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Introduction 

Segment referencing has become increasingly preva- 
lent. It is used in many database systems; it is supported 
in hardware by several manufacturers; it underlies "pro- 
gram restructuring," which seeks a locality-preserving 
distribution of small logical program blocks among large 
physical storage pages. There is a clear need for memory 
demand measures under segment referencing. 

The common procedures for measuring memory de- 
mand are suited only for paged memory systems. They 
measure a resident set's size by counting pages, and the 
swapping load by counting page faults. But if  storage 
blocks are segments of  different sizes, these measures do 
not accurately portray a program's memory demands. 
The number of resident segments may bear little relation 
to the memory required to hold them; the number of  
missing-segment faults may not measure the load ac- 
tually placed on the swapping system. 

This paper presents the generalized working set (GWS) 
approach to measuring memory demand under segment 
referencing. It is based on defining the cost of  retaining 
a segment in memory without being referenced, and the 
cost of retrieving (swapping in) a missing segment. The 
Gws memory policy assigns each active program a resi- 
dent set containing each segment whose retention cost 
does not exceed its retrieval cost. A parameter O, the 
threshold, represents the cost of  retrieval relative to re- 
tention. The GWS models all one-parameter memory 
policies whose resident sets satisfy an inclusion property 
under increasing values of the control parameter (O). 
The well-known "stack algorithms" [20, 6] and "time 
window working set" [9, 14, 6] are special cases of  the 
GWS. This model extends the measurement technique to 
segment referencing, and it unifies previous models as 
well. 

In a single pass over a given segment-reference string, 
ows  procedures measure a memory demand curve y = 
f(x) .  Each possible threshold value (0) generates a par- 
ticular demand point (x, y) on this curve. This curve 
shows the tradeoff between a "memory-space invest- 
ment," x, and a "swapping load" y. The memory-space 
investment x is either o, the mean size of the resident set, 
or s, the mean of  the retention costs of  segments kept in 
the GWS. The swapping load represents the delay from 
moving segments into main memory; it is represented as 
y = m + A#, where m is the missing-segment fault rate, 
# is the rate of  information flow resulting from segment 
faults, and A is a parameter selected by the analyst. The 
familiar page-fault curve is the demand curve m = 

f(o). These definitions give the analyst considerable flex- 
ibility in choosing a memory-demand measure. 

A special case of GWS policy is a generalized optimal 
policy (OOPT). No memory policy can generate a demand 
point below the demand curve Of GOPT. Although GOPT'S 
lookahead prevents it from operating in real time, its 
demand curves are easily obtaine~l--in fact, the GOPT 
and GWS demand curves can be computed from each 
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other. It is thus cheap to learn how far from optimal a 
given Gws policy is. The GOPT policy reduces to VmN 
for paging [21]. 

The original procedures for measuring page fault- 
rate curves under the time-window working-set policy 
required storage of  order O(M + p), where M is the 
maximum time window of  interest and p is the number 
of  pages. (See [14, 25].) In practice, M must be very 
large--104 or 105 references--to obtain demand points 
over the entire range of  interest. The GWS and GOPT 
measurement procedures calculate demand points for N 
selected threshold values, with storage of  order O(N + 
p), where N can be as small as logzM. For practical 
programs, this represents a storage reduction of  two or 
more orders of  magnitude and corresponding speedup in 
computing the demand curves. These procedures are 
generalizations of  those noted by Easton and Bennett for 
the time-window working set [16], but they were devel- 
oped independently by the authors of  [11] and [24]. 

Because its cost functions measure each program 
singly, Gws analysis does not calculate the actual cost of  
running a program. It does not account for the overheads 
of  placement or replacement policies, or the effects of  
queueing. Gws analysis does measure the tradeoff be- 
tween memory-space investment and swapping load in- 
trinsic to each given program. 

To estimate the actual cost of  running a program, the 
memory-demand curves of  programs in a workload must 
be used to drive a simulation or analytic model of  the 
entire system. The system model accounts for overhead 
and queueing. This has been done successfully many 
times with paging systems. For  example, paging curves 
have been used to estimate processor utilization, 
throughput, and mean response time of  various levels of  
multiprogramming [1, 2, 8, 12]; to determine bounds on 
throughput [13]; to construct synthetic workloads [27]; 
and to measure program locality [15, 18]. With demand 
curves from GWS analyses, these same techniques can be 
applied to systems with segment addressing. 

Demand Curves 

A program's address space consists of  p segments, 
denoted by indices 1 . . . . .  p. The size of  segment i is z~ 
data units. A data unit is a fixed quantity such as a bit, 
byte, word, or page. The total of  segment sizes is Z = 
zl + ... + z~,. Under paging, all zi = 1. 

A segment reference string is a sequence {r(t), t = 1, 
.... T} in which r(t) is the index number of  the segment 
referenced at virtual time t. The total volume of  referenced 
information, V, is the sum, over all t, of  the size of  the 
segment referenced at time t. Since we assume that the 
whole of  a segment must be loaded in main memory for 
referencing, the mean resident set size of  any memory 
policy is at least V~ T. 

