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1 INTRODUCTION

Locality is a fundamental property of computation and a central principle in software, hardware,
and algorithmic design. As defined by Denning, it is the “tendency for programs to cluster refer-
ences to subsets of address space for extended periods” (Denning and Martell 2015, p. 143). Lo-
cality has been exploited to design high-performance caches and memory managers in operating
systems. These systems have relied on a set of locality measures that enable memory systems
to adapt to demand. In modern computer systems, “the increasing gap between processor and
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Table 1. Example Locality Analysis Uses, Targets, and Metrics

Targets of
Uses of locality analysis analysis Metrics

program analysis and optimization data accesses access frequency,
reuse distances

virtual memory management, execution phases working sets,
cache sharing footprints

cache design, performance modeling cache systems miss ratio curves,
average eviction times

memory speeds has rendered the organization, architecture, and design of memory subsystems an
increasingly important part of computer-systems design” (Jacob et al. 2010). Memory is also in-
creasingly diverse, with different materials, configurations, and interconnects providing different
tradeoffs among capacity, speed, cost, and other factors: “a well-implemented hierarchy allows a
memory system to approach simultaneously the performance of the fastest component, the cost
per bit of the cheapest component, and the energy consumption of the most energy-efficient com-
ponent” (Jacob et al. 2010).

There is a large and growing body of literature on locality analysis and optimization. Locality
has been defined in many ways; Table 1 shows examples of locality concepts in three groups,
each by their target of analysis. For a program, the analysis measures its data accesses by the
reuse distance or frequency (hotness). For resource sharing, the analysis measures the dynamic
data demand by the working set or footprint. For cache design, the analysis measures the cache
performance by the miss ratio curve or the average eviction time.

While most past studies focused on one locality definition, this article creates a unified mathe-
matical framework encompassing widely used, distinct locality definitions. We will formalize and
prove their relations. Through this standardization, we provide the groundwork for future study
unimpeded by assorted and distinct previously used ideas and techniques. In addition, the frame-
work we will introduce allows retrospective analysis of past locality research through reintroduc-
tion of formulae and definitions within the context of a more well defined and precise mathematical
language.

We call the new framework the relational theory of locality (RTL), which consists of precise math-
ematical descriptions of a set of locality definitions and their relations. It includes three categories,
and locality is defined in each category with similar objectives and parameters.

• access locality: measures of locality for each memory access
• timescale locality: functions that measure locality with length of time as a parameter
• cache locality: functions that measure locality with cache size as a parameter

Locality definitions also differ by their levels of abstraction. An access trace is most concrete
in that it encodes the complete memory behavior. From a trace, different definitions of locality
extract and retain different aspects of the data access information. By establishing their relations,
the new theory shows that timescale locality captures the most useful information from a trace
and enjoys the highest time and space efficiency.

The relational theory is useful both pedagogically and in practice. Locality definitions are in-
tuitively related. For example, data reuses in a program are likely beneficial, since they are likely
cache hits if the cache is large enough. However, the intuition is not precise, because it cannot say
how large is large enough. The relational theory shows the precise conversion between these and
other concepts.
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The practical benefits are many and can be divided into two areas. The first is measurement.
If two locality definitions are mathematically equivalent, then a measurement technique devel-
oped for one metric can be used for both by converting between the two metrics. For example,
two newest techniques, AET (Hu et al. 2018), for storage cache, and RDX (Wang et al. 2019), for
CPU cache, use sampling to measure the miss ratio curve with an extremely low cost. Using the
relational theory, Section 3.3 will show that these techniques, although independently developed
with different areas of applications, produce results mathematically related to previous locality
definitions and hence to each other.

The second and more important area is optimization. The relational theory shows how opti-
mizing one metric may affect other metrics, e.g., how to minimize the number of misses in cache
by transforming data reuses in a program. A theory inevitably makes simplifying assumptions,
but given their assumptions, the theoretical relations are both universal, i.e., across programs, and
reliable, i.e., across transformations.

Contributions

The article presents a taxonomy of common locality concepts with precise definitions and groups
similar definitions into categories. It unifies concepts and equations introduced in preexisting lit-
erature and shows a set of new relations as follows.

In the case of access locality, it shows equivalence between definitions based on sequences and
non-equivalence between definitions based on histograms. In the case of timescale and cache local-
ity, it shows the first mathematical relation between the working set by Denning et al. (Denning
1968; Denning and Schwartz 1972) and the footprint by Xiang et al. (2011b, 2013) as well as in-
troducing a new way to approach using Denning recursion on finite traces. The relation leads to
new, simple proofs of boundedness and concavity. More importantly, it shows the mathematical
relation among four previous techniques in computing the miss ratio, which have been used in
recent publications without a comparison with each other. Further derivation also gives the first
theoretical justification to a formula discovered four decades ago to model shared cache miss ra-
tio (Easton and Fagin 1978). In addition, the article gives a new, short explanation of the previous
formula for computing the footprint and an alternative that is asymptotically faster.

Finally, it summarizes with a relation graph that connects all locality definitions in all categories.
The rest of the article will provide the pieces missing from previous works but that are necessary
to show the complete relations.

The new theory has a limited scope. It defines and measures locality but does not address the
problem of locality optimization (Aho et al. 2006; Allen and Kennedy 2001; Coffman Jr. and Denning
1973; Cooper and Torczon 2010; Meyer et al. 2003; Wolfe 1996). It measures the amount of data
movement but not the time overhead, which depends on other factors such as latency, prefetching,
and burstiness of communication. It neither considers spatial locality, nor does it optimize the data
layout (Lavaee 2016; Petrank and Rawitz 2002). It assumes automatic cache management and does
not solve the more general problem of I/O complexity (Elango et al. 2015; Hong and Kung 1981).
Finally, the article does not cover all locality measures.

