
Operating R. Stockton Gaines
Systems Editor

Generalized Working
Sets for Segment
Reference Strings
Peter J. Dennin$
Purdue-University

Donald R. Slutz
IBM, San Jose

The working-set concept is extended for programs
that reference segments of different sizes. The
generalized working-set policy (GWS) keeps as its
resident set those segments whose retention costs do
not exceed their retrieval costs. The GWS is a model
for the entire class of demand-fetching memory policies
that satisfy a resident-set inclusion property. A
generalized optimal policy (GOPT) is also def'med; at
its operating points it minimizes aggregated retention
and swapping costs. Special cases of the cost structure
allow GWS and GOPT to simulate any known stack
algorithm, the working set, and VMIN. Efficient
procedures for computing demand curves showing
swapping load as a function of memory usage are
developed for GWS and GOPT policies. Empirical data
from an actual system are included.

Key Words and Phrases: database referencing,
memory management, optimal memory policies, paging,
program behavior, program measurement,
segmentation, working sets

CR Categories: 4.30, 8.10

Permission to copy without fee aU or part of this material is
granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

This work was supported at Purdue University in past by NSF
grant GJ-41289.

Authors' addresses: Peter J. Denning, Computer Sciences Depart-
ment, Purdue University, West Lafayette, IN 47907. Donald R. Slutz,
IBM Research Laboratory, 5600 Cottle Road, San Jose, CA 95193.
© 1978 ACM 0001-0782/78/0900-0750 $00.75

750

Introduction

Segment referencing has become increasingly preva-
lent. It is used in many database systems; it is supported
in hardware by several manufacturers; it underlies "pro-
gram restructuring," which seeks a locality-preserving
distribution of small logical program blocks among large
physical storage pages. There is a clear need for memory
demand measures under segment referencing.

The common procedures for measuring memory de-
mand are suited only for paged memory systems. They
measure a resident set's size by counting pages, and the
swapping load by counting page faults. But if storage
blocks are segments of different sizes, these measures do
not accurately portray a program's memory demands.
The number of resident segments may bear little relation
to the memory required to hold them; the number of
missing-segment faults may not measure the load ac-
tually placed on the swapping system.

This paper presents the generalized working set (GWS)
approach to measuring memory demand under segment
referencing. It is based on defining the cost of retaining
a segment in memory without being referenced, and the
cost of retrieving (swapping in) a missing segment. The
Gws memory policy assigns each active program a resi-
dent set containing each segment whose retention cost
does not exceed its retrieval cost. A parameter O, the
threshold, represents the cost of retrieval relative to re-
tention. The GWS models all one-parameter memory
policies whose resident sets satisfy an inclusion property
under increasing values of the control parameter (O).
The well-known "stack algorithms" [20, 6] and "time
window working set" [9, 14, 6] are special cases of the
GWS. This model extends the measurement technique to
segment referencing, and it unifies previous models as
well.

In a single pass over a given segment-reference string,
ows procedures measure a memory demand curve y =
f(x) . Each possible threshold value (0) generates a par-
ticular demand point (x, y) on this curve. This curve
shows the tradeoff between a "memory-space invest-
ment," x, and a "swapping load" y. The memory-space
investment x is either o, the mean size of the resident set,
or s, the mean of the retention costs of segments kept in
the GWS. The swapping load represents the delay from
moving segments into main memory; it is represented as
y = m + A#, where m is the missing-segment fault rate,
is the rate of information flow resulting from segment
faults, and A is a parameter selected by the analyst. The
familiar page-fault curve is the demand curve m =

f(o). These definitions give the analyst considerable flex-
ibility in choosing a memory-demand measure.

A special case of GWS policy is a generalized optimal
policy (OOPT). No memory policy can generate a demand
point below the demand curve Of GOPT. Although GOPT'S
lookahead prevents it from operating in real time, its
demand curves are easily obtaine~l--in fact, the GOPT
and GWS demand curves can be computed from each

Communications September 1978
of Volume 21
the ACM Number 9

other. It is thus cheap to learn how far from optimal a
given Gws policy is. The GOPT policy reduces to VmN
for paging [21].

The original procedures for measuring page fault-
rate curves under the time-window working-set policy
required storage of order O(M + p), where M is the
maximum time window of interest and p is the number
of pages. (See [14, 25].) In practice, M must be very
large--104 or 105 references--to obtain demand points
over the entire range of interest. The GWS and GOPT
measurement procedures calculate demand points for N
selected threshold values, with storage of order O(N +
p), where N can be as small as logzM. For practical
programs, this represents a storage reduction of two or
more orders of magnitude and corresponding speedup in
computing the demand curves. These procedures are
generalizations of those noted by Easton and Bennett for
the time-window working set [16], but they were devel-
oped independently by the authors of [11] and [24].

Because its cost functions measure each program
singly, Gws analysis does not calculate the actual cost of
running a program. It does not account for the overheads
of placement or replacement policies, or the effects of
queueing. Gws analysis does measure the tradeoff be-
tween memory-space investment and swapping load in-
trinsic to each given program.

To estimate the actual cost of running a program, the
memory-demand curves of programs in a workload must
be used to drive a simulation or analytic model of the
entire system. The system model accounts for overhead
and queueing. This has been done successfully many
times with paging systems. For example, paging curves
have been used to estimate processor utilization,
throughput, and mean response time of various levels of
multiprogramming [1, 2, 8, 12]; to determine bounds on
throughput [13]; to construct synthetic workloads [27];
and to measure program locality [15, 18]. With demand
curves from GWS analyses, these same techniques can be
applied to systems with segment addressing.

Demand Curves

A program's address space consists of p segments,
denoted by indices 1 p. The size of segment i is z~
data units. A data unit is a fixed quantity such as a bit,
byte, word, or page. The total of segment sizes is Z =
zl + ... + z~,. Under paging, all zi = 1.