Our analysis supposes that every program starts ex- 
ecution with an empty resident set, and that missing 
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segments are placed in the resident set on demand. A 
memory policy (MP) determines which segments are re- 
moved from resident sets. The MP'S of  interest here 
decide whether or not to retain or remove a segment by 
comparing memory usage costs against swapping loads. A 
fixed threshold, O, specifies the relative cost the MP 
assigns to retaining and swapping segments. For a given 
such m,, each resident set is determined completely by 
the reference string and the setting of  the control param- 
eter, O. 

Our m,'s associate a reference cost and a retention 
cost with each segment at each time t. The reference cost 
accounts for the unavoidable cost of  using memory while 
a segment is being referenced. We let qi denote the 
reference cost for segment i. The total reference cost, Q, 
is the sum, over all t, o f  the reference cost of  the segment 
referenced at time t. The cost Q is incurred by every Mr 
in processing the given reference string. For  paging, all 
qi = 1. 

The (accumulated) retention cost accounts for the 
memory used to maintain a segment in residence beyond 
its prior reference. For  each segment at time t, this cost 
is represented by a function R(i, t) >_ 0 satisfying three 
properties: 

(a) Prior to the first reference of  segment i, R(i, t) is 
infinite: No finite expenditure can cause a segment 
to be resident before its first reference under a 
demand MP. (However, nonempty initial resident 
sets can be represented with R(i, 0) being a suitable 
finite value.) 

(b) If  r(t) # i, R(i, t + 1) ___ R(i, t): Retention cost 
accumulates with time since prior reference. 

(c) I f  r(t) = i, R(i, t +) = 0: Retention cost is reset just 
after a reference. (The cost of  the reference itself is 
accounted for by qi.) In general, retention cost 
depends on some total internal state of  (a model of) 
the program. Thus R(i, t) is not independent of R(j, 
t). To keep the notation simple, we have not shown 
such a state explicitly as a parameter. 

It is convenient to extend these definitions to contin- 
uous time, in which segments are referenced at integer 
times. In this case, segment i is regarded as being resident 
during [t, t + 1) whenever r(t) = i, and the cost of  this 
reference is represented by qi. (Note that R(i, t) need not 
be continuous.) 

The demand curve of  an MP for a given reference 
string is a function y = f ( x )  specifying the "swapping 
load" y that results from making a "memory space 
investment" x. A point (x, y) of  this function is called a 
demand point. The swapping load is represented as a 
linear form 

y = m + A~, 

where m is the miss rate, the number of  segment faults 
per unit virtual time, and # is the information f low rate, 
the number of  data units per unit virtual time being 
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Table  I. Contr ibut ions Associated with Intervals Between References.  

References to segment  i 

prior present Residence Interval 

Contr ibut ions  to 

o T  s T  y T  

First - -  r( 0 [t, t] 

Subsequent  r(t') r(t) [t' + 1, t"] 

Post-final r(t ') - -  [t' + 1, t"] 

zl qi 1 + Az~ 

gi(t" -- l') qi + R(i, t") I O, t" = t 
1 + A z i ,  t " < t  

K 

zi(t" - f - 1) a(i ,  t") 0 

moved to satisfy segment faults. The analyst would 
normally choose the parameter A so tha ty  is proportional 
to the average time required to service a single swapping 
operation (queueing for swapping service is excluded). 
This can be done by setting 

mean time to transfer one data unit 
A =  

mean access time of  secondary store" 

Under this interpretation of A, the total time to 
complete all the swapping is y T  access times, and the 
mean swapping delay for one fault of segment i is 1 + 
Az~ access times. 

There are two possible representations of the mem- 
ory-space investment x: Either o, the mean resident set 
size generated by the MP; or s, the mean memory usage 
cost (per reference) actually expended by the MP. Notice 
that o T  is the total (virtual) space-time accumulated 
among all resident segments; it could be computed by 
summing resident-set sizes for t = 1 . . . . .  T. Likewise, s T  
is the total memory-usage cost; it could be computed by 
adding the total reference cost, Q, to the total of  all 
retention-cost increments, R(L t) - R(i, t - 1), for all 
resident i and t = 1 . . . . .  T. However, there are more 
efficient computational methods than these. 

The most efficient methods for measuring the totals 
oT, sT, a n d y T a r e  based on calculating contributions for 
each interval between successive references to a segment 
[6, 14, 21, 25]. These contributions are summarized in 
Table I. There are three cases, according as r(t) = i is a 
first, an intermediate, or a final reference. A first refer- 
ence contributes a swap, and memory usage during It, t] 
only. A subsequent reference ends an interval [t' + 1, t] 
that spans a pair of successive references; segment i is 
resident during a prefix [f  + 1, t"], and a swap occurs 
only if  t" < t. After a fmal reference there may be an 
additional period of  residence [t" + 1, t"]; in a one-pass 
measurement, its contribution must be computed after 
time T + 1 (the procedure cannot discover prior to this 
time that there are no more references). 

