© Copyright 1991 by Sigma Xi and Peter J. Denning. This
material was originally published in Anerican Scientist in
May and Septenber 1991. It is posted here for your personal
use as a student of CS471 or CS571 only. You may not nake or
distribute copies to others without explicit, witten

perm ssion from Peter J. Denning.

QUEUEING IN NETWORKS OF COMPUTERS

Peter J. Denning

major airline has set up a computerized transaction system used by its ticket

agents to sell seats on its aircraft. The airline has authorized 1,000 agents
around the country to make reservations from their workstations. There is a
“disk farm”---a large collection of magnetic-disk storage devices---in New York
that contains all the records of flights, routes, and reservations. On average, each
agent issues a transaction against this database once every 60 seconds. One of
the disks contains a directory that is consulted during every transaction to locate
other disks containing the actual data; on average, each transaction accesses the
directory disk 10 times. The directory disk takes an average of five milliseconds
to service each request, and it is busy 80 percent of the time.

How many transactions per hour are serviced nationwide on this system? What
is the average response time experienced by an agent in Los Angeles? What
would happen to the response time if a new method of storing the directory
reduced access to five per transaction? What would happen to the response time
if the number of agents were doubled?

These are typical questions relating to the capacity of a network of computers to
complete the work requested of it. Most people think that the answers cannot be
calculated without detailed knowledge of the system structure---the locations
and types of the agents’ workstations, the communication bandwidth between
each workstation and the disk farm, the number and types of disks in the farm,
access patterns for the disks, local processors and random-access memory within
the farm, the type of operating system, the types of transactions, and more. It
may come as a surprise, therefore, that the first two questions---concerning
throughput and response time---can be answered precisely from the information
given. For the changes of configuration proposed in the third and fourth
guestions, reasonable estimates of system behavior can be made from the
available information and a few plausible assumptions.

Queueing Networks © Copyright 1991 Sigma Xi Page 2

Servers and Transactions

A computer network is composed of a number of interconnected servers.

Servers include workstations, disks, processors, databases, printers, displays, and
any other devices that can carry out computational tasks. Each server receives
and queues up messages from other servers specifying tasks of the type that the
receiving server is designed to carry out; a typical message might ask a server to
run a computationally intensive program, to perform an input/output
transaction, or to access a database. A transaction is a specified sequence of tasks
submitted to the network; when a server completes a particular task, it deletes
the request from its queue and sends a message to another server, requesting that
it perform the next task in the same transaction.

Measurements of servers are always made during a definite observation period.
Basic measures typically include event counters and timers. These and other
measures derived from them are called operational quantities. Invariant
relations among operations quantities that hold in every observation period are
called operational laws.

By counting outgoing messages and by measuring the time that a server’s queue
IS nonempty, it is easy to measure the output rate X, the mean service time S, and
the utilization U of a server. These three empirical quantities satisfy the relation
U = SX, known as the utilization law (Figure 1). Similarly, by measuring the

0[0]|0]|0|0
arrivals counter A
arrivals ololololo completions >
timer B
0[0]|0]|0|0

completions counter C

Figure 1. Task-processing server is the basic element of a network of
computers. Over an observation period of length T, the counter A registers the
number of tasks arriving at the server, the counter C records the number of
tasks completed, and the timer B measures the total busy time (the time when
tasks are present). The utilization of the server is U = B/T, the output rate is X
= C/T, and the mean service time per completed task is S = B/C. Because B/T =
(C/T)(B/C), we have the utilization law: U = XS.

Queueing Networks © Copyright 1991 Sigma Xi Page 3

tasks, n(t) —>

0] time, t —>» T

Figure 2. Average response time of a server can be calculated from just a few
measurements of the system’s performance. Let n(t) denote the number of
tasks in the server at time t. Let W denote the area under the graph of n(t) in
the interval from time 0 to time T; W is the number of task-seconds of
accumulated waiting. The mean number of tasks at the server is Q = W/T, and
the mean response time per completed task is R = W/C. Because W/T =
(C/T)(WI/C), we have Little’s law: Q = XR. The mean service time S and the
mean response time R are not the same; R includes queueing delay as well as
service time.