A segment reference string is a sequence {r(t), t = 1,
.... T} in which r(t) is the index number of the segment
referenced at virtual time t. The total volume of referenced
information, V, is the sum, over all t, of the size of the
segment referenced at time t. Since we assume that the
whole of a segment must be loaded in main memory for
referencing, the mean resident set size of any memory
policy is at least V~ T.

Our analysis supposes that every program starts ex-
ecution with an empty resident set, and that missing

751

segments are placed in the resident set on demand. A
memory policy (MP) determines which segments are re-
moved from resident sets. The MP'S of interest here
decide whether or not to retain or remove a segment by
comparing memory usage costs against swapping loads. A
fixed threshold, O, specifies the relative cost the MP
assigns to retaining and swapping segments. For a given
such m,, each resident set is determined completely by
the reference string and the setting of the control param-
eter, O.

Our m,'s associate a reference cost and a retention
cost with each segment at each time t. The reference cost
accounts for the unavoidable cost of using memory while
a segment is being referenced. We let qi denote the
reference cost for segment i. The total reference cost, Q,
is the sum, over all t, o f the reference cost of the segment
referenced at time t. The cost Q is incurred by every Mr
in processing the given reference string. For paging, all
qi = 1.

The (accumulated) retention cost accounts for the
memory used to maintain a segment in residence beyond
its prior reference. For each segment at time t, this cost
is represented by a function R(i, t) >_ 0 satisfying three
properties:

(a) Prior to the first reference of segment i, R(i, t) is
infinite: No finite expenditure can cause a segment
to be resident before its first reference under a
demand MP. (However, nonempty initial resident
sets can be represented with R(i, 0) being a suitable
finite value.)

(b) If r(t) # i, R(i, t + 1) ___ R(i, t): Retention cost
accumulates with time since prior reference.

(c) I f r(t) = i, R(i, t +) = 0: Retention cost is reset just
after a reference. (The cost of the reference itself is
accounted for by qi.) In general, retention cost
depends on some total internal state of (a model of)
the program. Thus R(i, t) is not independent of R(j,
t). To keep the notation simple, we have not shown
such a state explicitly as a parameter.

It is convenient to extend these definitions to contin-
uous time, in which segments are referenced at integer
times. In this case, segment i is regarded as being resident
during [t, t + 1) whenever r(t) = i, and the cost of this
reference is represented by qi. (Note that R(i, t) need not
be continuous.)

The demand curve of an MP for a given reference
string is a function y = f (x) specifying the "swapping
load" y that results from making a "memory space
investment" x. A point (x, y) of this function is called a
demand point. The swapping load is represented as a
linear form

y = m + A~,

where m is the miss rate, the number of segment faults
per unit virtual time, and # is the information f low rate,
the number of data units per unit virtual time being

Communications September 1978
of Volume 2 l
the ACM Number 9

Table I. Contr ibut ions Associated with Intervals Between References.

References to segment i

prior present Residence Interval

Contr ibut ions to

o T s T y T

First - - r(0 [t, t]

Subsequent r(t') r(t) [t' + 1, t"]

Post-final r(t ') - - [t' + 1, t"]

zl qi 1 + Az~

gi(t" -- l') qi + R(i, t") I O, t" = t
1 + A z i , t " < t

K

zi(t" - f - 1) a(i , t") 0

moved to satisfy segment faults. The analyst would
normally choose the parameter A so tha ty is proportional
to the average time required to service a single swapping
operation (queueing for swapping service is excluded).
This can be done by setting

mean time to transfer one data unit
A =

mean access time of secondary store"

Under this interpretation of A, the total time to
complete all the swapping is y T access times, and the
mean swapping delay for one fault of segment i is 1 +
Az~ access times.

There are two possible representations of the mem-
ory-space investment x: Either o, the mean resident set
size generated by the MP; or s, the mean memory usage
cost (per reference) actually expended by the MP. Notice
that o T is the total (virtual) space-time accumulated
among all resident segments; it could be computed by
summing resident-set sizes for t = 1 T. Likewise, s T
is the total memory-usage cost; it could be computed by
adding the total reference cost, Q, to the total of all
retention-cost increments, R(L t) - R(i, t - 1), for all
resident i and t = 1 T. However, there are more
efficient computational methods than these.

The most efficient methods for measuring the totals
oT, sT, a n d y T a r e based on calculating contributions for
each interval between successive references to a segment
[6, 14, 21, 25]. These contributions are summarized in
Table I. There are three cases, according as r(t) = i is a
first, an intermediate, or a final reference. A first refer-
ence contributes a swap, and memory usage during It, t]
only. A subsequent reference ends an interval [t' + 1, t]
that spans a pair of successive references; segment i is
resident during a prefix [f + 1, t"], and a swap occurs
only if t" < t. After a fmal reference there may be an
additional period of residence [t" + 1, t"]; in a one-pass
measurement, its contribution must be computed after
time T + 1 (the procedure cannot discover prior to this
time that there are no more references).

In practice, an analyst wishes to evaluate the demand
curve of an MP on a given reference string for a given set
of threshold values {On, n - 1 N} only. The
measurements will yield a corresponding set of demand
points (x,,, yn). These points are usually displayed as
graphs by connecting adjacent points with straight-line
segments. (Fitted interpolation can also be used [26].)
This method of display, intended primarily for visual

752

convenience, has been used for years with page-fault rate
functions--e.g., [1, 2, 3, 5, 6, 16, 20, 21, 25]. Mathemat-
ically, these graphs approximate a value y = f (x) by
linear interpolation between the nearest pair of measured
(x, y) demand points. I f the approximation is too crude,
the analyst must calculate demand points for further
values of O.

It is important to remember that the reference and
retention costs are abstract quantities used to define
memory policies, and that the swapping load does not
account for system delays such as queueing for swapping
or overhead in placement and replacement. Therefore,
costs displayed by demand curves need not correspond
to the actual costs of running programs in the system.
To assess actual costs, an analyst must use the demand
curves to drive simulations or analytic models of a
system.

