
Chapter 1

Shifting Identities in Computing: From

a Useful Tool to a New Method and Theory

of Science

Matti Tedre and Peter J. Denning

Abstract Following a number of technological and theoretical breakthroughs in

the 1930s, researchers in the nascent field of automatic computing started to

develop a disciplinary identity independent from computing’s progenitor fields,

mainly electrical engineering and mathematical logic. As the technology matured in

the next four decades, computing emerged as a field of great value to all of science

and engineering. Computing’s identity as an academic discipline was the subject of

many spirited debates about areas of study, methods, curricula, and relations with

other fields. Debates over the name of the field and its relations with older academic

departments occupied many hours and journal pages. Yet, over time computing

revolutionized practices, then principles, of science and engineering. Almost every

field—not just science and engineering, but also humanities—embraced computing

and developed its own computational branch. Computing triumphed over all the

doubts and became the most important player in science today.

1.1 Introduction

Computing has come to pervade every sector of life. Everyday citizens want to

know if it is really true that advanced automation will take their jobs, and whether

some outcomes of computing research, such as artificial intelligence, are danger-

ous. Educators want to know what their curriculum should say about computing or

what is meant by popular terms like “computational thinking”. Researchers want to
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know whether computing can help solve problems in their fields and whether

computer scientists who join their teams are peers or just programmers. Students

want to know what they would study in computing and what kinds of jobs might be

available to them. To give a context for any answer to these concerns, we propose to

examine what is computing as a discipline and where it comes from.

Some of us might think that computing as an academic discipline began in the

1990s with the World Wide Web, or in the 1980s with personal computers and

networks, or in the 1970s with the microchip and Internet, or in the 1960s with time

shared operating systems. Others point to the automatic computing projects started

in the 1940s by the military as the beginning, as well as the advances in mathe-

matical logic in the 1930s. It is not easy to pinpoint an exact beginning for

computing and computer science. In fact, computing in the sense of calculating

numbers has been a human concern for thousands of years.

For millennia, merchants, engineers, and scientists have relied on mechanical

instruments to calculate numbers. Tools like the abacus have been with us for as

long as historians can see. Mathematicians have produced many clever methods

(today called algorithms) for calculating numbers. Some methods eventually were

embodied into machines. In an explosion of interest in the 1600s, Pascal invented a

simple machine for calculating sums and differences, and Napier invented the

logarithm for multiplying numbers fast. The Pascal machine was the first in a

long line of machines that became ever better at helping merchants, leading up to

marvels such as the Marchant calculator in the 1920s, which with many gears and

levers could add, subtract, multiply, and divide. The Napier logarithm initiated a

long line of slide rules that were the most popular computing instrument among

engineers and scientists for the next 300 years—until 1972 when the Hewlett

Packard pocket digital calculator made the slide rule obsolete.

In the middle of these ancient currents, Charles Babbage proposed to the British

government in the 1820s that he could build a machine—the Difference Engine—

that would calculate numerical tables error-free. He noted that many shipwrecks

were the result of errors in hand-calculated navigation tables. Alas, his machine

demanded greater precision in lathing the gears and levers than the technology of

his day could achieve. Dissatisfied by his inability to produce a working machine,

the government cut off his funding in the 1830s. In his frustration with the obstacles

in getting the Difference Engine finished, he started designing the Analytical

Engine, a new machine with fewer parts that would be programmable and more

versatile than the Difference Engine. He collaborated with Lady Ada Lovelace,

Lord Byron’s daughter, who designed algorithms for the Analytical Engine. She

became known to history as a “programmer” of the first general-purpose computer,

albeit the machine was a hypothetical one. However, Babbage was unable to get

much funding for the machine and the project died with him in 1871.

Development of all kinds of computing instruments continued. In the early

1900s the US government developed an interest in machines for fire control of

weapons. It sponsored projects including Vannevar Bush’s Differential Analyzer at
MIT in the late 1920s for solving differential equations. In the 1930s governments

in Germany, UK, and US developed sophisticated electronics for radar and
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networks of radars. Some of their engineers became interested in whether the

electronics could be used to build machines that computed numbers, resurrecting

Babbage’s dream. Around 1940, the US Army commissioned a project at Univer-

sity of Pennsylvania to build an automatic computer, ENIAC, that would calculate

ballistic tables for artillery. In those days the term “computer” named individuals

whose profession was calculating numbers, and the “automatic computer” replaced

slow error prone human computers. In 1945 a small group of computer designers

led by electrical engineers Eckert and Mauchly and mathematician von Neumann,

proposed a design for an electronic stored program computer. The first of these was

working by the end of the 1940s and the computer industry was born in the 1950s.