“space-time” accumulated by queued tasks, it is easy to determine the mean
gueue length Q and the mean response time R: these quantities satisfy the
relation Q = RX, known as Little’s Law (Figure 2).

The utilization law and Little’s law are counterparts of well-known limit
theorems for stochastic queueing systems in a steady state. These theorems will
usually be verified in actual measurements, not because a steady state has been
attained, but because the measured quantities obey the operational laws (1,2).

The tasks making up a transaction can be regarded as a sequence of visits by the
transaction to the servers of the network. The average number of visits per
transaction to a particular server iis called the visit ratio V, for that server; the
server’s output rate X, and the system’s output rate X, satisfy the relation X, =
V. X, which is known as the forced-flow law (Figure 3). This remarkable law
shows that knowledge of the visit ratios and the output rate of any one server is
sufficient to determine the output rates of every other server and of the system
itself. Moreover, any two networks with the same visit ratios have the same
flows, no matter what is the interconnection structure among their servers.

Queueing Networks © Copyright 1991 Sigma Xi Page 4

server i

observation
point
X0

Figure 3. Flow of transactions through a network of servers can be calculated
from a few selected measurements of performance. Over an observation
period T,C; transactions are completed by the system. The average number of
tasks per transaction for server i is V, = C/C,; V, is called the visit ratio because
each task is regarded as a “visit” by the transaction to the server. Here the
transaction visits servers i and k once each and visits server j twice. Because
C/T = (C/C,)(C,/T), we have the forced-flow law: X;=V,X,. This law says that
the task flow at one point in the system determines the task flows everywhere.
This law holds regardless of the interconnections among the servers; any two
networks with the same visit ratios will have the same flows.

In a network, a server’s output is a portion of the input to another server or of the
output of the system. It simplifies an analysis to assume that the input and
output flows of a server are identical and can be called the throughput---a
condition known as flow balance. The definitions do not imply flow balance. In
most real systems there is a bound on the number of tasks that can be in the
system at once; as long as the number of completions at every server is large
compared to this bound, the error introduced by assuming flow balance will be
negligible. For this reason, flow balance does not generally introduce much error
for practical systems.

When a network of servers receives all of its requests from a finite population of
N users who each delay an average of Z seconds until submitting a new
transaction, the response time for a request in the network satisfies the response-
time formula R = N/X,-Z (Figure 4). This formula is exact for flow balance.

Queueing Networks © Copyright 1991 Sigma Xi Page 5

thinkers waiters

Figure 4. Users of a transaction system alternate between periods of
“thinking” and periods of “waiting” for a response from the system. The total
number of users---thinkers and waiters--- is N. The average response time per
transaction is R and the average thinking time is Z. Little’s law says that the
mean number of active users in an entire system is equal to the mean response
time of the system multiplied by the flow through the system. These three
quantities are, respectively, N, R+Z, and X, Solving for the response time---or
in other words the average period spent waiting---we obtain the response-time
formula: R = N/X,-Z. Since the system includes a fixed number of thinking
and waiting users, this formulation assumes one system arrival for each
system completion (flow balance).

These formulas are sufficient to answer the throughput and response-time
guestions posed earlier for the airline reservation network. We are given that
each transaction generates an average of 10 directory-disk requests, and so V= 10
for the server represented by the directory disk. The mean service time at the
directory disk is five milliseconds, so that S;= 0.005 second. The directory disk’s
utilization is 80 percent: U,= 0.8. Combining the forced-flow law and the
utilization law, we have for total system throughput:

X, =U/VS, = 0.8/(10" 0.005) = 16 transactions per second

Thus the entire airline reservation system is processing 57,600 transactions per
hour. The response time experienced by any one of the 1,000 agents is:

R = M/X,-Z =1000/16-60 = 2.5 seconds.

Queueing Networks © Copyright 1991 Sigma Xi Page 6

Changing the Configuration

Consider the next two configuration questions. They ask for grounded
speculations about response time in a future measurement period having
different conditions---for example, the directory-disk visit ratio is reduced, or the
number of agents is increased. Since operational laws deal only with relations
among quantities observed in a past measurement period, they are not sufficient
for making predictions. We must introduce additional, forecasting assumptions,
that extrapolate measured parameter values from the past observation period
into the future observation period; the laws can then be used to calculate the
response time expected in that future period.