G e n e r a l i z e d M e m o r y P o l i c i e s

Generalized Working Sets

The familiar time-window working set for paging,
W(t, ~), comprises all pages which have been referenced
in the virtual time interval (t - r, t]. (See [9].) I f r(t - u)
is the latest reference to page i prior to time t, then u ___
1 and page i is in the working set whenever u - 1 __ ~'.

The parameter z can be regarded as a proportionality
constant that relates the value of retaining a page in
memory to the cost of retrieving it on a page fault. The
working set behaves as if z page-seconds of nonreference
are as expensive as one page fault; it removes a page as
soon as the cost of retaining it begins to exceed the cost
of retrieving it.

The generalized working set Me extends this cost-
balancing principle. The cost of retaining segment i in
residence from its prior reference until time t is R(i, t).
The cost of swapping (retrieving) it is 1 + Azi. The
threshold O is the constant of proportionality that relates
one unit of swapping to one unit of retention cost. The
generalized working set (GWS), W(t, O) for t = 1 T
and 0 _> O comprises r(t) plus all segments for which

R(i, t) <_ O(1 + Azi).

This definition implies that a segment can be removed
from the GWS at a noninteger time; however, the program
is always charged a retention cost of exactly 0(1 + A zi)

Communica t ions September 1978
of Volume 21
the A C M N u m b e r 9

Fig. 1. Properties of a demand curve.

Swapping ~
Load y

v(O)

p + A Z
T

0 = 0

.__,,___ q

s(O) s{~)

It Mean Cost
s

for a segment so removed from the 6ws. It is easy to see
that the 6ws satisfies the inclusion property

W(t, O) c_ W(t, 0 + E) ~ > 0

for all t. This observation shows that the GWS policies
are contained in the class of all demand-fetching MP'S
that have a control parameter O ___ 0 and satisfy the
inclusion property. The converse is also t rue--every
demand-fetching MP that has a control parameter O __ 0
and satisfies the inclusion property is equivalent to some
Gws.

To see this, let M(t, O) denote the resident set of such
an MP at time t, given that its control parameter is fixed
at O. Suppose that the inclusion property holds--i.e.
M(t, O) C. M(t, 0 + E). We will define a retention-cost
function R(i, t) so that the 6ws W(t, O) is identical to
M(t, O). Since the inclusion property holds, we can
imagine that the p segments are placed on the interval
[0, oo] so that, for every O, exactly the segments of M(t,
O) are contained in the interval [0, O]. At t = 0, all
segments are at int'mity, since M(0, O) is empty. (This is
a continuous form of the "stack" [20, 6].) Let R(i, t)
denote the distance of segment i from the origin; remem-
ber that R(i, t) may depend on some total internal state
of (a model of) the program. This distance function
satisfies the three properties of retention cost:

(a) Prior to the first reference to segment L R(i, t) is
infinite, else i would be M(t, O) for some finite O.

(b) If r(t) # i, it is impossible for R(i, t) < R(i, t - 1).
For, if so, segment i would enter M(t, R(i, t)) at time
t, contradicting the assumption that, for every O,

Me fetches missing segments only when they are
referenced.

(c) If r(t) = i, R(i, t ÷) must be 0, else segment i could
not be guaranteed to be in M(t, O) for every O __ 0
just after a reference to it.

The foregoing arguments define the sense in which
the e w s is a model for the entire class of demand-
fetching uP's that have a single control parameter O >__
0 and satisfy the inclusion property. No MP in this class
displays "anomalous behavior," which would be a de-

753

crease in x or an increase in y when O is decreased [17].
For each value of O, the 6ws produces values of

mean resident-set size o(O), mean memory usage cost
s(O), miss rate m(O), and information flow rate #(O).
The inclusion property implies that s(O) and o(O) are
nondecreasing in O. Moreover, the segment faults at
threshold O + E are a subsequence of those at threshold
O; this implies that m(O) and #(O) are nonincreasing in
O. Figure 1 summarizes these facts for a demand curve
y(O) = f(s(O)). When O = 0, it will be true that

s(0)___Q/T and y(O)<_ 1 + A V / T ,

with equality only if there are no repeated references,
and only if retention cost is never 0 except for the
infinitesimal interval immediately following a reference.
When O = 0% segment faults occur only at first refer-
ences; there are p such faults and they move Z = zl +
... + zp data units, whence y(oo) = (p + A Z)/T.

E x a m p l e s

The t ime-window working set removes a segment
which has been unrcferenced for O time units. This effect
occurs when R(i, t) = (u - l) (1 +Azi), where r(t - u) is'
the most recent reference to segment i prior to time t.
For paging, this GWS resembles the original paged work-
ing set with ~" = O + 1.

The space-time working set uses qi = zi and sets
retention cost to measure the space-time accumulated by
a segment after its prior reference. Thus R(i, t)
= (u - 1)zi, where r(t - u) is the most recent reference
to segment i prior to time t. Putting all zi = 1 reduces this
GWS to the time-window working set for paging. It is
important to note that s = o --i.e., the mean cost is the
same as the mean resident set size when memory usage
is measured by space-time.

The function R(i, t) = D(i, t) -1 , where D(i, t) is the
stack distance of page i at time t under a given stack
algorithm, is also a valid retention-cost function
[20, 6]. Therefore W(t, O) is precisely the resident set of
size O + l of the given stack algorithm. In this case s(O)
is the mean stack distance over the referenced pages.

It is possible to specify a program behavior which
reflects the 6ws [28]. Denote by P(i, t) the probability of
referencing page i at time t; assume that r(t) # i implies
P(i, t + 1) _< P(i, t) and that r(t) = i implies P(i, t ÷) = 1.
Then R(i, t) --- 1 - P(i, t) is a valid retention-cost function
and, for 0 ___ O _ 1, W(t, O) is r(t) plus all pages whose
reference probability is at least 1 - O. A similar idea
was suggested in [7].