By then it had been 80 years since Babbage dreamed of a programmable computer.

One of the great ironies of the computer is that, owing to the complexity of

computer systems, it is extremely difficult to ensure that a machine will, even in

theory, compute its numbers correctly. Thus the machines Babbage dreamed about

turned out to be prone to errors, like the human processes they were to replace. The

biggest challenges in computing today continue to be the design of reliable and

dependable computer hardware and software.

By 1960 computer science had become a common name for the new field of

automatic computation, and academic departments were formed to gather faculty

and educate students. In the early years universities resisted the formation of the

new departments because computing looked like a technology field without a

pedigree. There were endless arguments and debates over the years about whether

computing is a legitimate field of science and engineering, and if so, what is its

subject matter. Our purpose here is to explore some of these debates and show what

identity has emerged in the 80 years since the first electronic digital computers were

built. What has emerged is a strong, principled field, which some argue has the

status of a new domain of science alongside the traditional domains of physical,

life, and social sciences. Let us tell you this story.

1.2 The Birth of a Discipline

A major impetus to computing’s emergence as a discipline was given in the

late 1940s and early 1950s by a change in computing’s status in universities.

Many academic pioneers, who were not called computer scientists at the time

because there was no such field yet, played important roles in technical innovation

in computing. They included, for example, Bush at MIT, Atanasoff and Berry at

Iowa State University, Aiken at Harvard, and Kilburn andWilliams at University of

Manchester (Aspray 2000). But after the World War II, hardware research and

development moved quickly to private companies’ laboratories; academic comput-

ing people were faced with increasing demands to train future computer program-

mers and engineers. Some universities started to offer courses and degrees in

computing in the late 1950s. Still, computing pioneers had to justify their work as

a new field that overlapped greatly with mathematics and electrical engineering and
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to withstand pressure from academic administrators who wanted computer science

to be a branch in one of the existing departments.

Computing’s place in the academic world was uncertain at the beginning. In its

early days, computers were seen as tools for numerical calculation. A community of

mathematicians called numerical analysts devised algorithms for mathematical

functions that would not succumb to round-off errors from the machine’s use of

finite registers to represent real numbers. Engineers worked on making the machin-

ery faster, smaller, more reliable, and cheaper. The job of software design was often

left to the numerical analysts, who designed the bulk of software used for scientific

and engineering computing. Some business schools also entered the fray with

groups that designed software of use in companies such as accounting and tabulat-

ing systems.

For nearly four decades after the first electronic computers were built, the people

involved were almost all primarily occupied with getting the technology of com-

puters and networks to work well. Despite astounding progress with the technology,

the academic field of computing remained an enigma to outsiders in established

fields of science and engineering: depending on the observer, it looked much like

applied mathematics, electrical engineering, industrial or business applications, or

applied science (Denning and Martell 2015). From this diversity arose a perennial

question: who should own computer science? The School of Science, which housed

Mathematics, the School of Engineering, or even the School of Business?

Even more, should computer science be a division of an existing department or a

new department?

It is no surprise that the early discussions about organizing the new field were

filled with debates about what to name the field (Tedre 2014). Some name sugges-

tions (of which some were less serious than the others) emphasized the field’s
theoretical elements: Turology, comptology, algorithmics, hypology, and comput-

ing science. Others emphasized computing’s technical aspects: Computer science,

computerology, technetronics, and computics. Some names, like datalogy and

informatics, called attention to the “material” that computers process. Others, like

intellectronics, bionics, autonomics, cybernetics, and synnoetics, called attention to

the field’s interdisciplinary and societal nature. Yet others, such as Turingineering,

attempted to combine theory and practice into one. Although names create strong

impressions of a field’s research agenda—its driving questions, research outputs,

methodology, valid interpretations of results, and place among other disciplines—

names never capture the richness of any field and many fields have evolved well

beyond what their names suggest (Knuth 1985).