2 LOCALITY DEFINITIONS AND RELATIONS

We will first present an overview that divides the locality measurements into six categories and
then present them in subsections.

2.1 Overview

A trace is a sequence of references to data or memory locations. Each reference is a memory ad-
dress. We also call a reference a trace element, and its target a data item. The words “sequence,”
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Fig. 1. The categories of locality measurements and new theoretical results (in italics).

“trace,” and “execution” are used interchangeably, as are the phrases “memory access” and “mem-
ory address.” We ignore any issue of granularity. A data item may be a variable, a data block, a
page, or an object.

A locality definition is an equivalence relation among all execution traces—two executions are
equivalent if and only if they have the same locality by the definition. Each locality definition
partitions executions into equivalence classes.

Figure 1 shows locality definitions in three top-level and four second-level categories.
The first category is access locality, which quantifies locality for each access. It has four types as

shown in Figure 1. The simplest is singleton locality—the locality is the execution itself.1 Singleton
locality defines the strictest notion of equivalence. Two executions have the same singleton locality
if and only if they are identical. By comparing equivalence classes, we can precisely compare
different definitions of locality.

We use the terms locality definition and measurement interchangeably. Singleton locality re-
quires no measurement. Other locality definitions require a way to measure, and a way to measure
locality also defines the locality. It is often more convenient to define locality based on another
locality definition, not on an execution trace, e.g., the miss ratio defined from the reuse distance.
We call it the locality conversion. The following sections show the relation between locality def-
initions by the conversion between each other. With the complete relation between locality defi-
nitions, conversion becomes synonymous to measurement, because to measure is to convert from
singleton. A relational theory is also a measurement theory.

The following sections describe all locality categories. The sequence locality has the most in-
formation but also incurs the highest cost. The histogram locality allows for a compact represen-
tation. This benefit is exploited by the timescale locality to model the cache locality. These locality
categories are progressively higher level, more abstract, and more efficient to use in practice. As
running examples, we will use a number of trace examples composed with just three data elements
a,b, c , including those repeating them once in the same order (i.e., abc abc ), in opposite order (i.e.,
abc cba), or repeating indefinitely (i.e., abc abc . . . ).

2.2 Sequence Locality

We describe sequence and histogram locality and leave the frequency locality to Section 2.6. We
define the following:

1The name “singleton” is an adaptation of Lu and Scott, who defined determinism as an equivalence relationship among

concurrent executions (Lu and Scott 2011).
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n is the length of a trace.
N = mt (1 . . .n) is a memory address trace.
m is the number of distinct memory addresses accessed by the trace.
M = {e1 . . . em } is the set of distinct memory addresses.

The locality may be measured by one of the following three sequences:

• Address independent (AI) sequence. Given an access trace, the AI sequence is constructed by
renaming the memory addresses to M = {1 . . .m} and indexing them in order. The memory
address is i if it is ith earliest in the order of first appearance in the trace. An AI sequence
standardizes data-to-memory mappings. For example, two traces abc abc and cba cba have
the same AI sequence e1, e2, e3 e1, e2, e3. AI locality is more abstract than singleton locality.
If a program is run multiple times with the same input but different memory allocations,
e.g., address space layout randomisation (ASLR), then the (singleton) trace changes but the
AI sequence does not.

• Reuse interval (RI) sequence. For each access, the reuse interval is the increment of logical
or physical time since the last access of the same datum. For example, the RI sequence
is ∞∞∞ 333 for abc abc and ∞∞∞ 135 for abc cba. The reuse interval is ∞ if it is its
first access. For a finite reuse interval, the minimal is 1 and the maximum n − 1. The reuse
interval has been called the inter-reference interval (iri) in the working set theory (Denning
1968), inter-reference gap in LIRS (Jiang and Zhang 2002), reuse distance in StatCache and
StatStack (Eklov et al. 2011), and reuse time in our earlier papers.

• Reuse distance (RD) sequence. For each access, the reuse distance is the number of distinct
data accessed since the last access to the same datum, including the reused datum. For
example, the RI sequence is ∞∞∞ 333 for abc abc and ∞∞∞ 123 for abc cba. The reuse
distance is∞ if it is its first access. For a finite reuse distance, the minimum is 1 (because it
includes the reused datum), and the maximum is m. The reuse distance is the same as the
LRU stack distance (Mattson et al. 1970), which is often called stack distance for short.

For either RI or RD, the locality may be represented by the entire sequence or be broken down
into per-datum sequences:

• Per datum (PD) sequence of reuse interval (PD·RI) and reuse distance (PD·RD), which converts
a trace into a set of RI or RD sub-sequences pd[e] = ( fe , r2, . . . , rne

) for each datum e , where
fe is the time of e’s first access, ne the number of accesses, and ri the reuse interval of ith
access in PD·RI and the reuse distance of ith access in PD·RD. Note that r1 = ∞ is omitted.
For element a in abc abc , the PD·RI and PD·RD sequences are the same: pd[a] = (1, 3).

The reuse interval ri may be either forward or backward. It is the forward reuse interval of the
(i − 1)th access and the backward reuse interval of the ith access. They are equivalent when used
for whole-trace analysis but different when used in online analysis. The backward reuse interval
shows the history, and the forward interval the future. There is the similar distinction between
forward and backward reuse distance. The following discussion assumes the backward reuse.

2.2.1 Equivalence. The five definitions in the preceding section are all equivalent. This section
shows this equivalence by mutual conversions between each pair of definitions.