The page-fault frequency policy (PFF) [5] is not a
GWS. The PFF retention costs increase with time, but are
reset to zero on any page fault; PFF thus violates reten-
tion-cost Property (b). PFF violates the inclusion property
and exhibits anomalous behavior [17].

Communications September 1978
of Volume 21
the ACM Number 9

General ized Opt imal Pol ic ies

The purpose of this subsection is to define a demand-
fetching MP whose convex demand curve divides the (x,
y) plane into a feasible upper part and an infeasible
lower part. This policy will be called the general ized
opt imal pol icy (GOPT) because no memory policy can
generate a d6~aand point below its demand curve. Be-
cause the GOPT*has lookahead, it is useless for optimal
memory management in real time. However, its demand
curve, which is easily computed as a byproduct o f the
Gws's demand curve, can be valuable in showing the
analyst how well a program or memory policy behaves.

Recall that memory-space investment (x) is either the
mean size of the resident set (o) or the mean of memory
usage costs (s), and that, in the space-time, memory
usage cost s = o. This means that, to find the min imum
possible swapping for a given mean resident set size, the
analyst needs to study only the demand curve of space-
time GOPT. It also means that we may study GOPT only
in the (s, y) plane without loss of generality.

Underlying the Gws is the concept that the threshold
O is the value of one unit o f swapping relative to one
unit o f memory usage. This means that s + Oy can be
interpreted as the "net cost" of demand point (s, y). The
"concept underlying 6OPT is tO make replacement deci-
sions to minimize the "net cost" relative to the given
measures of memory usage and swapping.

It now follows that GOPT must remove a segment
from the resident set just after its f'mal reference, for any
delay would increase memory usage (s) without affecting
swapping (y). Indeed, ff GOPT opts tO remove any seg-
ment f rom the resident set, it must do so immediately
after a reference to that segment; any delay would in-
crease s without affecting y.

It follows from these properties that, for each refer-
ence r (0 = i, GOPT makes just one of two decisions:
Retain i until its next reference r(t + u), or r e m o v e / j u s t
after time t. For a given value of threshold O _> 0, the
retain decision is taken if and only if

R(i, t + u) <_ O(1 +. Az~).

Because O specifies the value of retention relative to
swapping, this criterion causes GOPT to select the cheaper
decision for each reference. It follows that GOPT mini-
mizes the total cost s T + OyT. ~'2 Notice that an equivalent

Another way to see this is to consider the effect, on the sum s +
Oy, of changing a "remove" to a "retain" decision, and vice versa.
Changing the reference r(t) ffi i from a "remove" to a "retain" changes
the total memory usage cost to sT + R(i, t + u), and the swapping cost
to yT - (1 + Azl). This changes the total net cost to sT + OyT + [R(i,
t + u) - O(1 + Azi)]. Since r(t) is retained under GOPT, the bracketted
term is positive--such a change cannot lower the net cost. A similar
argument shows that changing GOPT "retain" to a "remove" cannot
lower the net cost.

2 GOPT need not be optimal among nondemand optimal MP'S. Let
F(i, w) denote the swapping cost when segment i is fetched w time units
prior to a reference r(t). Note that F(i, O) ffi O(1 + Az~). Prefetching
would be advantageous if R(i, t) - R(i, t - w) + F(i, w) < F(i, O) for
some w > 0.

754

statement of the GOPT decision rule is: Take the "retain"
decision for r(t) = i only if the cost~swap ratio R(i, t +
u)/(1 + Azi) does not exceed the threshold. I f r(t) is a
final reference, then setting R(i, t + u) to be infinite
forces the "remove" decision.

It is easy to see that 6OPT satisfies the inclusion
property on its resident se ts- -a t threshold, O, it takes a
subset of the retain decisions which it assumes at thresh-
old O + E. Therefore, there exists a GWS that simulates
6OPT. (One possible 6 w s uses the retention-cost function
R'(i , t), defined as follows: Whenever r(t) and r(t + u)
are successive references to segment i, set R'(i, f) = R(i,
t + u) for all t' in the interval It + 1, t + u].)

We can show now that GOPT'S demand curve is
convex and divides the (s, y) plane into a feasible upper
part and an infeasible lower part. Let p0 = 0, and let pk
denote the kth largest o f the cost /swap ratios occurring
in the reference string. Let K _< T - p be the number of
distinct finite values of these ratios (the p final references
have infinite ratios). Then po ---- pl < ... < pK. When O
= pk, 6OPT generates a demand point (sk, yk) for which
sk is the mean reference cost Q / T plus the mean of
retention costs over all references whose cost /swap ratios
do not exceed Pk, and yk is the mean of swapping loads
over all references whose ratios exceed pk. AS shown in
Figure 2, the slope of the line connecting adjacent de-
mand points for O = pk-1 and O = pk is

A y / ~ k s = (yk - - y k - 1) / (S k -- Sk-1) = - - 1 / p k .

This is because all those references which GOPT changes
from "remove" decisions to "retain" decisions when 0
changes from pk-1 to Ok have the same value of cost /
swap ratio (Pk). Note also that for Ok-1 --< O < pk, 6OPT
generates the one demand point (sk-1, yk-1). Finally, note
that no Me can generate a demand point below the line
connecting the two demand points for O = pk-1 and O
= pk; for ff (s, y) were such a demand point, its "net cost"
would be s + pky < Sk + pkyk, in contradiction to the
optimality of GOPT.

Repeating the argument for k = 1, 2 K and
accounting for the boundary conditions at O = 0 and O
ffi oo, we fred that the 6OPT demand curve is convex and
divides the (s, y) plane into a feasible and infeasible
region, as shown in Figure 3.