The intensity of interest in computing and of the debates about computing

strongly motivated computing people to form societies and professional organi-

zations early. In 1946 the American Institute for Electrical Engineers (AIEE)

founded a society for computing professionals. The next year 78 people convened

at Columbia University in New York to found the Eastern Association for Com-

puting Machinery, today known as the ACM. In 1951 the Institute of Radio Engi-

neers (IRE) started another professional group for computing, which after mergers

between AIEE and IRE, became the IEEE Computer Society (Tedre 2014).
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A division between engineering oriented members of AIEE, IRE, and IEEE and the

more mathematically oriented members of ACM emerged early: the ACM focussed

more on theoretical computer science and applications, while the engineering

associations focussed more on standards, hardware, and technological issues. In

addition, a variety of communities of different sizes and foci emerged at a rapid

succession and in different countries, each providing to different groups of pro-

fessionals and academics (Ensmenger 2010).

In the 1950s there was a broad realization of computing’s value to science,

engineering, business, and various other sectors (Akera 2007). Industry looked to

academia to provide computing education for graduates who would be qualified for

the rapidly-growing computing sector. Yet, despite generous support from private

companies, universities were slow to start computing education (Ensmenger 2010).

Many academic computing people, who worked in different departments, found

themselves in weak positions: computing lacked independent student and staff

quotas, faculty billets, budgets, computing centers, leverage in university politics,

and representation in national or international boards (Tedre 2014). There were few

directed grants for computing, and research funding agencies such as the National

Science Foundation in the US had no computing-specific research programs. In

short, computing had a very weak identity. And yet there was a growing desire for

independence (Tedre 2014).

1.3 The Quest for Independence

Arguing for independence was a dilemma in its own right. Computing’s original
cornerstone ideas originated from insights by mathematicians, logicians, scientists,

and electrical engineers. Mathematicians and scientists described numerical

methods that solved differential equations in small, discrete steps, thus showing

that computing opened new doors for scientific discovery based on simulation of

mathematical models. Logicians contributed the ideas of representing data and

algorithms as strings of symbols in languages; the idea of a universal system that

could compute anything any other system of computation could; and the idea that

data could be reinterpreted from representing numbers to representing algorithms.

Electrical engineers contributed circuits that performed basic arithmetic and that

sequenced the operations of an encoded algorithm; they provided means to combine

these many circuits into full-blown computers; they discovered that binary repre-

sentations were easy to generate and led to the most fault tolerant circuits; and they

discovered how to use clocks to avoid the devastations of race conditions.

Because these insights originated in the expertise of different fields, arguing that

computing was a new field was a tough challenge. Academic advocates of computer

science found themselves in the unenviable position of arguing that while it shared

aspects with mathematics, logic, science, and engineering, computing was not

reducible to those fields. They also had to argue that computing was not merely

technology—at the time technology departments were not well regarded in many
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academic institutions. The most well known example of an argument that tried to

walk this tightrope came from Newell, Perlis, and Simon in 1967 who said that

computer science studies phenomena surrounding computers (Newell et al. 1967).

There were many critics of this argument, mostly around the belief that only studies

of natural phenomena can be science, but computers were artifacts. This critique so

irritated Herb Simon, a Nobel Laureate in Economics, that he wrote a book Sciences
of the Artificial (Simon 1969), which demonstrated that many other established

sciences already accepted human constructs as part of their phenomena.

For these reasons, early computing departments started in places of safe refuge

in their universities. Those who were most interested in building and studying

hardware did so within electrical engineering departments, sometimes forming a

computing division of their departments and sometimes adding “computer” to their

titles, as in the Electrical and Computer Engineering (ECE) departments that sprang

up in the late 1960s. Those who were most interested in computational methods did

so within a mathematics context. For example, Purdue founded the first computer

science department in 1962 in the Division of Mathematical Sciences in its School

of Science. Each university placed computer science in whatever existing school

(engineering or science) would protect and nurture it. Within 20 years there were

over a 100 Ph.D.-granting computer science departments in the United States and

Canada. Yet, the founding of those departments was an intensely political process

in the universities (Tedre 2014).