In practice, an analyst wishes to evaluate the demand 
curve of an MP on a given reference string for a given set 
of  threshold values {On, n - 1 . . . . .  N} only. The 
measurements will yield a corresponding set of  demand 
points (x,,, yn). These points are usually displayed as 
graphs by connecting adjacent points with straight-line 
segments. (Fitted interpolation can also be used [26].) 
This method of display, intended primarily for visual 
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convenience, has been used for years with page-fault rate 
functions--e.g., [1, 2, 3, 5, 6, 16, 20, 21, 25]. Mathemat- 
ically, these graphs approximate a value y = f ( x )  by 
linear interpolation between the nearest pair of measured 
(x, y) demand points. I f  the approximation is too crude, 
the analyst must calculate demand points for further 
values of  O. 

It is important to remember that the reference and 
retention costs are abstract quantities used to define 
memory policies, and that the swapping load does not 
account for system delays such as queueing for swapping 
or overhead in placement and replacement. Therefore, 
costs displayed by demand curves need not correspond 
to the actual costs of  running programs in the system. 
To assess actual costs, an analyst must use the demand 
curves to drive simulations or analytic models of a 
system. 

G e n e r a l i z e d  M e m o r y  P o l i c i e s  

Generalized Working Sets 

The familiar time-window working set for paging, 
W(t, ~), comprises all pages which have been referenced 
in the virtual time interval (t - r, t]. (See [9].) I f  r(t - u) 
is the latest reference to page i prior to time t, then u ___ 
1 and page i is  in the working set whenever u - 1 __ ~'. 

The parameter z can be regarded as a proportionality 
constant that relates the value of  retaining a page in 
memory to the cost of  retrieving it on a page fault. The 
working set behaves as if z page-seconds of  nonreference 
are as expensive as one page fault; it removes a page as 
soon as the cost of  retaining it begins to exceed the cost 
of retrieving it. 

The generalized working set Me extends this cost- 
balancing principle. The cost of  retaining segment i in 
residence from its prior reference until time t is R(i, t). 
The cost of  swapping (retrieving) it is 1 + Azi. The 
threshold O is the constant of  proportionality that relates 
one unit of swapping to one unit of retention cost. The 
generalized working set (GWS), W(t, O) for t = 1 . . . . .  T 
and 0 _> O comprises r(t) plus all segments for which 

R(i, t) <_ O(1 + Azi). 

This definition implies that a segment can be removed 
from the GWS at a noninteger time; however, the program 
is always charged a retention cost of exactly 0(1 + A zi) 
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Fig. 1. Properties of a demand curve. 
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for a segment so removed from the 6ws. It is easy to see 
that the 6ws satisfies the inclusion property 

W(t, O) c_ W(t, 0 + E) ~ > 0 

for all t. This observation shows that the GWS policies 
are contained in the class of  all demand-fetching MP'S 
that have a control parameter O ___ 0 and satisfy the 
inclusion property. The converse is also t rue--every 
demand-fetching MP that has a control parameter O __ 0 
and satisfies the inclusion property is equivalent to some 
Gws. 

To see this, let M(t, O) denote the resident set of  such 
an MP at time t, given that its control parameter is fixed 
at O. Suppose that the inclusion property holds--i.e. 
M(t, O) C. M(t,  0 + E). We will define a retention-cost 
function R(i, t) so that the 6ws W(t, O) is identical to 
M(t, O). Since the inclusion property holds, we can 
imagine that the p segments are placed on the interval 
[0, oo] so that, for every O, exactly the segments of  M(t, 
O) are contained in the interval [0, O]. At t = 0, all 
segments are at int'mity, since M(0, O) is empty. (This is 
a continuous form of  the "stack" [20, 6].) Let R(i, t) 
denote the distance of  segment i from the origin; remem- 
ber that R(i, t) may depend on some total internal state 
of  (a model of) the program. This distance function 
satisfies the three properties of  retention cost: 

(a) Prior to the first reference to segment L R(i, t) is 
infinite, else i would be M(t, O) for some finite O. 

(b) If  r(t) # i, it is impossible for R(i, t) < R(i, t - 1). 
For, if so, segment i would enter M(t, R(i, t)) at time 
t, contradicting the assumption that, for every O, 

Me fetches missing segments only when they are 
referenced. 

(c) If  r(t) = i, R(i, t ÷) must be 0, else segment i could 
not be guaranteed to be in M(t, O) for every O __ 0 
just after a reference to it. 

The foregoing arguments define the sense in which 
the e w s  is a model for the entire class of  demand- 
fetching uP's that have a single control parameter O >__ 
0 and satisfy the inclusion property. No MP in this class 
displays "anomalous behavior," which would be a de- 
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crease in x or an increase in y when O is decreased [17]. 
For  each value of  O, the 6ws  produces values of  

mean resident-set size o(O), mean memory usage cost 
s(O), miss rate m(O), and information flow rate #(O). 
The inclusion property implies that s(O) and o(O) are 
nondecreasing in O. Moreover, the segment faults at 
threshold O + E are a subsequence of  those at threshold 
O; this implies that m(O) and #(O) are nonincreasing in 
O. Figure 1 summarizes these facts for a demand curve 
y(O) = f(s(O)). When O = 0, it will be true that 

s(0)___Q/T and y(O)<_ 1 + A V / T ,  

with equality only if  there are no repeated references, 
and only if retention cost is never 0 except for the 
infinitesimal interval immediately following a reference. 
When O = 0% segment faults occur only at first refer- 
ences; there are p such faults and they move Z = zl + 
... + zp data units, whence y(oo) = (p + A Z)/T.  