Suppose that GOPT demand points are computed for
a finite set of arbitrary thresholds O1 On. The
resulting N demand points will be a subset o f the K
possible ones, and the piecewise-linear curve connecting
adjacent points will be convex. However, if N < K, this
demand curve may not partition the plane into a feasible
and infeasible region.

It is possible to defme other optimal MP's based on
criteria such as "minimize s for each given y" or "mini-
mize y for each given s." Because such MP'S may select
arbitrary subsets of references to be "retain" and "re-
move" decisions, they may genera te as many as 2 T
distinct demand points. However, the demand curve of

Communications September 1978
of Volume 21
the ACM Number 9

Fig. 2. Adjacent demand points of GOPT. Fig. 4. Comparison of GOPT and GWS.

Swapping
Load y

Pk-1

- -~ ',~}.
i)

-~Y ~ S k , Yk)

I~ Mean Cost
5

Fig. 3. Infeasible region of demand points.

Y
Swapping ~/~1
Load y

v (o) ~

~ / Y . / ~ / ' / / / / ~ V ' / / / / / ~ A Mean Cost
s(~) s s(O)

such an MP must lie on or above the demand curve of
GOPT, and need not be convex.

Examples

Let It, t + u] denote an interreference interval of
segment i. When retention cost is measured by space-
time, R(i, t + u) = (u - 1)zi; this ÙOPT retains i only if u
<_ 1 + O(A + 1/z~). For paging with all zi = 1 and with
A = 0, this 6OPT reduces to the VMIN policy [21].

We noted that o w s simulates a stack-paging algo-
ri thm if the retention-cost function is the stack algo-
ri thm's distance function. However, GOPT is not the MIN
policy in this case [3, 4]. MIN optimizes (o, m) demand
points over the entire class of fixed-space stack algo-
rithms and, hence, over the entire class of possible stack
distance functions; in contrast, GOPT optimizes relative
to a single, given stack distance function. Moreover,
VMIN may produce a demand curve below that of MIN
[211.

An argument similar to the one used to prove the
GOPT can also be used to prove that the time-window
working set may be optimal among nonlookahead poli-
cies, when the program has sufficient locality of reference
[10]. The required conditions seem to hold in practice
[181.

755

Swapping A Load y

v(O)

I
I

1
Swl(O } s°IO' Or(O) "

Mean Cost
I v

s

A Relation Between GWS and GOPT

Let [t, t + u] denote an interreference interval of
segment i. When R(i, t + u) <_ O(1 + Azi) both policies
retain i during the interval [t, t + u]. Otherwise, GOPT
removes i at the beginning of the interval while GWS
retains it until its retention cost attains O(1 + Azi).
Therefore, for given O, GWS and GOPT have identical
fault sequences; they produce the same swapping load.

The memory-usage cost difference between Gws and
GOPT is estimated easily (Figure 4). After each nonfmal
reference at which GOPT removes segment i, GWS gen-
erates the additional retention cost 0(1 + A z O. After the
final reference, GWS may be forced to remove i at time
T + 1, so that the final cost difference is at least 0 but at
most O(1 + Azi). By associating the final GWS cOSt
contribution for segment i with the initial fault for seg-
ment i, we see that (a) the total of all cost differences
cannot exceed the sum of O(1 + Azi) contributions at
faults--i.e., TOy(O); and (b) because the cost differences
after final references cannot total more than 0 (2 + AZ)
among the t7 segments of total volume Z, the total cost
difference is at least TOy(O) - O(p + A Z) . Thus

OCv(O) - Co + A Z) / T) <_ sw(O) - so(O) <_ o y (o) .

For small O or large T, Oy(O) is a good approximation
to the cost difference.

Efficient Computation of Demand Curves

Let O0 -- 0 and suppose that Ot ON is a sequence
of increasing threshold values for which o w s and GOPT
demand points are to be computed. Often O,,+1 -- 20,,
for n > 0 gives clear resolution of a demand curve,
whence N is approximately log2 T for a reference string
of length T [26]. In the following, It - u, t] will denote

Communications September 1978
of Volume 21
the ACM Number 9

an interreference interval o f segment i; if r(t) is a first
reference, u will be a large value. The length u can be
computed simply if each segment's time of most recent
reference is kept in a table [6, 16, 26].

The four measures (m, #, s, o) will be specified from
information obtained in one pass over the reference
string and stored in four sets o f N + 2 counters. For n
= 1 N, the counters are defined as follows:

a(n), the total swapping load from segment faults that
would be saved by increasing O from O,`-1 to O,,;

b(n), the total reference volume for faults tallied in
a(n);

c(n), the total o f retention costs that would be added
by increasing O from O,`-1 to O,`; and

d(n), the total of resident segment space-times that
would be added by increasing O from O,,-1 to O,`.

For n = 0, the counters record events for O = 0. For n
= N + 1, they record all events for O > O2v. Two
additional counters, V and Q, tally the total reference
volume and the total of (unavoidable) reference costs;
each reference to segment i contributes zi to V and qi to
Q. Initially, all the counters contain zeroes.

The values in the counters are updated for t = 1
T as follows. I f R(i, t) = 0, set n to 0, otherwise f'md the
largest n (1 _< n _ N + 1) such that O,`-1 < R(i, t)/(1 +
Azi). Then add 1 + Azi to a(n), zi to b(n), R(i, t) to c(n),
and zi(u - l) to d(n). For initial references, R(i, t) is
chosen to be larger than ON(1 + Azi) for all i. When R(i,
t) depends only on u, this can be satisfied by choosing a
sufficiently large initial value for u.

The counter-updating actions will fail to record con-
tributions occurring after the final reference to a segment.
This does not affect GOPT, which removes every segment
after its final reference; but it does affect GWS. Since the
Gws behavior following the final reference to segment i
depends on whether R(i, T + 1) _ O(1 + Az O, the
corrections for these "end effects" are computed by
performing the counter updating actions as if i = r (T +
1) for each segment i = 1 p. (See Table I.) We let
a*(n) denote the total corrections generated for counter
a(n); similarly for b*(n), c*(n), and d*(n).