It is trivial to show mutual conversion between RI and AI and between RI and PD·RI. For exam-
ple, to convert from AI to RI, we traverse the trace and use a hash table to record the last access
time of each element. At each access, the reuse interval is the difference between the current time
and the last access time. The three definitions are shown as boxes in Figure 2 and the two pairwise
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Fig. 2. Sequence locality definitions and their conversions.

conversions by four directed edges. By transitivity, AI and PD·RI are also mutually convertible.
Hence, all three definitions are equivalent.

From past work (Mattson et al. 1970) in reuse distance measurement, AI can be converted to
RD, which is then trivially converted to PD·RD. Next, we show two theorems that establish the
conversion first from RD to AI and then from PD·RD to AI. The two conversion results, as shown
by Figure 2, produce a completely cyclic graph including all five locality definitions, proving their
equivalence.

Theorem 2.1. The address-independent sequence AI can be built from the reuse distance sequence

RD.

Proof. The LRU stack contains the access sequence at the top position (Mattson et al. 1970).
To obtain the AI sequence, we show that the RD sequence can construct the LRU stack as follows.
When the reuse distance is ∞, a new data item i is created and placed on top of the stack (first
position). At a finite reuse distance x , the data item at stack position x is moved to the top, and the
items in positions 1 . . . x − 1 are moved down by one position. �

The construction of an AI trace is more difficult than from per datum (PD) reuse distances,
because the order of reuses between data items is lost in the PD conversion.

Theorem 2.2. The AI trace can be built from per datum reuse distances PD · RD.

Proof. See appendix. �

Algorithm 1 gives a simple conversion from PD·RD to AI. A more complicated algorithm for
converting PD·RD to AI, Algorithm 3, is presented in the appendix along with a proof of correct-
ness; for readability, we give here only the simple algorithm along with a proof of equivalence. We
do not give a direct proof of correctness for Algorithm 1. Algorithm 1 follows a simple procedure.
Initially, all data elements are sorted by their first access time. At each position i of the AI trace,
we put the element at the head of the list. Then we reinsert the element based on its next reuse
distance. The algorithm omits the case when an element has no more reuses, in which case it is
not re-inserted into the list at Line 7.

Algorithm 1 is based on a linked list, while Algorithm 3 uses vectors. Next, we show that the
list-based algorithm is correct, because it generates the same trace as the vector-based algorithm
does.

Theorem 2.3. Algorithm 1 constructs the correct AI trace.

ACM Transactions on Architecture and Code Optimization, Vol. 16, No. 3, Article 33. Publication date: August 2019.



A Relational Theory of Locality 33:7

ALGORITHM 1: PD·RD→ AI conversion (list based)

1 ai[1 . . .n]← 0

2 list[1 . . .m]← {ei } sorted by first-access time

3 for i = 1 to n do

4 let list[1] be e

5 ai[i]← e

6 let d be the next reuse distance of e

7 remove list[1] and re-insert e as list[d], moving down list[d . . .m − 1] to list[d + 1 . . .m]

8 end

Proof. At each ai[i], the list in Algorithm 1 is ordered the same as one sorted by nextpos in
Algorithm 3. The two algorithms both start the same, with the order of the first-access time. The
update to nextpos in Algorithm 3 has the same effect as re-insertion into the list in Algorithm 1.
Note that the order in Algorithm 3 is a partial order by nextpos but a total order when consider
lastpos .

Algorithm 1 selects the first element of the list. In Algorithm 3, the corresponding element is
e with smallest nextpos[e] (such that nextpos[e] ≥ i). Since Algorithm 3 is correct, we must have
nextpos[e] = i , so choosing the first list element by Algorithm 1 is always correct. �

The complexity of Algorithm 1 is O (nd ), where n is the length of the trace, and d the average
reuse distance, which isO (m) in the worst case. The complexity can be reduced by using a balanced
search tree to store the ordered list. At each iteration, Line 7 removes the left-most child node and
re-inserts it as the dth node. To find the insertion point and to maintain the balance, each tree node
keeps a record of the sub-tree size. The complexity can be reduced to O (n logm).

2.3 Histogram Locality

Histogram construction (HI ) produces two types of histograms:

• The RI histogram ri(i ), which counts the number of reuse intervals that equal i , i =
1, . . . ,n − 1,∞ and 0 ≤ ri(i ) ≤ n. The RI histogram ri(i ) for abc abc is 3 when i = 3,∞ and
0 otherwise. It is a (unordered) summary of its reuse intervals.

• The RD histogram rd (i ), which counts the number of reuse distances that equals i , i =
1, . . . ,m,∞ and 0 < rd (i ) ≤ n. The RD histogram for abc abc is the same as its RI histogram
shown before, i.e., rd (i ) = ri(i ).

We denote the reuse interval and reuse distance histogram as HI · RI and HI · RD, where RI and
RD are the reuse interval and reuse distance trace discussed above, and HI is the histogram con-
version. The HI conversion loses all information about memory address, access time, and order of
reuses.

The reuse interval histogram was called the interreference density (Denning and Schwartz 1972).
If we normalize the bins of a reuse interval histogram by dividing them with the total number
of reuse n −m, then the histogram can be viewed as a probability function that represents the
interreference distribution. The reuse distance histogram was called the locality signature (Zhong
et al. 2009).