E x a m p l e s  

The t ime-window working set removes a segment 
which has been unrcferenced for O time units. This effect 
occurs when R(i, t) = (u - l) (1 +Azi), where r(t - u) is' 
the most recent reference to segment i prior to time t. 
For  paging, this GWS resembles the original paged work- 
ing set with ~" = O + 1. 

The space-time working set uses qi = zi and sets 
retention cost to measure the space-time accumulated by 
a segment after its prior reference. Thus R(i, t) 
= ( u  - 1)zi, where r(t  - u) is the most recent reference 
to segment i prior to time t. Putting all zi = 1 reduces this 
GWS to the time-window working set for paging. It is 
important to note that s = o --i.e.,  the mean cost is the 
same as the mean resident set size when memory usage 
is measured by space-time. 

The function R(i, t) = D(i, t ) -1 ,  where D(i, t) is the 
stack distance of  page i at time t under a given stack 
algorithm, is also a valid retention-cost function 
[20, 6]. Therefore W(t, O) is precisely the resident set of  
size O + l of  the given stack algorithm. In this case s(O) 
is the mean stack distance over the referenced pages. 

It is possible to specify a program behavior which 
reflects the 6ws  [28]. Denote by P(i, t) the probability of  
referencing page i at time t; assume that r(t) # i implies 
P(i, t + 1) _< P(i, t) and that r(t) = i implies P(i, t ÷) = 1. 
Then R(i, t) --- 1 - P(i, t) is a valid retention-cost function 
and, for 0 ___ O _ 1, W(t, O) is r(t) plus all pages whose 
reference probability is at least 1 - O. A similar idea 
was suggested in [7]. 

The page-fault frequency policy (PFF) [5] is not a 
GWS. The PFF retention costs increase with time, but are 
reset to zero on any page fault; PFF thus violates reten- 
tion-cost Property (b). PFF violates the inclusion property 
and exhibits anomalous behavior [17]. 
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General ized  Opt imal  Pol ic ies  

The purpose of  this subsection is to define a demand- 
fetching MP whose convex demand curve divides the (x, 
y) plane into a feasible upper  part and an infeasible 
lower part. This policy will be called the general ized 
opt imal  pol icy  (GOPT) because no memory  policy can 
generate a d6~aand point below its demand curve. Be- 
cause the GOPT*has lookahead, it is useless for optimal 
memory  management  in real time. However, its demand 
curve, which is easily computed as a byproduct o f  the 
Gws's  demand curve, can be valuable in showing the 
analyst how well a program or memory  policy behaves. 

Recall that memory-space investment (x) is either the 
mean size of  the resident set (o) or the mean of  memory  
usage costs (s), and that, in the space-time, memory  
usage cost s = o. This means that, to find the min imum 
possible swapping for a given mean resident set size, the 
analyst needs to study only the demand curve of  space- 
time GOPT. It also means that we may study GOPT only 
in the (s, y) plane without loss of  generality. 

Underlying the Gws is the concept that the threshold 
O is the value of  one unit o f  swapping relative to one 
unit o f  memory  usage. This means that s + Oy can be 
interpreted as the "net cost" of  demand point (s, y). The 
"concept underlying 6OPT is tO make replacement deci- 
sions to minimize the "net cost" relative to the given 
measures of  memory  usage and swapping. 

It now follows that GOPT must remove a segment 
from the resident set just after its f'mal reference, for any 
delay would increase memory  usage (s) without affecting 
swapping (y). Indeed, ff GOPT opts tO remove any  seg- 
ment  f rom the resident set, it must do so immediately 
after a reference to that segment; any delay would in- 
crease s without affecting y. 

It follows from these properties that, for each refer- 
ence r (0  = i, GOPT makes just one of  two decisions: 
Retain  i until its next reference r( t  + u), or r e m o v e / j u s t  
after time t. For  a given value of  threshold O _> 0, the 
retain decision is taken if and only if 

R(i,  t + u) <_ O(1 +. Az~). 

Because O specifies the value of  retention relative to 
swapping, this criterion causes GOPT to select the cheaper 
decision for each reference. It follows that GOPT mini- 
mizes the total cost s T +  OyT.  ~'2 Notice that an equivalent 

Another way to see this is to consider the effect, on the sum s + 
Oy, of changing a "remove" to a "retain" decision, and vice versa. 
Changing the reference r(t) ffi i from a "remove" to a "retain" changes 
the total memory usage cost to sT + R(i, t + u), and the swapping cost 
to yT  - (1 + Azl). This changes the total net cost to sT + OyT + [R(i, 
t + u) - O(1 + Azi)]. Since r(t) is retained under GOPT, the bracketted 
term is positive--such a change cannot lower the net cost. A similar 
argument shows that changing GOPT "retain" to a "remove" cannot 
lower the net cost. 