The process of placing new computer science departments in hospitable envi-

ronments of their universities led, not surprisingly, to an intensification of the

debates over the roles of the three roots (engineering, science, and mathematics)

in the identity of the field. Some founders such as McCluskey at Princeton, Aiken at

Harvard, and Wilkes at the University of Cambridge, believed that the primary

work of the field was constructing hardware and software, which they regarded as

an inherently engineering task. Some founders, such as Newell, Perlis, and Simon

mentioned earlier (Newell et al. 1967), and Forsythe at Stanford (Forsythe 1968),

argued that computer scientists should develop an empirical approach. Some,

such as McCarthy (1962) and Hoare (1969), advocated a thoroughly reductionist

view of computing that was like theoretical physics, where computing was reduced to

axiomatic, mathematical, and purely deductive science.

In 1989 a committee of the ACM and IEEE, led by Peter Denning, sought to

reconcile these three views by integrating them into a “theory–abstraction–design”

model (Denning et al. 1989). The three historical roots of mathematics, science, and

engineering contributed important paradigms to the way computing was done, and

from their blend emerged the unique field of computing. They recommended using

the term “computing” for the field rather than “computer science and engineering”,

and the name stuck. The Europeans had been using the term “informatics” in the

same way and did not change from their established usage. The ACM/IEEE unified

view helped, for its part, to pull the field back from two controversies—software

engineering and computational science—that nearly split the field in the 1980s and

1990s. We will discuss these controversies shortly. About 20 years later, Denning

and Freeman noted that the controversies had settled and they articulated a unique
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paradigm for computing that had emerged from the blend of the three root para-

digms (Denning and Freeman 2009).

Paradoxically, even though academics tried to distance themselves from com-

puting technology, it was the exponential advance of computing technology,

captured by the statement of Moore’s law, that opened the space of possibilities

for computing to be accepted under its own identity. Every 10 years, chip makers

accomplished the amazing feat of increasing the speeds of their chips by a factor of

30 with no increase of size or cost. That meant that computing kept expanding its

reach as algorithm designers and engineers invented ingenious ways to automate

tasks that only a decade before seemed impossible. On top of this, more and more

things were converted into digital representations, meaning that computers came to

be able to manipulate almost any information in the world. By the late 1990s, it was

clear that computing is indeed a unique phenomenon and requires an independent

discipline that aims to understand and harness that phenomenon.

1.4 Search for Disciplinary Identity

In search of the field’s disciplinary identity, computing pioneers started to investi-

gate their field’s foundations. To start with, all academic fields of science and

engineering like to define what they study with a pithy phrase. For example, physics

studies the nature and properties of matter and energy. Chemistry studies the

nature of substances and their interactions and bonding. Biology is the study of

living organisms. What does computing study?

Some earliest proposals—especially that computer science studies computers—

were rejected by many scientists who did not see computers as a natural pheno-

menon and who thought that technology developments in digital electronics did not

merit an academic department. Similar, the argument that computer science is the

study of phenomena surrounding computers (Newell et al. 1967), although widely

quoted among people in computing, did not sell well with other academic

departments.

A new argument that “computer science is the study of algorithms” began to

emerge in the late 1960s. The idea was that programs are actualizations of algo-

rithms to control machines. Even though the machines and executable programs are

physical artifacts, algorithms are abstract mathematical objects that map inputs to

outputs, and they can be analyzed formally, using the tools of mathematics. A

strong impetus for this argument came from Donald Knuth, whose books The Art of
Computer Programming developed rigorous analysis of algorithms and became

very popular and influential. Another influence was Edsger Dijkstra, who coined the

term “structured programming” for his methods of organizing programs (Dijkstra

1972). These pioneers articulated a vision of a programming as an elite, if not noble,

calling that required great skill in mathematics, logic, proof, and design to formu-

late, analyze, and demonstrate great algorithms. They helped to put the algorithm at

the center of computing.
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Because pragmatic algorithm design most often involves programming, the

algorithm-centric movement became known—right or wrong—to many as the

“CS ¼ programming” movement. Programming was seen to be the central activity

of computer science, and the notion of mathematically oriented elite programmer

became the educational goal of many computer science departments. But there

were problems with this algorithms-oriented interpretation of the field, too. One

was that it often ignored a large segment of the field that was involved in the

architecture of computing machines and systems, such as instruction set design,

operating systems, databases, graphics, and artificial intelligence. These specialties

shared an engineering tradition whereby system builders and software developers

constantly evaluate trade-offs in their search for systems that work. The idea of a

trade-off did not fit with the idea that algorithms should have precise specifications

and be provably correct.

