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The ultimate goal of the field 
of artificial intelligence (AI) is 
to construct machines that are 
at least as smart as humans 

at specific tasks. AI has been success-
ful in developing machines that can 
learn how to recognize speech, find 
new classes of stars in sky surveys, win 
grandmaster chess matches, recognize 
faces, label images, diagnose diseases, 
hail taxis, drive cars, navigate around 
obstacles, and much more. Yet none of 
these machines is the slightest bit in-
telligent. How can they do intelligent 
things without being intelligent? Can 
these machines be trusted when pre-
sented with new data they have never 
seen before? Businesses and govern-
ments are using AI in an exploding 
number of sensitive and critical appli-
cations without having a good grasp on 
when those programs can be trusted.

One way to answer these questions 
is to classify AI machines according to 
their relative power, examining what 
makes machines in each class trust-
worthy. This way of classifying AI ma-
chines gives more insight into the trust 
question than the more common clas-
sifications by the activities and fields 
in which AI is used. 

In its evolution since the 1950s, the 
AI field has experienced three periods 
of “boom” punctuated by two periods 
of “bust” (often called “AI winters”). 

The first boom began around the time 
the field started in 1950. It produced 
useful prototypes of speech recogniz-
ers, language interpreters, game play-
ers, math word-problem solvers, and 
simple robots. But the researchers 
were not able to deliver on their ambi-
tious claims, and their sponsors pulled 
back funds in the mid-1970s. Invest-
ment returned in the early 1980s, when 
the Japanese Fifth Generation Project 
poured large sums into AI research 
and high-performance logic machines. 
That boom lasted until the late 1980s, 
when again the funding agencies were 
disappointed by lack of progress. The 
third boom began in the early 1990s 
with the development of technologies 
called machine learning, which began 
producing significant, useful, and often 
surprising results—accompanied by 
large doses of hype about the future of 
AI. Machine learning refers to programs 
that develop their function from ex-
posure to many examples, rather than 
from rules set by programmers. Some 
AI researchers have placed big bets on 
this and other methods achieving arti-
ficial general intelligence—which may 
be beyond the reach of machines. If so, 
a new bust is possible.

An aspect of the hype that has been 
particularly troubling to us is the claim 
that all of the advances in computing 
have come from AI. In fact, computing 
itself has made steady progress in power 
and reliability over the past half-century. 
By 2000, the available computing plat-
forms were sufficiently powerful that 
they could support AI programs: Mod-
ern AI would not exist were it not for the 
advances in computing, rather than the 
other way around. Nonetheless, a recent 
report from the Organization for Eco-
nomic Cooperation and Development 
(OECD), a consortium of 34 countries, 

defined AI so broadly that any software 
is a form of AI and that all progress in 
computing is because of AI. Although 
that claim is nonsense, it shows the polit-
ical power that can gather behind hype.

A Learning Hierarchy
In the task we set for ourselves— 
classifying these machines and defin-
ing their limits—we struggled against 
two impediments. One is that there is 
no scientific definition of intelligence. 
Arthur C. Clarke’s admonition—“Any 
sufficiently advanced technology is in-
distinguishable from magic”—captures 
a well-known phenomenon in AI: Once 
we succeed at building an intelligent 
machine, we no long consider it intelli-
gent. As soon as the magic is explained, 
the allure fades.

The second impediment is our ten-
dency to anthropomorphize—to proj-
ect our beliefs and hopes about human 
intelligence onto machines. For exam-
ple, we believe that intelligent people 
think fast, yet supercomputers that run 
a billion times faster than humans are 
not intelligent. 

The hierarchy we will discuss does 
not rely on any definition of intelligence 
to classify AI machines. What differenti-
ates the levels of the hierarchy is simply 
that the machines at a lower level can-
not learn functions that higher-level ma-
chines can. This grouping is scientifically 
quantifiable; no anthropomorphizing is 
needed. This classification does not have 
to do with computing power. The hier-
archy shows that none of the machines 
so far built have any intelligence at all.

Level 0—Automation
The baseline of the hierarchy is basic 
automation—designing and imple-
menting automata that carry out or con-
trol processes with little or no human 
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A hierarchy of artificial intelligence machines ranked by their learning power 
shows their abilities—and their limits.
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intervention. The purpose of automa-
tion is to take the human out of the loop 
by substituting an automaton to do the 
work. Automation frequently includes 
simple feedback controls that main-
tain stable operation by adjusting and 
adapting to readings from sensors—for 
example, a computer-controlled ther-
mostat for regulating the temperature 
of a building, an autopilot, or a factory 
assembly robot. But the automaton can-
not learn any new actions, because its 
feedback does not change its function 
to anything beyond what it was built to 
do, so this kind of automation is not a 
form of machine intelligence.