2 GOPT need not be optimal among nondemand optimal MP'S. Let 
F(i, w) denote the swapping cost when segment i is fetched w time units 
prior to a reference r(t). Note that F(i, O) ffi O(1 + Az~). Prefetching 
would be advantageous if R(i, t) - R(i, t - w) + F(i, w) < F(i, O) for 
some w > 0. 
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statement of  the GOPT decision rule is: Take the "retain" 
decision for r(t)  = i only if the cost~swap ratio R(i,  t + 
u)/(1 + Azi)  does not exceed the threshold. I f  r(t)  is a 
final reference, then setting R(i,  t + u) to be infinite 
forces the "remove"  decision. 

It is easy to see that 6OPT satisfies the inclusion 
property on its resident se ts- -a t  threshold, O, it takes a 
subset of  the retain decisions which it assumes at thresh- 
old O + E. Therefore, there exists a GWS that simulates 
6OPT. (One possible 6 w s  uses the retention-cost function 
R'( i ,  t), defined as follows: Whenever r(t) and r(t + u) 
are successive references to segment i, set R'(i,  f )  = R(i,  
t + u) for all t' in  the interval It + 1, t + u].) 

We can show now that GOPT'S demand curve is 
convex and divides the (s, y )  plane into a feasible upper  
part  and an infeasible lower part. Let p0 = 0, and let pk 
denote the kth largest o f  the cost /swap ratios occurring 
in the reference string. Let K _< T - p be the number  of  
distinct finite values of  these ratios (the p final references 
have infinite ratios). Then po ---- pl < ... < pK. When O 
= pk, 6OPT generates a demand point (sk, yk) for which 
sk is the mean reference cost Q / T  plus the mean of  
retention costs over all references whose cost /swap ratios 
do not exceed Pk, and yk is the mean of  swapping loads 
over all references whose ratios exceed pk. AS shown in 
Figure 2, the slope of  the line connecting adjacent de- 
mand  points for O = pk-1 and O = pk is 

A y / ~ k s  = ( yk  - - y k - 1 ) / ( S k  --  Sk-1) = - - 1 / p k .  

This is because all those references which GOPT changes 
from "remove"  decisions to "retain" decisions when 0 
changes from pk-1 to Ok have the same value of  cost /  
swap ratio (Pk). Note also that for Ok-1 --< O < pk, 6OPT 
generates the one demand point (sk-1, yk-1). Finally, note 
that no Me can generate a demand point below the line 
connecting the two demand points for O = pk-1 and O 
= pk; for ff (s, y) were such a demand point, its "net cost" 
would be s + pky < Sk + pkyk, in contradiction to the 
optimality of  GOPT. 

Repeating the argument  for k = 1, 2 . . . . .  K and 
accounting for the boundary conditions at O = 0 and O 
ffi oo, we fred that the 6OPT demand curve is convex and 
divides the (s, y) plane into a feasible and infeasible 
region, as shown in Figure 3. 

Suppose that GOPT demand points are computed for 
a finite set of  arbitrary thresholds O1 . . . . .  On. The 
resulting N demand points will be a subset o f  the K 
possible ones, and the piecewise-linear curve connecting 
adjacent points will be convex. However, if  N < K, this 
demand curve may  not partition the plane into a feasible 
and infeasible region. 

It is possible to defme other optimal MP's based on 
criteria such as "minimize s for each given y"  or "mini- 
mize y for each given s." Because such MP'S may select 
arbitrary subsets of  references to be "retain" and "re- 
move"  decisions, they may genera te  as many  as 2 T 
distinct demand points. However, the demand curve of  
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Fig. 2. Adjacent demand points of GOPT. Fig. 4. Comparison of GOPT and GWS. 
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such an MP must lie on or above the demand curve of  
GOPT, and need not be convex. 

Examples 

Let It, t + u] denote an interreference interval of  
segment i. When retention cost is measured by space- 
time, R(i, t + u) = (u - 1)zi; this ÙOPT retains i only if u 
<_ 1 + O(A + 1/z~). For paging with all zi = 1 and with 
A = 0, this 6OPT reduces to the VMIN policy [21]. 

We noted that o w s  simulates a stack-paging algo- 
ri thm if the retention-cost function is the stack algo- 
ri thm's distance function. However, GOPT is not the MIN 
policy in this case [3, 4]. MIN optimizes (o, m) demand 
points over the entire class of  fixed-space stack algo- 
rithms and, hence, over the entire class of  possible stack 
distance functions; in contrast, GOPT optimizes relative 
to a single, given stack distance function. Moreover, 
VMIN may produce a demand curve below that of  MIN 
[211. 

An argument similar to the one used to prove the 
GOPT can also be used to prove that the time-window 
working set may be optimal among nonlookahead poli- 
cies, when the program has sufficient locality of  reference 
[10]. The required conditions seem to hold in practice 
[181. 
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A Relation Between GWS and GOPT 

Let [t, t + u] denote an interreference interval of  
segment i. When R(i, t + u) <_ O(1 + Azi) both policies 
retain i during the interval [t, t + u]. Otherwise, GOPT 
removes i at the beginning of  the interval while GWS 
retains it until its retention cost attains O(1 + Azi). 
Therefore, for given O, GWS and GOPT have identical 
fault sequences; they produce the same swapping load. 