Another problem with the algorithms-oriented interpretation was that, at least in

the US, government labor departments did not understand it or agree with it. When

they finally added the category “programmer” to their official lists of occupations,

they defined a programmer as a fairly low level coder, someone who translates an

algorithm design into a working machine code. The official public definition was a

small subset of the noble view of programmers held by many pioneers of the field.

Computer scientists argued against the programmer-as-coder view for years to no

avail, meanwhile continuing to use the term programmer in the way that they

wished it to be understood. This produced a large gap of misunderstanding between

the general public and working computer scientists, which contributed to an identity

crisis that strengthened around 1980 and took another two decades to resolve. That

identity crisis surfaced in many ways and it fueled three crucial debates about

computing—about experimental computer science, software engineering, and com-

putational science.

Conflicts around experimental computer science became apparent in the late

1970s, and, for various reasons, they manifested first with issues with computing

workforce (Feldman and Sutherland 1979). Many faculty members in computer

science departments with systems expertise—such as computer architects, operat-

ing systems engineers, and graphics experts—were receiving lucrative offers from

industry laboratories to join them. This created a “brain drain” that depleted

systems faculty. It compounded the problem that many departments were strongly

under the mathematics influence and looked to prolific publishing in theoretically

oriented journals as a primary measure of academic impact. Systems developers,

whose work involved a lot of experimental design and development, published

fewer papers and their colleagues did not regard their design solutions and software

as legitimate forms of publication. For many systems developers, who faced a hard

time gaining tenure, the choice was easy when industry labs offered them positions

at twice the salary.

This imbalance troubled many leaders of ACM, IEEE, and industry. They

looked for the computer science departments to educate people in computing and

prepare them for the workforce, but industry sought much more systems emphasis

than the mathematically inclined departments were offering. Jerry Feldman of the
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University of Rochester and his team published a report documenting what they

called the “experimental computer science crisis.” They called for help from the

government, especially the US National Science Foundation (NSF) (Feldman and

Sutherland 1979). Over the next 2 years the assembly of CS department chairs

issued its own “Snowbird Report” on the crisis (Denning et al. 1981), and the ACM

executive committee highlighted the crisis and discussed the nature of experimental

computer science (Denning 1981; McCracken et al. 1979). The groundswell of

community support around these reports led the NSF to create a program called

CER (coordinated experimental research) and to fund a proposal to build the

CSNET (the ARPANET-inspired network among all CS departments and

research labs).

Although the crisis was readily acknowledged and actions taken, there were

recurring issues with experimental computer science itself: What does experimental

computer science, strictly speaking, mean? Although the mathematicians of the

field would not be expected to have much interest in experimental methods, the

engineers would. However, most of the engineers of the early days were so focused

on getting technology working that they had a different notion of experimentation

from traditional scientists. Engineers used the term more in the sense of “tinker-

ing”—a search to find implementations of systems that worked. Traditional scien-

tists think of experiments as means to confirm hypotheses by setting up an apparatus

to generate data. These differences of terminology contributed to a sense of

vagueness about what experimental computer science is (Tedre and Moisseinen

2014)—was it proof-of-concept, product testing, comparisons of implementations,

or controlled experiments? Moreover, after the Feldman and Snowbird reports

(Feldman and Sutherland 1979; Denning et al. 1981) the matter of experimental

computer science got politicized, which further hindered its adoption (Tedre 2014).

But despite terminological wrangling, the efforts to acknowledge computing’s
unique ways of working gradually produced a more tolerant attitude in academic

tenure committees toward design-oriented experimental system research, and the

experimental computer science crisis abated by the late 1980s.

Secondly, the software engineering aspects of computing’s identity crisis were

the outgrowth of a new movement begun in the late 1960s to establish a subfield

called software engineering. A group of concerned experts from academia, gov-

ernment, and industry convened at a NATO conference in 1968 to decry the

expanding “software crisis” and develop an engineering approach to contain it

(Naur and Randell 1969). One aspect of the software crisis was that software

systems were getting ever larger and more complex, and thus less reliable and

dependable, creating many safety and economic hazards. The NATO group called

for an engineering approach to developing software, arguing that engineers had

mastered the reliability and safety issues in many other fields. This drew many

academic departments into the work of defining the software engineering field and

designing curricula to teach it.