Miss Rate, Flow Rate, and Swapping Load

The miss rate, information flow rate, and swapping
load are the same for both Gws and GOPT. Reference r(t)
= i produces a fault, whose retrieval demand is 1 + Azi
i f and only i f O < R(i, t)/(1 + Azi); it follows that

y(O,`) = (a(n + 1) + ... + a(N + 1))/T.

The flow rate is, similarly,

#(O,`) = (b(n + 1) + ... + b(N + 1))/T.

The miss rate can be calculated as

re(O,`) = y(O,`) - A/x(O,`).

756

G O P T M e a n Cost and Mean Resident Set Size

The GOPT mean cost is denoted by so(O) and its mean
resident-set size by o0(O). The total GOPT cost, Tso(O), is
Q plus all retention costs generated on interference in-
tervals [t - u, t] for which R(i, t)/(1 + Azi) <_ O:

so(O,`) = (Q + c(O) + ... + ¢(n))/T.

The total space-time of resident segments, Too(O), is
reference volume V plus all additional space-time from
retained segments:

o0(On) = (V + d(O) + ... + d(n))/T.

The large retention cost assumed for an initial reference
causes counters c(N + 1) and d(N + 1) to receive
meaningless values on first references; however, these
counters are not used.

G W S M e a n Cost

The Gws mean cost is denoted by sw(O). We noted
earlier that sw(O) is approximated well by s0(O) +
Oy(O), whenever e = O(p + A Z) / T is small compared
to Oy(O). The exact 6 w s mean cost is calculated by
correcting the lower bound on the cost difference, Oy(O)
- e, with the additional retention cost contributions
following the final references. Let sw*(O) denote the
correction; then

sw(O) = s0(O) + O(y(O) - (p + A Z) / T) + sw*(O).

At time T + 1, segment i contributes R(i, T + 1) to the
correction if R(i, T + 1)/(1 + Azi) <_ O; otherwise it
contributes O(1 + Azi). Summing these contributions,

sw*(On) -- (c*(0) + ... c*(n))/T
+ O,`(a*(n + 1) + + a*(N + I)) /T.

Since the sum of all the corrections cannot exceed
O(p + AZ),

sw.(O.) <_ on(p + AZ)/T.

There is another way of computing the exact sw(O).
After the counters have been used to compute the GOPT
demand measures, the corrections are added to them.
Then the mean cost is computed directly, using corrected
a- and c-counters, f rom

sw(O,`) = (Q + c(O) + ... + c(n))/T
+ O,`(a(n + 1) + ... + a(N + 1) - (t7 + A Z)) / T .

The quantity p + A Z is deducted from the corrected
a-counters because there are no retention costs prior to
the first references.

Consider a page reference string (all zi = 1) with A
= 0 and suppose that the thresholds are chosen to be the

Communicat ions September 1978
of Volume 21
the A C M Number 9

Table II. Example of the Time-Window Working Set

r(t): E C B E A B D C D E B C B B

R: ~ oo oo 2 0o 2 ~ 5 1 5 4 3 1 0
b(R): 5 3 2 5 1 2 4 3 4 5 2 3 2 2
d(R): - - - - - - 10 - - 4 - - 15 4 25 8 9 2 0

End Corrections
Seg Size R b* d*

A 1 9 1 9
B 2 0 2 0
C 3 2 3 6
D 4 5 4 20
E 5 4 5 20

R = Retention-cost value (unreferenced time)
a(O) = Number o f references of R = O
b(O) = Total of segment sizes among references of R = O
c(O) = Total of R values among references of R = O
d(O) ffi Total of Rzi among references of R = O

V = Total o f b-counters = 43

Misses
R = 0 a(O) Tin(O) b(O)

corrected
Volume ~ GWS

rlt(O) d(O) b(O) Tow(O) d(O)
G O P T
Too(O)

0 1 13 2 41 0 4 43
1 2 11 6 35 6 6 82
2 2 9 7 28 20 10 115
3 1 8 3 25 9 3 138
4 1 7 2 23 28 7 158
5 2 5 8 15 60 12 171
9 0 5 0 15 9 1 175

5 15 15

0 43
6 49

14 63
9 72
8 80

40 120
0 120

Table III. Example o f the Space-Time Working Set.

r(t): E C B E A B D C D E B C B B
End Corrections

Seg Size R = c*

R: ~ ~ ~ 10 ~ 4 ~ 15 4 25 8 9 2 0

Zi: 5 3 2 5 I 2 4 3 4 5 2 3 2 2
A 1 9
B 2 0
C 3 6
D 4 ,20
E 5 20

corrected
Misses Volume ~ GOPT GWS

R ffi 0 a(O) c(O) Tm(O) b(O) Tp(O) a(O) c(O) Tso(O) Tsw(O)

0 1 0 13 2 41 2 0 43 43
2 1 2 12 2 39 1 2 45 67
4 2 8 10 6 33 2 8 53 89
6 0 0 10 0 33 1 6 53 107
8 1 8 9 2 31 1 8 61 123
9 1 9 8 3 28 2 18 70 130

10 1 10 7 5 23 1 10 80 135
15 1 15 6 3 20 1 15 95 155
20 0 0 6 0 20 2 40 95 170
25 1 25 5 5 15 1 25 120 175

5 15 5

first N integers (i.e., On = n). I f retent ion costs are
integers, such as at integer t imes for the t ime and space-
t ime retent ion measures, then R(i, t) = n implies that one
is added to counter a(n) and n to counter b(n) during
updating. This implies that b(n) = na(n). The m e a n GWS
costs can be expressed as

s w (n) ---- s w (n -- 1) + m(n)

757

+ (a*(n + 1) + ... + a * (N + 1) - p) / T .