One common type of forecasting assumption is that, unless otherwise specified,
the demands placed on the various servers, V, will be the same in the future
period as they were in the measurement period. Similarly, unless otherwise
specified, the mean service times, S, which depend primarily on mechanical and
electrical properties of devices, will be the same. The utilizations, throughputs,
and response times will change when any of these parameters changes.

The first configuration question asks what happens if some disk other than the
directory disk is the bottleneck of the system; most of the transactions are queued
there, and its utilization is near 100 percent. Under these conditions reducing the
demand for the directory disk will have only a negligible effect on the utilization
and throughput of the bottleneck disk; the forced-flow law tells us that the
overall throughput and response time of the network will therefore be
unchanged.

At the other extreme, the directory disk is the bottleneck of the system; halving
the demand on it will double system throughput. For the numbers given above,
the response-time formula yields a calculated response time of -28.75 seconds.
The obvious absurdity of a negative response time---signifying that answers are
received before questions are asked---indicates that the directory disk cannot be
the bottleneck after demand on it is reduced by half, even if it was the bottleneck
originally. All we can say with the given information and the given forecasting
assumptions is that halving the demand for the directory disk will reduce the
response time from 2.5 seconds to some small but still nonzero and nonnegative
value. If the 2.5-second response time is acceptable, this proposed change in
directory search strategy would not be cost effective.

Consider the second configuration question: What happens to the response time
if the number of agents is doubled? Again, we are limited by the lack of
knowledge of the other disks. If the directory disk is the bottleneck, then
doubling the number of agents is likely to increase its utilization to 100 percent,
giving a saturation value of throughput:

X, = 1/VS; =1/(10" 0.005) = 20 transactions per second

Queueing Networks © Copyright 1991 Sigma Xi Page 7

With the response-time formula, these values yield:

R = N/X,-Z =2000/20-60 = 40 seconds

If the directory disk is not the bottleneck, some other server will have a smaller
saturation throughput, forcing response time to be longer than 40 seconds. Thus

doubling the number of agents will produce a response time that is likely to be
considered unacceptably high.

N\{)Sb—Z
N\IISI -Z
y

R(1)

response time, R(N) ——

1 number of users, N —

Figure 5. Bottleneck analysis shows how the response time changes as a
function of N. When N=1, the single user’s transactions encounter no
queueing delays from other transactions, whence R(1) = VS, + ... + V. S,
where K is the number of servers. Combining the utilization and forced-flow
laws, X, = X/V,;=U/VS, < 1/VS; since U, < 1. Thus R(N) >NV.S.-Z for all i.
Each of the lines defined by these relations is a potential asymptote for R(N)
with large N. The actual asymptote is determined by the largest of the
potential asymptotes. Taking server b (for bottleneck) to be the one with the
largest V;S; we have R(N) >NV, S,-Z. The bottleneck analysis assumes that the
products V;S, do not vary with N.

Queueing Networks © Copyright 1991 Sigma Xi Page 8

This example illustrates that bottleneck analysis is a recurrent theme in forecasts
of throughput and response time. Suppose that the visit ratios and mean service
times are known for all the servers and do not vary with N. Each server
generates a potential bottleneck that would limit the system throughput to 1/V.S,
and would give a lower bound to the response time of N VS, -Z. Obviously the
server with the largest value of VS, gives the least upper bound on the
throughput and is the real bottleneck. The products VS, are sufficient to
determine lower bounds on the response time as a function of N (Figure 5).

The operational laws coupled with bottleneck analysis offer a simple but
powerful method for performance analysis. For systems whose visit ratios and
service times do not vary with overall load, the products V.S, ---the total service
time requirement for each server---are sufficient to answer these questions. The
methods can be extended to yield efficient algorithms for computing throughput,
response time, and mean queue length at every server as a function of the load N
on the system (1,2).

Operational analysis is not a replacement for traditional queueing theory; itis a
reinterpretation for the common case of measured data. Many of the steady-state
limit theorems of queueing theory turn into operational laws or formulas that
hold for flow-balanced networks.