Despite substantial progress in the next 20 years, software engineers had not

tamed the “software crisis”. In 1987 Brooks published a famous assessment of

software engineering, “No silver bullet” (Brooks 1987). He claimed that a wide
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variety of technologies had been developed to help software developers—such as

new languages, visualization methods, and version tracking systems—but these

were addressing low-hanging fruit and not the hardest problem of all, which is to

gain an intellectual grasp of the system and its components. Much software

engineering research and education has since concentrated not only on tool devel-

opment and use, but also on the intellectual disciplines needed to deal with the

complexities of systems.

Software engineers soon clashed with the more traditional computer scientists

who sought mathematical rigor. Some of these debates got so heated that frustrated

software engineers such as David Parnas called for software engineers to split off

from computer science and set up as a separate, new software engineering depart-

ment in the School of Engineering (Parnas 1998). As software engineering matured

and understanding of computing’s constructive character developed, this contro-

versy also settled down and most computer science departments took software

engineers on board.

The third debate centered around computational science. It was much more

challenging. Unlike the other two it was not an internal clash among computer

scientists; it challenged the relationship between computer science and other

sciences. In 1982, Ken Wilson, a theoretical physicist, was awarded the Nobel

Prize for his work on a computational method he invented called “renormalization

group”, which yielded new discoveries about the nature of phase transitions in

materials. He began to advocate that all of science could benefit from computational

methods implemented by highly parallel supercomputers. He articulated “grand

challenge problems” from different areas of science that would be cracked with

sufficient computing power. He and others advocated that computation was a new

method of doing science alongside the traditional theory and experimental methods.

They challenged computer scientists to join with them to help build the systems and

work out the methods that would solve grand challenge problems. They started a

movement that accumulated considerable political momentum behind its focus on

“big science” and was culminated in 1991 by the passage of the High Performance

Computing and Communication (HPCC) Act of the US Congress. Many fields of

science and engineering started to set up “computational” branches.

The computational science movement was a real challenge for computer scien-

tists, many of whom were troubled with the idea that advances in science from

supercomputers seemed to be more valued politically than advances in algorithms

and computing theory. Some computer scientists stepped up to join grand challenge

teams, only to find that the scientist team members viewed them mainly as pro-

grammers rather than full-fledged team members. Wilson and others became

exasperated with the reluctance of computer scientists to participate and began

calling on Deans of Science to establish new departments of computational science

in their universities. Many computer science leaders saw that such a bifurcation

would be a disastrous schism in computing and worked hard to avert it. The US

NSF established a program in HPCC that enticed many computer scientists to join

in computational science projects on the stipulation that they be part of cross

disciplinary teams.
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By the late 1990s these crises were past. Computer scientists had developed

much more compelling articulations of what they do and how they could collabo-

rate with other fields. Many others were taking the field much more seriously. The

calls to “fold computer science back into the fields of its roots” faded.

1.5 Emergence of a Science

Just as the old controversies were settling a new challenge to computing’s identity
began to appear. There were a growing number of references to “natural comput-

ing”, meaning computational processes in nature. One of the influential pioneers

was Nobel laureate David Baltimore, who claimed that biology had become an

information science (Baltimore 2002). Others argued similar things for economics,

physics, chemistry, cognitive science, and other fields in the physical, life, and

social sciences (Kari and Rozenberg 2008).

The rapid emergence and development of natural computing is an amazing turn-

around from the 1960s, when Simon argued that computing is a science even if it

studies artificial phenomena, and when many others believed that the field of com-

puting is fully reducible to mathematics. Today scientists in other fields are saying

that their fields include information processes that occur naturally. They are telling

computer scientists, “We have information processes too!” This shift has led to a

new definition of computing as a discipline as the study of information processes,

both artificial and natural. This definition is important because it shifts the focus

from the computer to information processes and their transformations. It is also a

much more inclusive definition that allows for the computational branches of

other fields, including the natural sciences.

This definition also accommodates the three intellectual traditions embedded in

computing, which we mentioned earlier—theory, design, and abstraction. The theo-

retical tradition focuses on mathematical relationships and proofs. The design

tradition focuses on the design and construction of computational circuits,

machines, systems, and software. The abstraction tradition focuses on experimental

work to test algorithms, validate software, find workable system configurations, and

support design choices; it was advocated early (Feldman and Sutherland 1979;

McCracken et al. 1979) but took many years to develop and earn a stature compar-

able to the theory and design methods. A combination of these three traditions

gained wider currency in computing when other fields acknowledged computing as

a third way of doing science and developed computational branches (Denning and

Martell 2015).