Level 1—Rule-Based Systems
Philosophers through the centuries 
have rated reasoning power as the 
highest manifestation of human intel-
ligence. AI researchers were attracted 
to programs capable of imitating the ra-
tional reasoning of humans. These were 
called “rule-based programs” because 
they made their logical deductions by 
applying programmed logic rules to 
their inputs and intermediate results.

Board games were early targets for 
rule-based programs. Electrical engi-
neer and computing pioneer Arthur 
Samuel of IBM in 1952 demonstrated 
a competent checkers program. AI 
researchers turned their attention to 
the much harder game of chess, which 
they thought could be mechanized by 

brute-force searching through thou-
sands of future board positions and 
picking the best moves. That long line 
of work climaxed in 1997 when an ad-
vanced chess program running on an 
IBM Deep Blue computer beat Garry 
Kasparov, then the world’s grand-
master at chess. Computer speed was 
the major reason for this success—the 
computer can search through billions 
of moves in the same time a human 
can search through perhaps hundreds.

Expert systems—programs that solve 
problems requiring expert-level skill 
in a domain—were early targets for 
rule-based programming. Their logical 
rules are derived from the knowledge 
of experts. In 1980 John McDermott of 
Carnegie Mellon University developed 

an expert system (called XCON) for 
the Digital Equipment Corporation. 
Given customer requirements, XCON 
recommended configurations of their 
VAX computer systems, and by 1986 it 
was reckoned to have saved the com-
pany $25 million annually in labor and 
facility costs.

But the builders of expert systems 
soon discovered that getting experts 
to explain their expertise was often 
an impossible task: Experts seem to 
know things that cannot be described 
as rules. Although a few systems have 
proved to be competent, no one has 
built a true expert system.

Level 2—Supervised Learning
At this level, machines compute out-
puts not by applying logic rules to in-
puts but by remembering in their struc-
ture the proper outputs for each of a set 
of inputs shown to them by a trainer. 
The artificial neural network (ANN) is 
a common example, and is so named 
because its design loosely imitates 
the structure of a brain, with its many 
neurons interconnected by axons and 
dendrites. ANNs consist of many elec-
tronic components, called nodes, which 
translate weighted inputs into digital 
values. The level of interconnectedness, 
or weight, between nodes is determined 
by the training process. (See figure on 
page 349.) Natural neural networks from 
brains were studied by biologists in the 
late 1800s; artificial neural networks 
were studied in the 1940s, because some 
engineers believed that a computer 

Artificial intelligence programs (in this case one called AARON) have been used to produce art-
works, but whether AI can display creativity when not teamed with a person remains unknown. 
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structured like a brain might be able to 
perform like a brain.

The trainer of an ANN works with 
a large set of data consisting of input-
output pairs. These pairs are numer-
ous examples of the function the trainer 
desires the ANN to learn. The outputs 
are often called labels, because a neural 
network is asked to recognize and label 
the data presented at the input. For ex-
ample, the inputs might be bitmaps of 
photographs of faces, and the outputs 
would then be the names of the people 
in the photos. The trainer hopes that the 
trained ANN will correctly recognize all 
the faces in the training set. The trainer 
also hopes that the trained ANN will 
then correctly recognize faces in photos 
that were not part of the training set.

The network trainer uses an algo-
rithm called back propagation to set the 
internode connection weights to pro-
duce the fewest errors in the output. 
Even after this process, the errors be-
tween actual and desired outputs may 
not be zero, so there is a chance that the 
network may produce some incorrect 
outputs. With their sheer number of 
nodes and links, ANNs can take days 
to train, but once trained, they compute 
their outputs within milliseconds.

Today’s ANNs suffer from two main 
limitations. One is fragility. When pre-
sented with a new (untrained) input, 
the ANN’s output may deviate signifi-
cantly from the desired output. More-
over, when a small amount of noise 
disturbs a valid input, the ANN may 
label it incorrectly. For example, a road-
sign recognizer for a driverless car can 
be fooled into labeling a stop sign as 
a speed limit sign simply by placing 
spots of masking tape at strategic loca-
tions on the stop sign. And two ANNs 
trained from different data samples of 
the same population may give very dif-
ferent outputs for the same input. 