Reuse distances have a direct relation with cache performance, and the histogram is a compact
summary. In cache analysis, the RD histogram gives the miss ratio of the fully associative
cache (Mattson et al. 1970), direct-mapped or set-associative cache (Marin and Mellor-Crummey
2004; Nugteren et al. 2014; Qasem and Kennedy 2005; Smith 1976), and cache with other
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Table 2. Space Requirements of Sequence and Histogram Locality

RI/RD sequence RI histogram ri(x ) RD histogram rd (v )

indexing parameter time t ∈ [1 . . .n] window length x ∈ [1 . . .n − 1] volume v ∈ [1 . . .m]

space accurate O (n) O (n) O (m)
cost compact n.a. O (logn), O (1) O (logm), O (1)

reuse-based replacement policies (Sen and Wood 2013) of all sizes. It is used to separate the
locality effect by the program structure (Marin and Mellor-Crummey 2004) and the load/store
operation (Fang et al. 2005), model the change of locality as a function of the input (Fang et al.
2005; Marin and Mellor-Crummey 2004; Zhong et al. 2009) and the degree of parallelism (Wu and
Yeung 2011), and predict the performance of different cache designs and parameters (Wu et al.
2013; Zhong et al. 2007), making it the most widely used metric of access locality.

2.3.1 Compactness. A sequence is indexed by time. A histogram is an enumerated representa-
tion by value (which may be either a reuse interval or a reuse distance). Indexing is synonymous
to sorting: a sequence is sorted by time and a histogram by value. Just as the Fourier transform
converts a signal from a time function to a frequency distribution, histogram conversion changes
the locality representation from a trace to a distribution.

Table 2 compares sequence and histogram locality in its parameter and space consumption.
Sequence locality takes linear space, but histogram locality can be approximated and stored in
logarithmic or constant space. A histogram enables a compressed representation.

The main benefit is compactness. Once the time information is removed and only values are kept,
the values are sorted, and they can be stored by binning or bucketing. A basic solution divides
the full value range evenly. This solution is constant size and general, but it may waste space
when values are sparsely distributed. A specialized solution is a reference histogram, which sorts
all reuse distances by their values and divides them evenly into 1,000 bins, so each bin stores exactly
0.1% of reuse distances (Zhong et al. 2009). A reference histogram may still waste space, because
two adjacent bins may store identical values. Another solution is recursive division, which stops
dividing a group when its values are identical (Marin and Mellor-Crummey 2004).

Logarithmic size histograms are commonly used. In the basic solution, the ith bin stores the
range [2i , 2i+1 − 1]. There are at least two ways to improve precision. The first is to record the
average value in each bin and assume a constant or linear distribution by the values in the range
(fitted to give the same average) (Fang et al. 2005). The second is a k-sublog histogram, which fur-
ther divides a power-of-two range into 2k sub-ranges for a pre-determined constant k > 0 (Xiang
et al. 2011a, 2013). For example, a 8-sublog histogram uses 256 sub-ranges and is accurate from 0
to 511 and then divides each successive power-of-two ranges into 256 bins. The asymptotic space
cost is logarithmic rather than linear.

Compactness implies approximation, which means sparsity rather than imprecision. A sublog
RD histogram of size O (logn) can be used to compute O (logn) miss ratios. The computed miss
ratios are accurate. Section 2.5.3 will show a similar result for RI histograms.

2.3.2 Non-equivalence. The two types of histograms are not equivalent. This can be proved
by showing memory traces with different reuse interval histograms but the same reuse distance
histogram and memory traces with different reuse distance histograms but the same reuse interval
histogram.
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Consider the following four traces:

t1: e1, e2, e3, e4, e3, e4, e1, e2, e3, e4, e3, e2, e3, e2, e3, e4, e3, e2, e1

t2: e1, e2, e3, e4, e3, e2, e1, e2, e3, e4, e3, e2, e3, e4, e3, e4, e3, e2, e1

t3: e1, e2, e3, e4, e3, e4, e1, e2, e3, e4, e3, e2, e1

t4: e1, e2, e3, e4, e3, e4, e2, e1, e3, e4, e3, e2, e1

It can be shown that t1, t2 have the same RI histogram but different RD histograms and t3, t4 have
the same RD histogram but different RI histograms. A locality property useful in modeling cache
sharing is composability, discussed in Section 2.5.5. A consequence of the non-equivalence is that
the RI histogram is composable, but the RD histogram is not.

Next we introduce the timescale locality, which is based on the RI histogram, and it is both
compact and composable.

2.4 Timescale Definitions of Locality

A timescale is a length of time that may be measured in seconds or years in physical time or
number of memory accesses in logical time. A timescale metric is a mathematical function f (x ),
where x ranges across all timescales, i.e., x ≥ 0. It shows the growth of the working set size over
timescales.

2.4.1 The Denning Working Set Recursion. The original timescale metric of locality is the av-
erage working set size (WSS) s (x ) formulated by Denning (1968). By adopting a probabilistic ap-
proach, Denning and Schwartz (1972) derived the recursive formula for s (x ). Initially, the working
set is empty s (0) = 0, and the miss ratio is 100% m(0) = 1. The function m(x ) is the time-window

miss ratio. At the window length x , an access is a miss if its reuse interval t is greater than x , that
is,m(x ) = P (t > x ). The working set size is computed by iteratively adding the time-window miss
ratio,

s (x ) = s (x − 1) +m(x − 1) =
x−1∑
i=0

m(i ) =
x−1∑
i=0

P (ri > i ). (1)

We call Equation (1) the Denning working set recursion or Denning recursion for short. It is induc-
tive: The WSS at x is the WSS at x − 1 plus the working set increase, which is the time-window
miss ratio. For the infinite trace abc abc . . . , we have m(x ) = 1 for 0 ≤ x ≤ 2 and m(x ) = 0 for
x ≥ 3. The Denning recursion computes

s (x ) =

{
x , 0 ≤ x ≤ 3
3, x > 3

.