The 1980s experimental computer science debates, which brought methodology

to limelight, were supported in the mid-1990s by methodological meta-analyses,

fashionable in many other fields. Many people and research groups analyzed

journal articles and conference papers in computing and other fields in order to

describe methodology in computing and compare computing research with research

in other fields (Tedre 2014). Those meta-analyses found great methodological

differences between computing’s branches, but also revealed widespread disregard

1 Shifting Identities in Computing: From a Useful Tool to a New Method and. . . 11



of methodological rigor in computing publications. For example, in a meta-analysis

of software engineering literature, Walter Tichy found that only a small fraction of

published papers performed experiments that would validate their claimed hypo-

theses (Tichy et al. 1995).

Meta-analysts urged their computer science colleagues to follow the example of

other fields, especially physics, and strive to make computing similar to the older,

more established fields. And indeed, by the end of the millennium natural sciences

and computing were converging at a large scale—but mostly because natural

sciences were becoming more like computing rather than computing becoming

more like natural sciences (Denning and Martell 2015; Tedre 2014). Simulation

started to compete in popularity with experiments in sciences and with prototyping

in engineering (Wilson 1984). Following the success of computational sciences,

national governments increased investments in high performance computing and in

computing-intensive research to an extent that was called the “supercomputer race”

between countries (Wilson 1984). Numerical analysts, having long felt being the

“queer people in computer science departments” (Forsythe 1968) found themselves

in the limelight again.

With the rise of computational science and penetration of computing into

literally all areas of life in an increasing number of countries, computer scientists’
disciplinary ways of thinking and practicing gained currency among educators, too.

Those ways of thinking and practicing were called “algorithmizing” by Perlis in

1960 (Katz 1960), a “general-purpose thinking tool,” by Forsythe in the late 1960s

(Forsythe 1968), and “algorithmic thinking” in the 1970s and 1980s by, for

instance, Knuth and Statz (Knuth 1985; Statz and Miller 1975). In the 1990s,

with the computational science movement, the catchphrase became “computational

thinking”. Computational thinking was claimed as a valuable educational approach

in the 1990s by Papert (1996) and was popularized as valuable for all children by

Wing in the 2000s (Wing 2006). Educators gradually understood that in order to

prepare students for the computing-pervaded work and world they will face in the

future, it is crucial to familiarize them with computing’s disciplinary ways of

thinking and practicing.

This has raised a new question: where does computing fit in the firmament of all

the sciences? There are three generally accepted domains, or families, of science:

physical, life, and social sciences. Where does computing fit in? In 2004 Paul

Rosenbloom examined the nature of the interactions between computing and

other fields. He found that computing either influences or implements processes

in virtually every field of science, engineering, and humanities (Rosenbloom 2004).

He also found that these are two-way interactions, with the other fields influencing

computing. There was no neat fit of computing into any of the three traditional

domains. He made a bold claim that computing is a new domain, which he called

the computing sciences, and is a peer of the three traditional domains.

The triumph of computing in sciences was evident by the beginning of the new

millennium. The first computing revolution in science—the introduction of pow-

erful tools for solving scientific problems—was largely complete. A look into any

laboratory in natural sciences would show that computer simulations, numerical
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methods, and computational models had become standard tools for science, and

many other fields in social sciences and humanities were developing computational

branches, too. Computer proofs also led mathematicians to re-think the very idea of

“proof” and computers became popular at all stages of mathematical discovery

(Horgan 1993).

At the same time, a second computing revolution in sciences was well underway.

An increasing number of researchers from natural sciences to humanities started to

look at their fields through a computational lens, interpreting phenomena in their

field as information processes. The new, info-computational model of science

(Dodig-Crnkovic and Müller 2011) was greeted as “algorithmization of sciences,”

(Easton 2006) “the idiom of modern science,” (Chazelle 2006) and “the age of

computer simulation” (Winsberg 2010). These arguments harkened back to the

1980s, when computational scientists argued that the twin pillars of science—

theory and experiment—were now joined by a third, equally important pillar—

computing.

