ri(e i) = = e.(x?) = 

l+aiVi(f i) 1 l l+a.f.(x~) i i l 

(3.9) Vi(x i) > x?1 > Ri(xi) 

(3.10) ei(Vi(xi)) > Ri(e i) > ei(Ri(xi)) 

(3.11) fi(Ri(xi)) > Vi(f i) > fi(Vi(xi)) 

(3.12) Vi(f i) > Ri(f i) 

The partition R=(Rl(Xl),...,Rn(Xn)) is a valid parti- 
tion of M: 

(3.13) Rl(Xl)+...+Rn(X n) = M. 

+The proofs of these relations, which involve apply- 
ing the defintion of concave-up function (2.6) to the 
defintions (3.1-3.7) are omitted here. See [7]. 

75 



An approximation for the total system real time pro- 
cessing efficiency is 

(3.14) e 
n 

1 - T~ (1-Ri(ei)) - 
i=1 

Finally, the total system page fault rate is 

(3.15) 
n n 1-Ri(e i) 

~ Ri(fi) = ~ a. 
i=1 i=l l 

The results (3.8)-(3.11) are illustrated in 
Fig. 4 for n=2 and the partition sequence (x~,x_), 
(x_,x.). The important point to note from t~isZfig- 

2 1 
ure and from (3.10)-(3.12) is that the variable par- 
tition causes each task i to operate at hi@her effi- 
ciency and lower fault rate than it would in a fixed 
partition in which it was allocated space Ri(x i) . 

As has been noted, the conditions assumed for 
(3.8)-(3.15) do not correspond exactly to those 
which would prevail in a real system, since the anal- 
ysis fails to account for delays experienced by 
tasks queueing for the processor. Figure 5 shows 
Regimes I and II redrawn for the Fig. 1 tasks under 
conditions corresponding exactly to those used in 
the SVP model. Because there are no queueing delays 
in Fig. 5, each task completes sooner; thus R.(x.) 

• l l and R. (e.) from SVP are too large, which Introduces 
l 1 

errors i~to the SVP estimates for f (R.(x.)) and 
e.(R.(x.)). Also, relation (3.8) h~ids I folr Fig. 5 
1 1 1 

but not for Fig. 1. It should be noted that the 
approximation (3.14) giving the total system effi- 
ciency does work well for the tasks of Fig. I, be- 
cause in this case the tasks are identical (in 
Fig. 1, the total efficiency is 2R(e)). However, 
except for (3.8) the above relations do hold quali- 
tatively. These results are of course exact when 
there is one processor available for each task; 
and they will serve as a good approximation when pro- 
cessor queueing delays are small compared to page 
wait times, or when the processor scheduling pol- 
icy tends to make the total delay between task exe- 
cution intervals the same in all tasks. 

Relations (3.8)-(3.12) can be used to compare 
the efficiency of the SVP system with three (hypo- 
thetical) fixed partition systems: 

1. Mean real time memor[ allocations, ~= 

(Rl(Xl),...,Rn(Xn)). 

2. Effective memor[ allocations, ~'= 
..... 

3. Mean virtual time memory allocations, V_~ 

(Vl(Xl),...,Vn(Xn)). 

These partitions are in general infeasible, since 
their blocks are not necessarily integral numbers 
of pages. Relation (3.10) tells us that the SVP 
system increases processing efficiency over the 
fixed partition ~, and the fixed partition ~ has 
higher processing efficiency than the SVP system. 
Similarly, the partition X" would perform the same 
as the SVP system. The utility of the fixed parti- 
tions ~ and ~" is, the t-partition provides an up- 
per bound on the improvement of the variable parti- 
tion system, and the ~'-partition provides a fixed 
partition equivalent to the variable partition. 

A further interpretation of (3.8)-(3.12) is the 
following. Suppose S=(sl,...,s _) is a given fixed 
partition, and we art abIe to fend a sequence of 
partitions x~,...,x and a SVP system for which 
~=~; then w~iknowt~at the SVP system will provide 
higher efficiency (relation (3.10)) and lower fault 
rate (relations (3.11) and (3.12)) in each task than 
the fixed partition system using S. Moreow~r, if 

happens to maximize the figure of merit 

el(sl)+'''+en (sn) 

which represents the expected number of processors 
that could be fully utilized by the active tasks, 
then any variable partition system in which R=S 
will increase this figure of merit and would there- 
fore improve over the best fixed partition system. 