2.4.2 Footprint. In an execution, every consecutive sub-sequence of accesses is a time window,
formally as (t ,x ), where t is the end position and x the window length. The number of distinct
elements in the window is the working set size ω (i,x ) (Denning 1968). For a length x , the footprint
fp(x ) is the average working set size, computed by the total working set size divided by the number
of length-x windows:

fp(x ) =
1

n − x + 1

n∑
t=x

ω (t ,x ). (2)

For the infinite long trace abc abc . . . , the footprint is the same as before, i.e., fp(x ) = s (x ). It is still
the same for abc abc . The footprint for abc cba is fp(x ) = 0, 1, 1.8, 2.5, 8

3 , 3 for x = 0, 1, 2, 3, 4, 5+.
Comparing the two footprint functions, we see the difference in locality in that the second function
grows slower than the first.
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2.4.3 Computing the Footprint. Xiaoya Xiang gave the following formula to compute the foot-
print from reuse intervals and the times of first and last accesses (Xiang et al. 2011b):

fp(x ) =m − 1

n − x + 1
�
�

n−1∑
i=x+1

(i − x )ri(i )

+

m∑
k=1

( fk − x )I ( fk > x )

+

m∑
k=1

(n − x + 1 − lk )I (n − x + 1 > lk )�
�
. (3)

The symbols in the Xiang formula are as follows:

• ri(i ): the number of accesses whose reuse interval is i .
• fk : the first access time of the kth datum (counting from 1).
• lk : the last access time of the kth datum (counting from 1).
• I (p): the predicate function to 1 if p is true; otherwise, 0.

Xiang et al. (2011b) used two pages in their paper to derive the formula based on “differential
counting” of how the working set changes over successive windows. Next is a new, shorter expla-
nation. The idea is “absence counting,” by starting with assumption of all data in all windows and
then counting all absences and subtracting their effects. For people who have filed income tax in
the United States, taking deductions is a familiar process.

The first deduction is based on data reuses. If a reuse interval i is greater than x , then there are
i − x windows of length x that do not access the reused datum. The working set size should be
reduced by i − x to account for this absence. The total absence from all reuses is

∑n−1
i=x+1 (i − x )ri (i ).

The next two deductions follow a similar rationale. If the kth datum is first accessed at time fk
and fk > x , then it is absent in the first fk − x windows of length x . Similarly, it is last accessed at
lk < n − x + 1, and it is absent in the last n − x + 1 − lk windows of length x . The total adjustment
are shown by the last two terms of the Xiang formula.

2.4.4 Relation between the Working Set and Footprint. This section shows an equivalence rela-
tion between the Denning recursion and a simplified Xiang formula.

First, we introduce the limit-case Xiang formula. If a trace is infinitely long n = ∞, then the
footprint is limn→∞ fp(x ). The limit-case formula is much simplified, because it uses only the reuse
interval and not the first- and last-access times,

lim
n→∞

fp(x ) =m −
∞∑

i=x+1

(i − x )P (ri = i ),

where P (ri = i ) is the portion of accesses that have reuse interval i . Consider the trace: abcabc . . . .
Since every access has the same reuse interval (3), we have P (ri = 3) = 1. It is easy to verify that
limn→∞ fp(x ) = x for x = 0, 1, 2, and 3 for x ≥ 3. The Denning recursion computes the same result.
The example suggests an equivalence relation between the two. We prove a general relation for
not just an infinite long trace but any length trace.

We can use the limit-case Xiang formula for finite length traces except for one problem: We
cannot calculate i − x when i = ∞. We next define the reuse-interval term footprint, which uses the
limit-case formula but treats infinite long reuse intervals separately as follows2:

2This is mathematically equivalent to treating infinite long reuse intervals as intervals of length n, which was used by

Denning and Slutz to count the end corrections for space-time working set (Denning and Slutz 1978) and by Liang et al.

for deriving the equivalence between the footmark and the Denning recursion (Yuan et al. 2018).
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rtfp(x ) =m −
n−1∑

i=x+1

(i − x )P (ri = i ) − (n − x )P (ri = ∞). (4)

Theorem 2.4 (WS-RTFP Eqivalence). The Denning recursion and the reuse term footprint differ

by a constant,

s (x ) = rtfp(x ) − rtfp(0),

for all integer x ≥ 0.

Proof. The relation is proved by induction. In the base case, s (0) = rtfp(0) − rtfp(0) = 0. As-
suming s (x ) = rtfp(x ) − rtfp(0), we prove the inductive case. In the following derivation, m(x ) in
the Denning recursion is the time-window miss ratio, andm in the reuse term footprint is the data
size.

The increment of Denning recursion is

s (x + 1) − s (x ) =m(x ) = P (ri > x ).

The increment of the reuse term footprint is the same:

rtfp(x + 1) − rtfp(x ) =m −
n−1∑

i=x+2

(i − x − 1)P (ri = i ) − (n − x − 1)P (ri = ∞)

− �
�
m −

n−1∑
i=x+1

(i − x )P (ri = i ) − (n − x )P (ri = ∞)�
�

= P (ri > x ).

Hence, the inductive hypothesis is correct, as is the theorem. �

The same relation holds if we do not count infinite reuse intervals. We compute the proba-

bility as P ′(ri = i ) = ri(i )
n−m

, where the function ri(i ) is the number of reuse intervals of length i ,
and m is the number of infinite reuse intervals, i.e., the data size. For Denning recursion, we de-
fine s (x + 1) = s (x ) + P ′(n > ri > x ), and for the limit-case Xiang formula, we define rtfp(x ) =
m −∑n−1

i=x+1 (i − x )P ′(ri = i ). A similar derivation shows that these definitions are still equiva-
lent, i.e., s (x ) = rtfp(x ) − rtfp(0). In addition, for infinitely long traces, we have rtfp(0) = 0, so
s (x ) = rtfp(x ).