Today, computing’s effectiveness in sciences has led to two versions of natural

computing: the weak argument and the strong argument. “Weak” natural comput-

ing states that computers are a great tool for studying the world, and info-

computational interpretations of phenomena are very useful abstractions. Few

researchers today would disagree with that standpoint. But with the rise of info-

computational interpretations of natural phenomena, various researchers started to

advance “strong” natural computing—that calculation and interpretation are not

enough, but computing plays a fundamental role in the naturally occurring pro-

cesses of their domains. The strong argument for natural computing is one of the

most exciting (and controversial) in the modern history of science: That argument

suggests that there must be a reason for the amazing success of computing in

predicting and modeling phenomena across all fields of science, and maybe that

reason is that the world itself is an information processor. Maybe the world

computes.

Over the years pioneers of computing have argued, on various levels and in

different ways, for info-computational views of the world. Zuse argued in 1967 that

the universe is a cellular automaton (Zuse 1970), Hillis wrote that molecules

compute their spatial configurations (Hillis 1998), and Mitchell wrote that living

organisms perform computations (Mitchell 2011). Wolfram wrote a whole book

making the claim that computing is a new kind of science (Wolfram 2002). Chaitin

wrote that the universe constantly computes its own future states from its current

ones—“everything is made out of 0/1 bits, everything is digital software, and God is

a computer programmer, not a mathematician!” (Chaitin 2006). Whereas Galilei’s
famous dictum was that the book of nature is written in mathematics, the pro-

ponents of weak natural computing would argue that the book of nature is written in

algorithms, and the proponents of strong natural computing would argue, in the

words of Dodig-Crnkovic, that the book of nature is an e-book: The book itself

computes. And, in the minds of many, that makes computing not only a science, but
the science.
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1.6 Conclusions

As computing technology moved ever deeper into people’s lives, people’s percep-
tions about what computers are evolved and set a context in which the field’s iden-
tity developed as discussed here.

The first stage of public understanding was computers as number and symbol

crunchers. From the earliest days, computing was linked in the public mind to the

brain and to intelligence, perhaps because the machines were doing computational

tasks that everyone thought only humans could do. The news reports of the first

commercial Univac computer in 1950 used the terms “thinking machines” and

“electronic brains” (Martin 1993). The business world quickly embraced the com-

puter revolution bringing its own long tradition of “symbolic data processing”—

punched-card machines analyzed data such as gender, literacy, and occupation in the

1890 U.S. census and IBM built a strong business machines company in the 1920s.

These traditions quickly shifted the interpretation of computers from crunchers of

numbers to crunchers of arbitrary patterns of symbols (Hamming 1980).

The second stage of public understanding happened in the 1980s with the emer-

gence of the Internet—computers were seen as communication machines rather than

symbol crunchers. The modern cloud-mobile computing age, which realizes a 1960s

dream of “computer utility”, is a culmination of this way of seeing computing.

The third stage of public understanding started in the early 2000s with the claims

that information processes are found through the natural sciences. This inter-

pretation is supported by amazing developments throughout science, where com-

puting blends with other technologies. It has also fostered anxieties about

artificially intelligent machines automating most jobs out of existence and perhaps

becoming an apocalypse for the world.

In the academic world, the first 40 years of computing focused a lot on developing

the technology of computers and networks. Much of the content of curricula reflected

the core technologies of computing. With the Internet in the 1980s andWeb in 1990s,

computing curricula began to adopt social dimensions that featured applications in

and interactions with other fields. Today, with the rise of natural information pro-

cesses, computing is now seen as fundamental in all the sciences and engineering and

may even define a new scientific domain. Computing’s development as a science and

its integration into other areas of scientific inquiry is unrivalled.

Computing’s self image has influenced and evolved with these larger changes.

Gone are the defensive essays over whether computing is engineering, math, or

science. Gone are the internal fights about how to deal with experimental science,

software engineering, or computational science.

Computing has fostered two revolutions. The first was computing as a tool with

unprecedented power and versatility for scientific computing and simulation, funda-

mentally changing how science was done in practice. The second was computing as

a completely new way of looking at natural and artificial phenomena, funda-

mentally changing how other fields see themselves and do their work. The info-

computational theory of science provides a new ontology, epistemology, method-

ology, and principles of scientific inquiry (Dodig-Crnkovic and Müller 2011).
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The circle closed in the 2000s, when reductionist claims that computing was

really other fields were flipped: now we see essays heralding a new era of science,

explaining why all other sciences can be reduced to computing. Computing has

begun its second revolution in science.
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