The genesis of the operational interpretation was in the mid-1970s, when
performance analysts were discovering that the formulas of Markovian queueing
systems worked very well to predict utilizations, throughputs, and response
times in real networks of computers, even though the Markovian assumptions
were grossly violated. Jeffrey P. Buzen proposed the operational hypothesis:
Many of the traditional steady-state queueing formulas are also relations among
observable quantities under simple and general conditions (1). This hypothesis
has been substantiated in practice and has become the underpinning for a large
number of computer programs that calculate performance measures for
networks of servers ranging from computers to manufacturing lines.

Computing with Models

The networks discussed above can be viewed as a collection of users and servers.
The users generate transactions, which are processed by various servers, until
ultimately a response is returned to the user. The two primary performance
metrics, throughput (X) and response time (R) obey certain operational laws that
allow them to be calculated from visit ratios (V,), service times (S;), and total
number of users (N). When we start asking “what-if” questions about future
configurations these laws give useful approximations when combined with
bottleneck analysis. Through these simple methods, “back of the envelope”
calculations can quickly reveal the effects of distant servers on local throughput
and response time.

Queueing Networks © Copyright 1991 Sigma Xi Page 9

directory
agents
data
<
disk |

Figure 6. Hypothetical airline reservation system serves as an example of a
computer network subject to mathematical performance analysis. In the initial
configuration 1,000 agents access a database at the airline’s central computing
facility. Each agent thinks an average of 60 seconds between transactions. A
typical transaction requires 10 lookups on the directory disk to locate the
information requested and then one lookup on the data disk to deliver the
result. Each of these 11 disk accesses also requires service from the central
processing unit (CPU). The total CPU time of a transaction averages 50
milliseconds. The directory disk service time is 5 milliseconds and the data
disk service time is 60.7 milliseconds.

Suppose one is willing to move beyond the backs of envelopes to programmable
calculators or spreadsheets. Are there simple extensions to the basic results that
will allow more accurate calculation of response time as a function of the load for
given values of the visit ratios and mean service times? The answer is yes.

To keep the argument simple, let us confine our attention to a straightforward
but useful case. Assume that the basic server parameters do not change with the
total load on the system N. Further assume that the system is closed (N is fixed)
and that there is an observation point at which the network throughput X and
response time R are defined.

To calculate the total system response time, we need to know the response time
of each server. Since a transaction visits each server Vj times and experiences a
mean response time R;j on each visit, we can perform the calculation by means of
the operational law

R=V,R +..+VR,

Queueing Networks © Copyright 1991 Sigma Xi Page 10

61
16 16 16.5
0.8 0.825
4
2.5 2.4 0
R X U R X U R X u
initial faster twice as
configuration directory search many agents

Figure 7. The bar graphs show the results of three network analyses. The
original system has an average response time (R) of 2.5 seconds and a
throughput (X) of 16 transactions per second; the directory, which seems likely
to be the bottleneck, has a utilization (U) of 0.8. If the directory accesses are
halved, the utilization of the directory disk falls to 0.4, but the improvement in
response time would be imperceptible. If the number of agents is doubled,
the response time jumps to 61 seconds.

This law can be verified by multiplying both sides by X, using Little’s law to

reduce the left side to N, using the forced-flow law and Little’s law to reduce
each term XV.R, on the right side to mean queue length Q, and noting that the
result is the identity N = Q, +...+Q,.

Now we must determine the local response time, R, of an individual server. A
starting point for calculating the value is P, the mean queue length as determined
from measurements of the length as each task arrives at server i. Since the
response time consists of a task’s own service time plus the service times of the
tasks that precede it in the queue, R, is given by the formula:

R =S(1+R)

Queueing Networks © Copyright 1991 Sigma Xi Page 11

Unfortunately, the mean queue length seen at the arrival instants is usually not
the same as the queue length averaged over all times (3). An example where
arrival-time measurements give misleading results is a server that is in low
demand. Each arriving transaction finds the queue empty, and service is always
completed before the next task comes along. In this case the mean queue length
seen by arrivals is 0, whereas the mean length determined by an outside
observer---by someone who records measurements at all times---would be a
number between 0 and 1.