The other ANN limitation is inscruta-
bility. It is very difficult to “explain” how 

an ANN reached its conclusion. The 
only visible result of training an ANN 
is a gigabyte-sized matrix of connection 
weights between nodes, so the “explana-
tion” for a problem is diffusely distrib-
uted among thousands of weights.

Training ANNs is also expensive, be-
cause of the long training process and 
the expense of getting training sets. 

Level 3—Unsupervised Learning
Machines at this level learn to improve 
their performance by making internal 
modifications without the assistance 
of an external training agent. They are 
attracting more research attention be-
cause they can potentially eliminate the 
large cost of obtaining training sets.

An early example is a program 
called AutoClass, built in 1988 by Pe-
ter Cheeseman and his colleagues at 
NASA Ames Research Center. Auto-
Class computed the most probable 
classes of 5,425 experimental obser-
vations from the NASA infrared tele-
scope; with one exception, it agreed 
with the classification already deter-
mined by astronomers, and the excep-
tion was seen as a new discovery. 

A recent success is a machine called 
AlphaGo. Go, an ancient game very 
popular in Asia, is considered orders 
of magnitude more difficult than 
chess. After about six years of devel-
opment, AlphaGo made a dramatic 

debut in 2016, beating Go grandmaster 
Lee Sedol of South Korea. The Alpha-
Go machine had been trained by play-
ing against another AlphaGo machine. 
The two played a massive number of 
rounds, recording all their moves in 
each round. When one won a game, 
it earned a reward, which was propa-
gated back to all the moves that led to 
the win, thus reinforcing those moves 
in the next round. At the start, the only 
prior information given to the ma-
chines was the statement of the rules 
of Go—but no examples of Go games.

AlphaGo was built by the Google 
subsidiary DeepMind. After their suc-
cess with Go, they wondered if the 
AlphaGo platform could be modified 
to learn chess and another two-player 
strategy game called Shogi. They re-
named their machine AlphaZero to 
reflect its more general use. Using the 
same two-machine training method, 
AlphaZero learned to play grandmas-
ter chess in 9 hours, Shogi in 12 hours, 
and Go in 13 days. This is a significant 
breakthrough. AlphaZero’s Go machine 
accomplished in less than two weeks a 
feat that no one had done before.

AlphaZero could be used for busi-
ness games, marketplace games, or 
war games, with well-defined rule sets 
describing reward functions, allow-
able moves, and prohibited moves. But 
the AlphaZero method may not work 
with social systems, where the game 
must be inferred by observing the play.

Level 4—Multiagent Interactions
At this level, machine intelligence 
emerges from the interactions of thou-
sands or millions of agents, each with 
a specific function. An agent is an au-
tonomous machine or code segment. 
The machine-learning capability arises 
from the collective. This idea was dis-
cussed by AI researchers beginning in 
the 1960s and was the basis of HEAR-
SAY, a speech-recognition system, in 
the 1970s. It morphed into blackboard 
systems in the 1980s and was epito-
mized by the late AI pioneer Marvin 
Minsky in his 1986 book, The Society of 
Mind. A blackboard is a shared knowl-
edge space that agents continually 
read and update until they converge 
on a collective solution to a problem. 

So far, nothing close to human intel-
ligence has emerged when all of the 
agents are machines. The story is dif-
ferent when some of the agents are hu-
mans. After IBM Deep Blue beat him 
in 1997, Garry Kasparov invented a 

Some AI researchers 
believe a human-
machine team will 
always outsmart 

the same machine 
operating alone. 
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supported by a large, thriving industry. But another bust is possible if hype isn’t contained.
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new kind of chess, which he called Ad-
vanced Chess, in which a “player” is a 
team consisting of a human augment-
ed by a computer. It was soon found 
that the teams of competent players 
and good chess programs were able to 
defeat the best machines.

Another example can be found in 
high school robotics competitions, 
where teams of human navigators 
augmented with autonomous function 
agents are the most frequent winners.

The success of human-machine teams 
has exposed a rift among AI researchers. 
Some want machines that are intelligent 
on their own, with no human assistance. 
Others believe that a team of a machine 
and humans can outsmart the same ma-
chine operating alone.