The memory-usage cost difference between Gws and 
GOPT is estimated easily (Figure 4). After each nonfmal  
reference at which GOPT removes segment i, GWS gen- 
erates the additional retention cost 0(1 + A z  O. After the 
final reference, GWS may be forced to remove i at time 
T + 1, so that the final cost difference is at least 0 but at 
most O(1 + Azi). By associating the final GWS cOSt 
contribution for segment i with the initial fault for seg- 
ment  i, we see that (a) the total of  all cost differences 
cannot exceed the sum of  O(1 + Azi) contributions at 
faults--i.e.,  TOy(O); and (b) because the cost differences 
after final references cannot total more than 0 ( 2  + AZ) 
among the t7 segments of  total volume Z, the total cost 
difference is at least TOy(O)  - O(p + A Z ) .  Thus 

OCv(O) - Co + A Z ) / T )  <_ sw(O)  - so(O) <_ o y ( o ) .  

For  small O or large T, Oy(O) is a good approximation 
to the cost difference. 

Efficient Computation of Demand Curves 

Let O0 -- 0 and suppose that Ot . . . . .  ON is a sequence 
of  increasing threshold values for which o w s  and GOPT 
demand points are to be computed. Often O,,+1 -- 20,, 
for n > 0 gives clear resolution of  a demand curve, 
whence N is approximately log2 T for a reference string 
of  length T [26]. In the following, It - u, t] will denote 
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an interreference interval o f  segment i; if  r(t) is a first 
reference, u will be a large value. The length u can be 
computed simply if  each segment's time of  most recent 
reference is kept in a table [6, 16, 26]. 

The four measures (m, #, s, o) will be specified from 
information obtained in one pass over the reference 
string and stored in four sets o f  N + 2 counters. For n 
= 1 . . . . .  N, the counters are defined as follows: 

a(n), the total swapping load from segment faults that 
would be saved by increasing O from O,`-1 to O,,; 

b(n), the total reference volume for faults tallied in 
a(n); 

c(n), the total o f  retention costs that would be added 
by increasing O from O,`-1 to O,`; and 

d(n), the total of  resident segment space-times that 
would be added by increasing O from O,,-1 to O,`. 

For  n = 0, the counters record events for O = 0. For  n 
= N + 1, they record all events for O > O2v. Two 
additional counters, V and Q, tally the total reference 
volume and the total of  (unavoidable) reference costs; 
each reference to segment i contributes zi to V and qi to 
Q. Initially, all the counters contain zeroes. 

The values in the counters are updated for t = 1 . . . . .  
T as follows. I f  R(i, t) = 0, set n to 0, otherwise f'md the 
largest n (1 _< n _ N + 1) such that O,`-1 < R(i, t)/(1 + 
Azi). Then add 1 + Azi to a(n), zi to b(n), R(i, t) to c(n), 
and zi(u - l) to d(n). For initial references, R(i, t) is 
chosen to be larger than ON(1 + Azi) for all i. When R(i, 
t) depends only on u, this can be satisfied by choosing a 
sufficiently large initial value for u. 

The counter-updating actions will fail to record con- 
tributions occurring after the final reference to a segment. 
This does not affect GOPT, which removes every segment 
after its final reference; but it does affect GWS. Since the 
Gws behavior following the final reference to segment i 
depends on whether R(i, T + 1) _ O(1 + Az O, the 
corrections for these "end effects" are computed by 
performing the counter updating actions as if  i = r (T  + 
1) for each segment i = 1 . . . . .  p. (See Table I.) We let 
a*(n) denote the total corrections generated for counter 
a(n); similarly for b*(n), c*(n), and d*(n). 

Miss  Rate,  Flow Rate,  and Swapping Load 

The miss rate, information flow rate, and swapping 
load are the same for both Gws and GOPT. Reference r(t) 
= i produces a fault, whose retrieval demand is 1 + Azi 
i f  and only i f O  < R(i, t)/(1 + Azi); it follows that 

y(O,`) = (a(n + 1) + ... + a(N + 1))/T. 

The flow rate is, similarly, 

#(O,`) = (b(n + 1) + ... + b(N + 1))/T. 

The miss rate can be calculated as 

re(O,`) = y(O,`) - A/x(O,`). 
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G O P T  M e a n  Cost  and Mean  Resident Set  Size 

The GOPT mean cost is denoted by so(O) and its mean 
resident-set size by o0(O). The total GOPT cost, Tso(O), is 
Q plus all retention costs generated on interference in- 
tervals [t - u, t] for which R(i, t)/(1 + Azi) <_ O: 

so(O,`) = (Q + c(O) + ... + ¢(n))/T. 

The total space-time of  resident segments, Too(O), is 
reference volume V plus all additional space-time from 
retained segments: 

o0(On) = (V  + d(O) + ... + d(n))/T. 

The large retention cost assumed for an initial reference 
causes counters c(N + 1) and d(N + 1) to receive 
meaningless values on first references; however, these 
counters are not used. 