T h i s g e n e r a l i z e s t h e w o r k i n g - s e t r e l a t i o n o b t a i n e d f o r

T i n f i n i t e [6, 14]. S i n c e m(n) a n d a*(n + 1) + ... + a * (N

+ 1) a r e n o n i n c r e a s i n g in n, s w (n) i s i n c r e a s i n g a n d

c o n c a v e d o w n w a r d . A s u b s e t o f t h e p o i n t s o n t h e s w (n)
c u r v e w i l l d e f i n e a p i e c e w i s e - l i n e a r c u r v e w h i c h is a l s o

c o n c a v e d o w n w a r d .

Communicat ions September 1978
of Volume 21
the ACM Number 9

Fig. 5. Demand curves of example reference string. Fig. 6. Demand curves for database system.

14

1:1

12

11

10

9

8
Segment

Misses 7
m(O)T

{;

s

4

3

2

1

0

I I I I I I I I I

I I I I I I I I l
20 40 60 80 100 120 140 160 180 200

Resident Set Space T ime o (0)T

~= ; GWS

O - - - 0 - - - O GOPT

Space-T ime Cost

O GWS

O - - - - O - - - - O GOPT

Time Cost

GWS Mean Resident Set Size

In the space-time retention measure, sw(O) is the
mean resident-set size of owe. But the mean resident-set
size ow(O) for an arbitrary retention measure may be
more difficult to compute. This is because the additional
space-time accumulated, among segments retained by
Gws beyond their GOPT removal times, is not related
simply to any of our previous measures. To illustrate, let
vi denote the time required beyond time t for segment i
= r(0 to accumulate retention cost O(1 + Azi)--i.e., R(i,
t + vi) = O(1 + Azi). Let y(i, O) denote the swapping
load due to segment i. Ignoring end effects, arguments
similar to our previous Ones show that

i p
ow(O) ~- oo(O) + "~ ~-1 viziy(i, 0).

This could not be computed unless the a-counters were
partitioned into p sets, one for each segment.

The exact ow(O) can be computed, for the time-win-
dow working set, using the available information. For
an interference interval [t - u, t] of segment i, u > O +
1 implies that segment i contributes Ozi space-time before
its removal from the GWS. Reasoning similar to that used
before produces

ow(O,0 = (V + d(O) + ... + d(n))/T
+ O,(b(n + 1) + ... + b(N + 1) - Z) /T ,

using the corrected b- and d-counters. Moreover,

o (~ (o) - Z / T) _ . w (O) - a0(O) _< Oft(O).

Examples

Tables II and III show the distributions and calcu-
lations of the various measures f o r a short reference

Miss
Rate

1.0

0.8

0.6

0.4

0.2

O.0

I 1 1 1 1 1 1 1 1 1 1 1 1 I I I I I I I I I I I H I t [t l l l l l l l I I I I I I l l l l l l l l l I 1 1 1 1 1 1 1 1 1 1 1 1 I I I I [l l l l l t l

--~----~- Time Working Set
= = = Space--Time Working Set

GOPT

[[l l l l l [l l l l l i i i i i i i i i i 1 [i i I I I I I I L I [H I I I [l l l l l l ~ l l l l l l l I I I I I I I I I l l l |

10 2 10 3 10 4 10 5 10 6 10 7 * 10 8

Average Space - Bytes

string. The demand curves m =f(s) are plotted in Figure
5. (Note A - 0 in this case.) For the time-window Gws,
we calculated the resident-set sizes to enable a direct
comparison with costs in the space-time cost structure.
Some of space-time GOPT'S demand points are more
favorable than for time-window GOVT, Since the latter
does not necessarily produce the smallest miss rate for a
given mean resident set size.

Figure 6 shows the demand curves from an actual
segment-reference string obtained from a database sys-
tem at the IBM San Jose Research Laboratory. The
database contains several hundred thousand segments,
whose sizes range from tens to hundreds of bytes with
an average of about 75 bytes. (See also [22, 23].) The
segment-reference string records only references to data
segments during several hours of tracing the system; it
contains nearly two million references to 183,000 distinct
segments, made jointly by several concurrent users. For
this system, the time-window and space-time working
sets give nearly the same performance, with neither
showing a consistent advantage. At high miss rates, they
require 15 to 20 times as much space as the optimal
policy; this difference reduces to a factor of four or five
for low miss rates.

Conclusion

We have extended the working-set concepts to gen-
eral cost measures and segment-reference strings. The
memory-usage costs include the unavoidable cost of all
references to each segment and a nondecreasing cost of
retaining each segment while unreferenced. The swap-
ping load is proportional to the delay in retrieving a
missing segment. Using threshold O as the relative value
between one unit of swapping and one unit of retention,
the generalized working set (owe) defines the resident
set to be the segment referenced at time t plus all others
whose retention-cost to swapping-load ratio does not yet
exceed O. Corresponding to this is a generalized optimal

758 Communications September 1978
of Volume 2 !
the ACM Number 9

po l i cy (GOPT) which removes a segment just after it is
referenced, if the retention-cost to swapping-load ratio
will exceed O by the time of next reference.

Demand curves for the GWS and GOPT policies can
be computed in a single scan of the reference string
without simulation. These computations can be done
with little space if we are willing to determine demand
points for a small number of threshold values. For the
space-time GWS and time-window GWS, demand points
for adjacent values of O tend to be very close (or iden-
tical) when O is large [1, 2, 5]. Thus, little resolution is
lost in constructing piecewise-linear curves connecting
computed demand points.

When all segments are of one size and the cost
structure is based on space-time, these results reduce to
the familiar ones for paging: GWS becomes the conven-
tional time-window working set [9], GOPT becomes VMIN
[21]. Preliminary data showed little practical difference
between time-window and space-time GWS performance.