We have not investigated how to find a SVP sys- 
tem such that --_R=S for some given arbitrary ~. If, 
however,~ is an equipartition, an answer is easily 
obtained. Define a round robin partition to bed 
SVP which cycles a set of memory sizes x ,...,x 
among the tasks using equal real time in~ervalsnof 
allocation -- i.e., R(A_.)=T/n. + Other cases in 
which round robin partitions will improve over 
equipartitions include the case of n identical tasks 
where the length of the allocation interval is de- 
termined by the passage of K page faults, or by K 
units of virtual time, in the task having the lar- 
gest memory allocation (K is a parameter). This 
corresponds very closely to the experiment reported 
by Belady and Kuehner, and thus corroborates their 
observation. 

4 SWAPPING EFFECTS 

The foregoing analysis has not accounted for the 
possibility that the partition sequence induced in 
a SVP system is inconsistent with demand paging -- 
e.g., memory allocations are changed at non-page- 
fault times, or a task's new allocation differs in 
size by more than one page from its previous allo- 
cation. Thus with two tasks, for example, it is 
possible to conclude that the partition sequence 
(0,M)(M,0) repeated indefinitely by a round robin 
partition -- which corresponds to a pure swapping 
strategy -- would maximize the gain in efficiecy, 
R.(e.)-e.(R.(x.)). That this need not be so can 
b~ e~tab~is~edlby correcting our previous analysis 
for the effect of swapping. Let F. denote the 
effective number of page faults induced in task i 
by swapping in the time interval (t~,t ~) under 
consideration. The actual efficiency ~ this 
task is thus 

A i A i 
(4.1) RT(e.) = ( 

l l T+a.F. 1-qi)-~ 
ll 

where 
aiF i 

qi T+a.F. " 
ll 

+To put this more precisely, let x=(x~,...,x ) be a 
valid partition. Define the permutation operator P 
such that P(x)=(x^,...,x ,x.); define also pk(x)= 
p(pk-l(x)) fur k>~. onenpo~sible round robin par- 
tition would use the partition sequence x ,...,x 
cyclically, where x.=pj-l(x)_ for l<~<n; ~other -n 
would use the sequ;~ce ~,...,~n,X ,...,~ 1. 

76 



In (4.1), q. is the fraction of time during which 
l swapping r e n d e r s  t h e  t a s k  i d l e .  S ince  R . ( e . ) = A . / T ,  

• l 1 
Our previous results permit us to conclude only 

that. . R~(e.)=(1-q.)R.(e.)l i. 1 l l > (1-qi)ei(Ri(xi))' whence 
it ms possible for 

(4.2) ei(Ri(xi)) > R'~(e')m l > (1-qi)ei(Ri(xi))" 

Evidently, the maximum amount of swapping which can 
be tolerated in the interval (t. ,t . ) corresponds 

R ± r to the larges q. for which e.( .(x.T~<(1-qi)Ri(ei) , 
• l i .l 

whlch is equivalent to the condltlon 

( 4 . 3 )  qi -< 1- 

e . ( R . ( x . ) )  
3. 3.. ._ 

R . ( e . )  i I  

A proposed SVP system using swapping would have to 
be evaluated against (4.3) to determine if in fact 
a gain of processing efficiency would result. 

5 CONCLUSION 

The simple variable partition (SVP) system model 
considers an arbitrary sequence of valid )artitions 
induced on a multiprogrammed memory shared by the 
active tasks. Under the assumptions that the effi- 
ciency and fault rate functions both are concave 
up -- assumptions which the Belady and Kuehner ex- 
periments indicate are restrictive in practice -- 
the SVP model predicts an increase in real time 
processing efficiency and in virtual-time memory 
allocation in each task, compared with a fixed par- 
tition in which each block's size is the same as 
the corresponding mean block size in the variable 
partition. The SVP has two limitations: it fails 
to account for possible losses of efficiency, due 
to swapping induced by the variable partitioning 
scheme and to queueing of active tasks for the pro- 
cessor. The first limitation is easily removed by 
a simple extension of the arguments. 

g(x) 

g(x0-b)+g(xo+b) 
2 % 

g(x 0) 

0 

cx2 "~/ actual 

- r  

Xo-b x 0 x O+b p '  p 

Fig. 2. Mean execution interval curve. 