2.4.5 Finite Trace Denning Recursion. The original timescale definition of locality, the Denning
recursion, was derived based on stochastic assumptions—that a trace is infinite and generated by a
stationary Markov process, i.e., a limit value exists (Denning and Schwartz 1972). Later studies used
the formula on finite-length traces, with adjustments to account for boundary effects (Denning
and Slutz 1978; Slutz and Traiger 1974). Here we will present a straightforward way to incorporate
these boundary effects into the Denning recursion; this allows the Denning recursion to correctly
operate on finite traces.

Define a “run” to be a period during which a data block is in the working set, i.e., a reference
to that block always exists in the sliding length-x window. Recently, Li et al. (2019)’s definition
of lease cache allows for a modern interpretation of the working set as such: Each data block is
assigned a lease equal to window length. If this lease expires, then the block is removed from the
cache, and the lease is renewed on an access. A run begins with a miss and contains zero or more
reuse intervals (see Figure 3).

Here we examine runs and working sets on example trace abcaabdd with window length 3. At
each element in the trace, a 1 in a row indicates that that element is currently in the working set.
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Fig. 3. Consider a sequence of accesses to data block a. Beginning with a miss, every consecutive reuse

interval less than window length contributes to that run. The run ends with a reuse interval greater than

window length. Note that the last window x contains the last access to a within the run.

Misses, which begin runs, are 1s directly preceded by 0s and are shown in bold in this example.
Each column represents the working set at that point in the trace.

{ } a b c a a b d d

a 0 1 1 1 1 1 1 1 0
b 0 0 1 1 1 0 1 1 1
c 0 0 0 1 1 1 0 0 0
d 0 0 0 0 0 0 0 1 1

Because each run begins with a miss and each miss begins a run, the number of runs is the miss
count mc (x ). Let st (x ) denote the sum of the lengths of all runs. To adapt Equation (1) to fi-
nite traces, we look at the effect on st (x ) of incrementing window size from x to x + 1. Were
the trace infinite, each run would increase in length one unit, and we would have the relation
st (x + 1) = st (x ) +mc (x ). Dividing by n here yields Equation (1). For finite traces, the only runs
not incremented by 1 by incrementing window size are runs where the distance from the last ac-
cess of the element to the end of the trace is ≤ x . Let e (x ) denote the number of such elements
given window length x ; an equivalent notion is the number of distinct elements appearing in the
last window of the trace. Then Equation (5) correctly adjusts the Denning recursion for boundary
effects of finite traces:

st (x + 1) = st (x ) +mc (x ) − e (x ). (5)

Dividing both sides of Equation (5) by n results in the modified form of Equation (1).

When the trace length is infinite, the e (x ) term vanishes when divided by n and the unmodi-
fied Denning recursion is correct. This was shown first by its derivation (Denning and Schwartz
1972).

2.4.6 From Footprint to Reuse Interval. Denote total working set size as W (x ) = (n − x +
1)fp(x ). Using the Xiang formula, the first- and second-order finite differences of W (x ) are as
follows:

ΔW (x + 1) =W (x + 1) −W (x ) =m +
n∑

i=x+1

ri(i ) −
∑

fe <x+1

1 −
∑

n−x<le

1

Δ2W (x + 1) = ΔW (x + 1) − ΔW (x )

= −ri(x ) −
∑

e

I ( fe = x ) −
∑

e

I (le = n − x + 1).
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Therefore, footprint can be used to derive the reuse interval histogram if the first and last access
times are known.

2.5 Cache Definitions of Locality

The practical purpose of a locality theory is cache performance. This section discusses the metrics
of cache locality and their relation with timescale locality. It reviews two previous methods for
computing the miss ratio and presents two asymptotic improvements, one in time and the other
in space. Finally, it discusses cache sharing, associative, multi-level caches, and spatial locality.

2.5.1 Performance of Fully Associative LRU Cache. The following metrics have been defined to
model the performance of fully associative LRU caches:

• miss ratio mr (c ), which is the portion of memory accesses that are cache misses.
• inter-miss time im(c ) = 1

mr (c ) , which is the average number of accesses between two con-

secutive misses.

By restricting the problem to fully associative caches, we can define cache performance for all
integer cache sizes. There are important reasons to model the general cache size c ≥ 0, not just
powers of two. First, some real-cache solutions requires the miss ratio of all cache sizes and not
just the size of the target cache.3 Second, cache in practice is often shared. The occupancy of a
program in shared cache can be any size, not just powers of two. Third, in software cache and
some hardware cache, the size may not be powers of two. It is often useful to know how much the
miss ratio changes when a program is given 10% more space than it currently has in cache.

2.5.2 Converting from Timescale Locality. We can compute the miss ratio from the timescale
locality in two ways.

Denning-HOTL Conversion. The miss ratio can be computed by the finite difference of the foot-
print. When the cache size is the footprint c = fp(x ), the cache stores and only stores the working
set of the last length-x window. The next access is a miss if and only if it expands the working set.
For example, let the miss ratio be 10%. Then 10% times the working set size is increased by 1, so
the average increase is 0.1. We take the footprint increase, i.e., fp(x + 1) − fp(x ), as the miss ratio.
Equation (6) formulates this conversion using the finite difference:

mr (c ) = Δfp(x )���fp(x )=c
, (6)

where Δ is the finite-difference operator, i.e., Δf (x ) = f (x + 1) − f (x ), and c the cache size.
Denning (1968) was the first to use this conversion. HOTL applied it to the footprint (Xiang et al.
2013). We call it the Denning-HOTL conversion.

The original working set size is given by the Denning-Schwartz forumla s (x ) (see Section 2.4.1).
To use it to compute the miss ratio, we substitute fp(x ) in Equation (6) with s (x ). In either case,
the conversion has the same form but uses a different timescale metric. This shows that Denning-
HOTL is a general conversion from timescale locality to cache locality.