Most of our results do not apply if O can vary at run
time. No policy, including one with O-variation, can
.generate a demand point below the GOPT curve: Such
variation is of no interest for optimal policies. However,
it is possible to vary the GWS threshold so that Gws
simulates an optimal policy for part of the time; the
resulting demand point may lie below the fLxed-O Gws
demand curve.

We showed that the cost difference between GWS
and 6OPT on demand curves y - f l s) is approximately
Oy(O). For programs whose behavior comprises long
phases of referencing over associated locality sets, most
of the segment faults occur during transitions between
phases [10, 15, 18, 19]. For such programs, the easily
computed Oy(O) is a possible measure of the intrinsic
differences between a lookahead policy, which can an-
ticipate a transition, and a nonlookahead policy.

Acknowledgments. We should like to thank Alan P.
Batson, R. Stockton Gaines, G. Scott Graham, Kevin C.
Kahn, and Alan J. Smith for comments as the many
revisions of this manuscript evolved2

8. Courtois, P.J. Decomposability. Academic Press, New York, 1977.
9. Denning, P.J. The working set model for program behavior.
Comm. A C M 11, 5 (May 1968), 323-333.
10. Denning, P.J. Optimal multiprogrammed memory management.
In Current Trends in Programming Methodology II1, K.M. Chandy
and R. Yeh, Eds., Prentice-Hall, Englewood Cliffs, N.J., (1978),
298-322.
11. Denning, P.J. The computation and use of optimal paging curves.
Tech. Rep. CSD-TR-154, Comptr. Sci. Dept., Purdue University, W.
Lafayette, Ind., June 1975.
12. Denning, P.J., and Graham, G.S. Multiprogrammed memory man-
agement. Proc. IEEE 63, 6 (June 1975), 924-939.
13. Denning, P.J., Kahn, K.C., Leroudier, J., Potier, D., and Suri, R.
Optimal multiprogramming. A cta Informatica 7, 2 (1976), 197-216.
14. Denning, P.J., and Schwartz, S.C. Properties of the working set
model. Comm. A CM 15, 3 (March 1972), 191-198.
15. Denning, P.J., and Kahn, K.C. A study of program locality and
lifetime functions. Proc. 5th ACM Symp. on Oper. Syst. Principles,
Nov. 1975, pp. 207-216.
16. Easton, M. C., and Bennett, B.T. Transient-free working set statis-
tics. Comm. A CM 20, 2 (Feb. 1977), 93-99.
17. Franklin, M.A., Graham, G.S., and Gupta, R.K. Anomalies with
variable partition paging algorithms. Comm. A CM 21, 3 (March 1978),
232-236.
18. Graham, G.S., and Denning, P.J. On the relative controllability of
memory policies. Proc. Int. Symp. Comptr. Performance Modeling,
Measurement, and Evaluation, Aug. 1977, North-Holland, Amster-
dam, 1977, pp. 411-428.
19. Madison, A.W., and Batson, A.P. Characteristics of program lo-
calities. Comm. A C M 19, 5 (May 1976), 285-294.
20. Mattson, R.L., Gecsei, J., Slutz, D.R., and Traiger, I.L. Evaluation
techniques for storage hierarchies. IBM Syst. J. 9, 2 (1970), 78-101.
21. Prieve, B.G., and Fabry, R.S. VMIN--an optimal variable space
paging algorithm. Comm. A CM 19, 5 (May 1976), 295-297.
22. Ragaz, N., and Rodriguez-Rosell, J. Empirical studies of storage
management in a data base system. IBM Res. Rep. RJ 1834, IBM Res.
Lab., San Jose, Calif., May 1976.
23. Rodriqucz-Rosell, J. "Empirical data reference behavior in data
base systems. IEEE Computer 9, 11 (Nov. 1976), 9-13.
24. Slutz, D.R. A relation between working set and optimal algorithms
for segment reference strings. IBM Res. Rep. RJ 1623, IBM Res. Lab.,
San Jose, Calif., July 1975.
25. Slutz, D.R., and Traiger, I.L. A note on the calculation of average
working set size. Comm. A CM 17, 10 (Oct. 1974), 563-565.
26. Smith, A.J. A modified working set paging algorithm. IEEE Trans.
Comptrs. C-25, 9 (Sept. 1976), 907-914.
27. Sreenivasan, K., and Kleinman, A.J. On the construction of a
representative synthetic workload. Comm. A CM 17, 3 (March 1974),
127-132.
28. Tran-Quoc-Te. An open formulation of working set policies. Rep.
10, Proj. MIMOSA, Facultes Universitaires N.-D. de la Paix, Belgium,
Dec. 1975.

Received March 1976; revised December 1977

References
1. Bard, Y. Characterization of program paging in a time sharing
environment. IBM £ Res. and Develop. 17, 5 (Sept. 1973), 387-393.
2. Bard, Y. Application of the page survival index (PSI) to virtual
memory system performance. IBM J. Res. and Develop. 19, 3 (May
1975), 212-220.
3. Belady, L.A. A study of replacement algorithms for virtual
storage computers. IBM Syst. £ .5, 2 (1966), 78-101.
4. Belady, L.A., and Palermo, F.P. On-line measurement of paging
behavior by the multilevel MIN algorithm. IBM £ Res. and Develop.
18, I (Jan. 1974), 2-19.
5. Chu, W.W., and Opderbeck, H. "The page fault frequency
paging algorithm. Proc. AFIPS 1972 FJCC, Vol. 41, Pt. 1, AFIPS
Press, Montvale, N.J., pp. 597-609.
6. Coffman, E.G. Jr., and Denning, P.J. Operating Systems Theory.
Prentice-Hall, Englewood Cliffs, N.J., 1973.
7. Coffman, E.G. Jr., and Ryan, T.A. A study of storage
partitioning using a mathematical model of locality. Comm. A CM 15,
3 (March 1972), 185-190.

759 Communications September 1978
of Volume 21
the ACM Number 9