G W S  M e a n  Cost  

The Gws mean cost is denoted by sw(O). We noted 
earlier that sw(O) is approximated well by s0(O) + 
Oy(O), whenever e = O(p  + A Z ) / T  is small compared 
to Oy(O). The exact 6 w s  mean cost is calculated by 
correcting the lower bound on the cost difference, Oy(O) 
- e, with the additional retention cost contributions 
following the final references. Let sw*(O) denote the 
correction; then 

sw(O) = s0(O) + O(y(O) - (p + A Z ) / T )  + sw*(O). 

At time T + 1, segment i contributes R(i, T + 1) to the 
correction if  R(i, T + 1)/(1 + Azi) <_ O; otherwise it 
contributes O(1 + Azi). Summing these contributions, 

sw*(On) -- (c*(0) + ... c*(n))/T 
+ O,`(a*(n + 1) + .... + a*(N + I)) /T.  

Since the sum of  all the corrections cannot exceed 
O(p + AZ), 

sw.(O.) <_ on(p + AZ)/T.  

There is another way of  computing the exact sw(O). 
After the counters have been used to compute the GOPT 
demand measures, the corrections are added to them. 
Then the mean cost is computed directly, using corrected 
a- and c-counters, f rom 

sw(O,`) = (Q + c(O) + ... + c(n))/T 
+ O,`(a(n + 1) + ... + a(N + 1) - (t7 + A Z ) ) / T .  

The quantity p + A Z is deducted from the corrected 
a-counters because there are no retention costs prior to 
the first references. 

Consider a page reference string (all zi = 1) with A 
= 0 and suppose that the thresholds are chosen to be the 
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Table II. Example of  the Time-Window Working Set 

r(t): E C B E A B D C D E B C B B 

R: ~ oo oo 2 0o 2 ~ 5 1 5 4 3 1 0 
b(R): 5 3 2 5 1 2 4 3 4 5 2 3 2 2 
d(R): - -  - -  - -  10 - -  4 - -  15 4 25 8 9 2 0 

End Corrections 
Seg Size R b* d* 

A 1 9 1 9 
B 2 0 2 0 
C 3 2 3 6 
D 4 5 4 20 
E 5 4 5 20 

R = Retention-cost value (unreferenced time) 
a(O) = Number  o f  references of  R = O 
b(O) = Total of  segment  sizes among references of  R = O 
c(O) = Total of  R values among references of  R = O 
d(O) ffi Total of  Rzi among references of  R = O 

V = Total o f  b-counters = 43 

Misses 
R = 0 a(O) Tin(O) b(O) 

corrected 
Volume ~ GWS 

rlt(O) d(O) b(O) Tow(O) d(O) 
G O P T  
Too(O) 

0 1 13 2 41 0 4 43 
1 2 11 6 35 6 6 82 
2 2 9 7 28 20 10 115 
3 1 8 3 25 9 3 138 
4 1 7 2 23 28 7 158 
5 2 5 8 15 60 12 171 
9 0 5 0 15 9 1 175 

5 15 15 

0 43 
6 49 

14 63 
9 72 
8 80 

40 120 
0 120 

Table III. Example o f  the Space-Time Working Set. 

r(t): E C B E A B D C D E B C B B 
End Corrections 

Seg Size R = c* 

R: ~ ~ ~ 10 ~ 4 ~ 15 4 25 8 9 2 0 

Zi: 5 3 2 5 I 2 4 3 4 5 2 3 2 2 
A 1 9 
B 2 0 
C 3 6 
D 4 ,20 
E 5 20 

corrected 
Misses Volume ~ GOPT GWS 

R ffi 0 a(O) c(O) Tm(O) b(O) Tp(O) a(O) c(O) Tso(O)  Tsw(O) 

0 1 0 13 2 41 2 0 43 43 
2 1 2 12 2 39 1 2 45 67 
4 2 8 10 6 33 2 8 53 89 
6 0 0 10 0 33 1 6 53 107 
8 1 8 9 2 31 1 8 61 123 
9 1 9 8 3 28 2 18 70 130 

10 1 10 7 5 23 1 10 80 135 
15 1 15 6 3 20 1 15 95 155 
20 0 0 6 0 20 2 40 95 170 
25 1 25 5 5 15 1 25 120 175 

5 15 5 

first N integers (i.e., On = n). I f  retent ion costs are 
integers, such as at integer t imes for  the t ime and space- 
t ime retent ion measures,  then R(i,  t) = n implies that  one 
is added  to counter  a(n) and n to counter  b(n) during 
updating.  This  implies that  b(n) = na(n).  The  m e a n  GWS 
costs can be expressed as 

s w ( n )  ---- s w ( n  -- 1) + m(n)  

757 

+ (a*(n + 1) + ... + a * ( N  + 1) - p ) / T .  