The second limitation can be removed by consider- 
ing a queueing network model in which the tasks cy- 
cle between the processor and the auxiliary memory 
device, each task's service time at the processor 
being a function of the memory size allocated to it. 
Our investigations of queueing network models have 
for reasons of tractable analysis been limited to 
the rather elementary case of two identical tasks~ 
we have not completed a study to determine whether 
or not the concavity properties the model requires 
for variable partitioning to be more efficient are 
met in practice. We are also investigating how 
severe a limitation the omission of queueing effects 
from the SVP model is. Since the results are pre- 
liminary and so far are inconclusive, we have not 
included them here. 

As noted before, the SVP results are exact when 
there is one processor available for each task~ and 
they will serve as a good approximation when pro- 
cessor queueing delays are small compared to page 
wait times, or when the processor scheduling policy 
tends to make the total delay between task execu- 
tion intervals the same in each task. 

REFERENCES 

1. L. A. Belady, "Biased replacement algorithms 
i " for multiprogramm ng. IBM T. J. Watson Research 

Center, Research Note NC697 (March 1967). 

2. L. A. Belady and C. J. Kuehner, "Dynamic space 
sharing in computer systems." Comm. ACM 12, 5 
(May 1969), 282-288. 

3. W. W. Chu and H. Opderbeck, "The page fault 
frequency replacement algorithm." AFIPS Conf. 
Proc. 41 (1972 FJCC), 597-609. 

4. J. R. Spirn, "Program locality and dynamic mem- 
ory management." Ph.D. thesis, Dept. Elec. Eng'g, 
Princeton University (March 1973). 

5. L. A. Belady, "A study of replacement algorithms 
for virtual storage computers." IBM Sys. J. 5, 2 
(1966), 78-101. 

6. E. G. Coffman and L. C. Varian, "Further experi- 
mental data on the behavior of programs in a paging 
environment." Comm. ACM 11, 7 (July 1968), 471-474. 

7. P. J. Denning and J. R. Spirn, "Behavior of vari- 
able storage partitions." Computer Science Dep't, 
Purdue University, TR-102 (Aug 1973). 

77 



space 

real 
time 

task 
~executing 

task 
~waiting 

~ ~ ~1 ~ 
.1~ .~. 

10 20 30 40 

Regime I 

~ ~ ~1 ~ ~ ~ " 

50 60 70 80 

0 1.0 20 

E 

0 !0  20 

30 

Regime II 

4O 50 60 7O 8O 

k\kk % \ \\\\\\ \k ~up~u.s.e d., memory~ \\\\\\\k\ \\\ \\k\\\\ 

30 40 50 60 70 

Memory Fault 
Size x Rate 
(pages) f(x) 

Regime III 

Execution 
Interval 
I/f(x) 

1 1.00 I 
2 0.50 2 
3 0.17 6 

Measures 

REGIMES 

I II 

I. R time elf, syst 0.65 0.69 
2. R time mem, task 2.0 2.0 
3. V time mem, task 2.0 2.6 
4. V time flts, task 0.50 0.33 
5. R time flts, syst 0.324 0.23 

8O 

III 

0.55 
1.5 
2.0 
0.58 
0.318 

L 
90 

Fig. I. Example. 

! xil 

Ail 

t I 

l xi2 I 

Ai2 

t 2 t 3 

Fig. 3. 

... x.. ... 
I 1 j  j s 

13 
t .  t 3 tJ +I r 

One task under variable partitioning. 

x. 
ir 

! 
A. 
ir 

tr+1 

-1 

78 



e(V(x)) 

R(e) 

e(R(x)) 

/ 

x 2 R(x) x' V(x) x I 

~- x 

f(R(x)) 

v(f) 

f(V(x)) 

x 

x 2 R(x) x" V(x) x I 

(a) efficiency of a task (b) fault rate of a task 

Fig. 4. Interpretation of results for n=2. 

pages 

0 

• • • , • ,- - • . 

10 20 30 40 50 60 70 

Regime I 

ilmmm 
0 10 2O 3O 40 50 60 70 

Regime II 

::-- t 

MEASURES FOR ONE TASK 

Fig. 5 Fig. % 

V(x) 2.6 2.6 

R(x) 2.3 2.0 

f(R(x)) 0.40 0.50 

V(f) 0.33 0.33 

f(V(x)) 0.30 0.30 

e(V(x)) 0.45 0.45 

R(e) 0.43 0.34 
1 

0.43 0.43 
1+aV(f) 

2R(e) 

1-(1-R(e)) 2 

- 0.69 

0.69 

Fig. 5. Example. 

79 