Level 5—Creative AI
This level is intermediate between ma-
chines that support creative teams and 
machines that demonstrate general in-
telligence. The question is: Can there 
be a machine that is creative on its own 
without the benefit of a team? At the 
current stage of the technology, there 
are no working machines that can per-
form at either level 5 or 6. 

Some AI researchers have speculat-
ed that creativity is the recombination 
of existing ideas, and they have experi-
mented with machines that do that. 
An example is the genetic algorithm, 
popularized around 1975 by John H. 
Holland at the University of Michigan, 
to find near-optimal solutions to prob-
lems by simulating genetic mutation 
and cross-combination. An early use 
of this algorithm was in a U.S. Navy 
robot that could safely find its way 
through a minefield. Genetic algo-
rithms start out with random strings 
of instruction, and each is rated with a 
fitness value based on its demonstrat-
ed ability. The programs with the best 
fitness values are combined to create a 
new generation of programs that are 
fitness-rated, and so forth. Through 
generations of refinement, programs 
evolve into successes, such as ones that 
can safely navigate minefields.

Artists and musicians have experi-
mented with AI tools to produce new 
art forms. The Prisma app, which 
transforms photographs into art im-
ages in the style of famous painters, is 
an early example. Ahmed Elgammal of 
Rutgers University and his colleagues 
have demonstrated works of art gen-
erated by a neural network machine 
called AICAN; his conclusion was that 

although the AI appeared to be artisti-
cally creative, it was not as creative as 
an artist armed with an AI tool (see “AI 
Is Blurring the Definition of Artist,” Arts 
Lab, January–February). 

Creativity seems to be a deeply so-
cial process involving many human 
assessments about new possibilities 
and contexts. It may not be possible to 
build a machine that rises, on its own, 
to this kind of creativity.

Level 6—Aspirational AI
This level includes a variety of specula-
tive machines that represent the dreams 
of many AI researchers. The most am-
bitious dreams feature machines that 
think, reason, understand, and are self-
aware, conscious, self-reflective, com-
passionate, and sentient. No such ma-
chines have ever been built, and no one 
knows whether they can be built.

Early on, researchers realized that AI 
machines lacked common sense. Early 
medical expert systems, for example, 
were prone to make mistakes no doc-
tor would make. Researchers thought 
that the solution was to gather a large 
compendium of common-sense facts 
and rules in a very large database for 
use by the expert system. In 1984 Doug-
las Lenat, CEO of Cyc Corporation, set 
out to build such a machine, which he 
called Cyc. His project continues to this 
day. The machine, which now contains 
millions of common-sense facts, has 
never succeeded in helping an expert 
system behave like a human. 

Much of AI research has been predi-
cated on the assumption that the brain is 
a computer and the mind is its software. 
Cognitive scientists now believe that the 

structure of the brain itself—intricate 
folds, creases, and cross-connections—
gives rise to consciousness as a statistical 
phenomenon of brain activity. But even 
further, it appears that much of what 
we think we know is actually distrib-
uted in the social networks of which we 
are a part; we “recall” it by interacting 
with others. Chilean biologists Hum-
berto Maturana and Francisco Varela 
argued that biological structure deter-
mines how organisms can interact and 
that consciousness and thought arise in 
networks of coordination of actions. A 
conclusion is that autonomous software 
and biologically constructed machines 
will not be sufficient to generate ma-
chine intelligence. In ways we still do 
not understand, our social communities 
and interactions in language are essen-
tial for general intelligence.

Moving the Goals
New applications of AI are announced 
every day, but AI technology is not yet 
advancing toward levels 5 and 6. AI 
is getting better at levels 2 through 4. 
We need to separate excitement over 
new or improved applications from 
true advancement in the power of AI 
algorithms to solve certain classes of 
problems. 

The hierarchy leads to the tanta-
lizing—though likely unpopular— 
conclusion that human intelligence is 
not computable. It may be that the peak 
of machine AI is to support human- 
machine teaming. And that is a signifi-
cant goal in itself.

(References for this article are available 
online at www.americanscientist.org.)
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An artificial neural network (ANN) is a network of electronic nodes arranged in a series of lay-
ers, each providing input for the next. The input layer drives one or more hidden layers, the last 
of which drives an output layer. A node “fires” when the weighted sum of its inputs from the 
previous layer exceeds a threshold. The weights are parameters that can be adjusted by a train-
ing algorithm so that the output for a given input matches the desired output. 
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