From the relation between the two timescale locality definitions studied in the previous section,
we can analyze the relation between their converted miss ratios. In particular, from the WS-RTFP
equivalence (Theorem 2.4), we see that the miss ratios computed using the Denning-Schwartz
formula are exactly the same as those from the limit-case Xiang formula, shown by the following
equation:

3Past work showed that the effect of cache associativity can be estimated using the full reuse distance distribution (Marin

and Mellor-Crummey 2004; Nugteren et al. 2014; Smith 1976), which is equivalent to the miss ratio curve of the fully

associative LRU cache.
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Δs (x )���s (x )=c
= Δrtfp(x )���rtfp(x )−rtfp(0)+mx/n=c

.

Reuse-interval Conversion. The second way to convert is based on reuse interval. When the cache
size is the footprint c = fp(x ), the cache stores and only stores the working set of the last length-x
window. The next access is a miss if and only if its data have not been accessed in the last window,
i.e., its backward reuse interval is greater than x ,

mr (c ) = P (ri > x )���fp(x )=c
. (7)

To use the Denning recursion to compute the miss ratio, we substitute fp(x ) in the preceding
equation with s (x ). Like Denning-HOTL, the reuse-interval conversion is a general conversion
from timescale locality to cache locality.

In practice, reuse-interval conversion has two benefits. First, it counts the cold-start misses cor-
rectly. These are first accesses whose reuse interval is infinite, since ri > ft (c ) for all c . Second, in
short traces, e.g., sampled executions, the footprint may not be concave at the timescale close to the
trace length, so the miss ratios computed by Denning-HOTL may not be monotone. Reuse-interval
conversion, however, guarantees monotone miss ratios.

Monotonicity. There is a gap between the footprint of two consecutive timescales. For example,
we have fp(2) = 1.8 and fp(3) = 2.5 for abc cba. The conversion may “miss” a cache size, i.e., com-
puting the miss ratio for a size higher and lower but not the target size. This gap problem is solved
by monotonicity, that is, the miss ratios are monotonically non-increasing with the cache size.

By its definition, the Denning recursion is concave; hence, the miss ratio computed by Denning-
HOTL conversion is monotone. From the WS-RTFP equivalence (Theorem 2.4), the limit-case Xi-
ang formula differs by a constant term; therefore, the limit-case Xiang formula is also concave.4

For the reuse-interval conversion, Xiang et al. (2011b) showed that the Xiang formula is mono-
tone, and hence the miss ratio computed from the footprint is monotone. If using the limit-case
Xiang formula, then Xiang et al. (2013) proved that the reuse-interval conversion by Equation (7)
computes identical results as Denning-HOTL by Equation (6).

Based on monotonicity, we know that the miss ratio of any missing cache size lies between
the miss ratios of the adjacent, computed cache sizes. This is similar to the case when we make a
physical measurement, the target value falls between two markings on the instrument.

2.5.3 Computing the Miss Ratio Curve Incrementally in Linear Time. The full range of the
timescale is from 1 to n. From Equation (7), computing the miss ratio for cache size c is the same
problem as finding the timescale x such that fp(x ) = c . However, usually we only need a relatively
small part. One weakness of the Xiang formula is that to compute the footprint for any timescale
it requires the whole reuse interval histogram as well as all first access times and last access times.
We present a lemma and two new formulae for computing the footprint. One of the two new
formulas requires just a partial range of reuse intervals, first access times, and last access times.

The following lemma constructs a connection between the reuse interval histogram and the first
and last access times.

Lemma 2.5.
∑n−1

i=1 i × ri(i ) =
∑m

e=1 (le − fe )

Proof. A reuse has two properties we consider here: which element the reuse accesses and the
reuse interval. The left and right sides of this lemma compute the summation of all reuse intervals
from these two perspectives.

4Xiang et al. (2013) first proved that the limit-case footprint is concave. Here we have given a different proof based on the

WS-RTFP equivalence.
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To form the left side, all reuses are sorted according to their reuse interval, i.e., the reuse interval
histogram. Recall that ri(i ) records the number of accesses with reuse interval i . So i × ri(i ) is the
summation of all reuse interval of i and thus the left term traverses all accesses.

To interpret the right side, all reuses are sorted according to their accessed elements. For each
element e the summation of all its reuse intervals is le − fe . Thus the right term also sums all reuse
intervals. �

Substituting the lemma into Xiang formula, we obtain the following two new formulas. We call
the first additive formula, since it uses the reuse interval histogram as a positive term. We refer
to the second formula as the incremental formula. We provide general explanations for deriving
them directly,

(n − x + 1)fp(x ) = xm +
n−1∑
i=1

min(i,x ) × ri(i ) −
m∑

e=1

(x − fe )I (x − fe )

−
m∑

e=1

(le − n + x − 1)I (le − n + x − 1). (8)

Additive formula. Formula 8 follows the idea that if one window contains an element more than
once, then the footprint counts the first appearance and ignores the rest. For an accessmt (t ) with
reuse interval i , there are a total of min(i,x ) windows where mt (t ) contributes to fp(x ) as a first
appearance, i.e.,ω (t −min(i,x ) + 1,x ) . . .ω (t ,x ). The first accesses and last accesses contribute to
the footprint in a similar way.

(n − x + 1)fp(x ) = xn −
x−1∑
i=1

(x − i ) × ri(i ) −
m∑

e=1

(x − fe )I (x − fe )

−
m∑

e=1

(le − n + x − 1)I (le − n + x − 1). (9)

Incremental formula. Formula 9 first assumes fp(x ) = xn, i.e every access contributes x . Then
it derives the correct value by subtracting the redundant counts. If an access’s reuse interval is
greater than or equal to x , then this access and its previous access do not exist in a same window.
Thus there is no redundancy. If the reuse interval of an access mt (t ) is smaller than x , then it
incurs x − i redundant counts, since this access and its previous access exist in x − i windows, i.e.,
ω (t − x + 1,x ) . . .ω (t − i,x ). The first accesses and last accesses contribute to the footprint in a
similar way.