T h i s  g e n e r a l i z e s  t h e  w o r k i n g - s e t  r e l a t i o n  o b t a i n e d  f o r  

T i n f i n i t e  [6, 14]. S i n c e  m(n)  a n d  a*(n + 1) + ... + a * ( N  

+ 1) a r e  n o n i n c r e a s i n g  in n, s w ( n )  i s  i n c r e a s i n g  a n d  

c o n c a v e  d o w n w a r d .  A s u b s e t  o f  t h e  p o i n t s  o n  t h e  s w ( n )  
c u r v e  w i l l  d e f i n e  a p i e c e w i s e - l i n e a r  c u r v e  w h i c h  is  a l s o  

c o n c a v e  d o w n w a r d .  
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Fig. 5. Demand curves of  example reference string. Fig. 6. Demand curves for database system. 
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In the space-time retention measure, sw(O) is the 
mean resident-set size of  owe. But the mean resident-set 
size ow(O) for an arbitrary retention measure may be 
more difficult to compute. This is because the additional 
space-time accumulated, among segments retained by 
Gws beyond their GOPT removal times, is not related 
simply to any of our previous measures. To illustrate, let 
vi denote the time required beyond time t for segment i 
= r( 0 to accumulate retention cost O(1 + Azi)--i.e., R(i, 
t + vi) = O(1 + Azi). Let y(i, O) denote the swapping 
load due to segment i. Ignoring end effects, arguments 
similar to our previous Ones show that 

i p 
ow(O) ~- oo(O) + "~ ~-1  viziy(i, 0).  

This could not be computed unless the a-counters were 
partitioned into p sets, one for each segment. 

The exact ow(O) can be computed, for the time-win- 
dow working set, using the available information. For 
an interference interval [t - u, t] of segment i, u > O + 
1 implies that segment i contributes Ozi space-time before 
its removal from the GWS. Reasoning similar to that used 
before produces 

ow(O,0 = (V  + d(O) + ... + d(n))/T 
+ O,(b(n + 1) + ... + b(N + 1) - Z) /T ,  

using the corrected b- and d-counters. Moreover, 

o ( ~ ( o )  - Z / T )  _ . w ( O )  - a0(O) _< Oft(O). 

Examples 

Tables II and III show the distributions and calcu- 
lations of the various measures f o r a  short reference 

Miss 
Rate 
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Average Space - Bytes 

string. The demand curves m =f(s) are plotted in Figure 
5. (Note A - 0 in this case.) For the time-window Gws, 
we calculated the resident-set sizes to enable a direct 
comparison with costs in the space-time cost structure. 
Some of space-time GOPT'S demand points are more 
favorable than for time-window GOVT, Since the latter 
does not necessarily produce the smallest miss rate for a 
given mean resident set size. 

Figure 6 shows the demand curves from an actual 
segment-reference string obtained from a database sys- 
tem at the IBM San Jose Research Laboratory. The 
database contains several hundred thousand segments, 
whose sizes range from tens to hundreds of  bytes with 
an average of  about 75 bytes. (See also [22, 23].) The 
segment-reference string records only references to data 
segments during several hours of tracing the system; it 
contains nearly two million references to 183,000 distinct 
segments, made jointly by several concurrent users. For 
this system, the time-window and space-time working 
sets give nearly the same performance, with neither 
showing a consistent advantage. At high miss rates, they 
require 15 to 20 times as much space as the optimal 
policy; this difference reduces to a factor of four or five 
for low miss rates. 

Conclusion 

We have extended the working-set concepts to gen- 
eral cost measures and segment-reference strings. The 
memory-usage costs include the unavoidable cost of  all 
references to each segment and a nondecreasing cost of 
retaining each segment while unreferenced. The swap- 
ping load is proportional to the delay in retrieving a 
missing segment. Using threshold O as the relative value 
between one unit of swapping and one unit of  retention, 
the generalized working set (owe) defines the resident 
set to be the segment referenced at time t plus all others 
whose retention-cost to swapping-load ratio does not yet 
exceed O. Corresponding to this is a generalized optimal 
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po l i cy  (GOPT) which removes a segment just after it is 
referenced, if the retention-cost to swapping-load ratio 
will exceed O by the time of next reference. 

Demand curves for the GWS and GOPT policies can 
be computed in a single scan of the reference string 
without simulation. These computations can be done 
with little space if we are willing to determine demand 
points for a small number of threshold values. For the 
space-time GWS and time-window GWS, demand points 
for adjacent values of O tend to be very close (or iden- 
tical) when O is large [1, 2, 5]. Thus, little resolution is 
lost in constructing piecewise-linear curves connecting 
computed demand points. 

When all segments are of one size and the cost 
structure is based on space-time, these results reduce to 
the familiar ones for paging: GWS becomes the conven- 
tional time-window working set [9], GOPT becomes VMIN 
[21]. Preliminary data showed little practical difference 
between time-window and space-time GWS performance. 

Most of our results do not apply if O can vary at run 
time. No policy, including one with O-variation, can 
.generate a demand point below the GOPT curve: Such 
variation is of  no interest for optimal policies. However, 
it is possible to vary the GWS threshold so that Gws 
simulates an optimal policy for part of the time; the 
resulting demand point may lie below the fLxed-O Gws 
demand curve. 

We showed that the cost difference between GWS 
and 6OPT on demand curves y - f l s )  is approximately 
Oy(O). For programs whose behavior comprises long 
phases of referencing over associated locality sets, most 
of the segment faults occur during transitions between 
phases [10, 15, 18, 19]. For such programs, the easily 
computed Oy(O) is a possible measure of the intrinsic 
differences between a lookahead policy, which can an- 
ticipate a transition, and a nonlookahead policy. 
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