Observers of Queues

What is the relation between the queue lengths seen by arriving tasks and by
outside observers? The simplest possible relation arises when we convert the
arriving task into an external observer, simply by excluding that task from the
system under observation. In other words, we divide the network into two parts:
the arriving transaction, which has the role of observer, and the remainder of the
tasks and servers. When the network is partitioned in this way, the mean queue
length observed by arrivals is the same as the time-averaged mean queue length
would be if there were one fewer task in the system. We write this relation as

R(N)=Q(N- 1)

Let us further postulate a linear relationship between the mean queue lengths at
loads N and N-1:

QN- D="2Q(N)

Now we can make use of this result to define a better expression for the local
response time:

When augmented with the forced-flow law and Little’s law, this last equation
yields an iterative scheme for computing response time, the throughput, and the
mean queue lengths when given values of the parameters V,, S, and N. The
equations and the iterative method were first proposed by Yon Bard and Paul
Schweitzer (4).

The first step in the iterative procedure is to estimate the mean queue length Q,
for each server i. The estimates do not have to be highly accurate; one simple
strategy that yields acceptable results is to apportion the total number of tasks N
equally among the servers. The initial Q, estimates are then employed to
calculate a response time R, for each server, and the R, values (along with the

Queueing Networks © Copyright 1991 Sigma Xi Page 12

visit ratiosV) determine the overall response time R. N and R together fix the
throughput of the system X. Finally, from X, V, and R, one can make refined
estimates of the mean queue lengths Q,. This procedure is repeated until the
difference between successive estimates is less than some error bound. Fifty or a
hundred iterations may be needed to reduce the error to 0.0001.

The foregoing analysis relies on a number of assumptions. The parameters V;,
and S, are assumed to be independent of the load N; the mean queue length at
load N is assumed to be linearly related to the mean length at load N-1; and
arriving tasks are assumed to act as outside observers of the queues at their
servers. The first of these assumptions can be relaxed to allow the visit ratios to
depend on total load N and to allow the service times to depend on the local
gueue lengths. It is further possible to distinguish separate classes of
transactions, each with its own set of parameters. Algorithms for computing the
mean queue lengths, throughputs, and response times are given for all these
cases in the books by Lazowska et al. (2) and Menascé et al. (6).

Relaxing the second assumption---that network performance is a linear function
of load---turns the iterative algorithm into a recursion on N. Given a set of
values of Q, at load N-1, a single pass through the recursive algorithm produces
values of Q, at load N. This approach, called the mean-value iteration, was first
proposed by Martin Reiser and Stephen Lavenberg (5).

The third assumption---that an arriving task can serve as an observer of queue
length---cannot be relaxed. It is the key assumption that enables queueing
networks to be analyzed by simple computational algorithms. Few real systems
satisfy the assumption, but the models based on it are nonetheless quite robust: It
is almost always possible to construct a model whose estimates of throughput
and utilization are within 5 percent of the true values and whose estimates of
response time are within 25 percent of the true values.

References

1. PeterJ. Denning and Jeffrey P. Buzen. 1978. Operational analysis of
gueueing networks. ACM Computing Surveys 10, 3 (September): 225-261.

2. Edward D. Lazowksa, John Zahorjan, G. Scott Graham, and Kenneth C.
Sevcik. 1984. Quantitative System Performance. Prentice-Hall.

3. Kenneth C. Sevcik and Isi Mitrani. 1981. The distribution of queueing
network states at input and output instants. Journal of the ACM 28: 358-371.

4. Yon Bard. 1979. Some extensions to multiclass queueing network analysis.
Proceedings of the Fourth International Symposium on Computer

Queueing Networks © Copyright 1991 Sigma Xi Page 13

Performance Modeling, Measurement, and Evaluation (H. Beilner and E.
Gelenbe, eds.) Amsterdam: North-Holland.

5. Martin Reiser and Stephen Lavenberg. 1980. Mean value analysis of closed
multichain queueing networks. Journal of the ACM 27: 313-322.

6. Daniel Menascé, Virgilio Almeida, and Larry Dowdy. 1994. Capacity
Planning and Performance Modeling. Prentice-Hall.