If we only need a partial range of footprint fp(1 . . . x ), then the incremental formula allows for
storing only a part of reuse interval histogram ri(1 . . . x − 1), the first access time portion that is
smaller than x and the last access time portion that is greater than n − x + 1.

2.5.4 Using Compact Histograms. Another weakness of the Xiang formula (Equation (3)) is that
the entire reuse-time histogram is required when computing the footprint of any timescale x . The
total time and space to compute the complete footprint fp(x ) for all timescales is O (n). For real-
world applications, n is extremely large, so the linear cost is too high. In addition, when modeling
cache performance, constant factor analysis, e.g., the effect of using 10% more cache, is usually
sufficient.

In this section, we show how to compute the footprint using a compact histogram. An example is
the sublog histogram. As described in Section 2.3.1, a sublog histogram is a logarithmic histogram
where each bin range is divided into a constant number of sub-bins. The size of a sublog histogram
isO (logn). By choosing the number of subrange bins, a sublog histogram strikes a balance between
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ALGORITHM 2: Logarithmic time and space Xiang formula

1 totalSum = totalCount = 0

2 for j = 1 to b do

3 totalCount = totalCount + rifl(i ).cnt

4 totalSum = totalSum + rifl(i ).sum

5 end

6 partialCount = partialSum = 0

7 for i = 1 to b do

8 f p (rifl(i ).min) =m − (totalSum−par tialSum)−(totalCount−par tialCount )∗rifl(i ).min
n−rifl(i ).min+1

9 partialCount = partialCount + rifl(i ).cnt

10 partialSum = partialSum + rifl(i ).sum

11 end

the cost and the “resolution,” i.e., the number of cache sizes for which we can compute the miss
ratio.

In profiling, we take one sublog histogram for all reuse intervals and all first- and last-access
times. We call the histogram rifl (1 . . .b), where b is proportional to O (logn). The time cost of
profiling is linear O (n). The space is the size of the histogram O (logn). Each bin rifl (i ) stores
information in the following fields:

• rifl (i ).min is the lower bound value of the ith range
• rifl (i ).cnt is the number of values in the ith range
• rifl (i ).sum is the total value of all reuse intervals in the ith range

Algorithm 2 computes the Xiang footprint using the sublog histogram. It has two loops each
runs b iterations with constant work per iteration, so the time and space complexity isO (b), which
is O (logn).

The number of footprint values it computes is limited by the number of bins in the histogram.
For each bin i , it computes fp(x ) at x = rifl (i ).min the exact value as computed by the original
Xiang formula. The algorithm can be used unchanged for any compact reuse interval histogram.

2.5.5 Composability and Cache Sharing. On modern multicore processors, the cache is shared
at one or more levels. Ding et al. (2014) defines composability, which means that the locality of a
co-run can be computed from the locality of solo runs. The reuse interval is composable between
independent programs if they are uniformly interleaved. In a co-run, each reuse interval in a solo
run is increased by a constant factor. The reuse distance cannot be converted in the same way.
However, the RD sequence is composable indirectly through the equivalence with the RI sequence,
shown in Section 2.2.

Cache sharing has been modeled using the concurrent reuse distance (CRD) (Schuff et al. 2010;
Wu and Yeung 2013). CRD computes the miss ratio accurately, but it is not composable. Many
other techniques are hybrids where the locality is by reuse distance and the interference is by
footprint (Chen and Aamodt 2009; Suh et al. 2001; Xiang et al. 2011a), including one of the first
models of multicore cache (Chandra et al. 2005). An earlier model is given by Easton and Fagin
(1978), which we will discuss in Section 3.3.4.

The effect of cache sharing has also been considered for threads that share data (Luo et al.
2017) and for independent programs with all possible interleavings (Brock et al. 2018). The all-
interleaving result shows that for independent programs, the serial execution has the best locality.
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2.5.6 Set Associative and Multi-level Caches. Until now, cache locality has been limited to fully
associative LRU caches. However, the same locality definitions have been used to model many
aspects of caching. As mentioned in Section 2.3, the effect of cache associativity can be modeled
using the reuse distance histogram (Marin and Mellor-Crummey 2004; Nugteren et al. 2014; Qasem
and Kennedy 2005; Smith 1976), as well as non-LRU policies (Sen and Wood 2013). Luo et al. (2018)
showed that footprint enables more general models of cache associativity, as well as modelling
the sub-block cache, and these models can be used together. Furthermore, the effect of multi-level
caches, i.e., the effect of cache “filtering,” can be modeled using an extension of the footprint called
the ‘victim footprint” by Ye et al. (2017) and “average eviction time” (AET) by Hu et al. (2018).

2.5.7 Spatial Locality. Data layout is important for cache performance. Gu et al. (2009) mea-
sured spatial locality as the change in temporal locality when increasing the block size. Gupta
et al. (2013) defined locality as the probability of reuse, where the two types of histograms, RI and
RD, give the likelihood of reuse in next-n-addresses and next-n-unique-addresses. Locality opti-
mization has no known polynomial time solutions, whether it is to minimize the conflict misses,
i.e., the Petrank-Rawitz limit (2002), or the capacity misses (Lavaee 2016). However, many effective
solutions exist, including the reference affinity based on timescale co-occurrences (Liu et al. 2018;
Zhang et al. 2006). We do not consider spatial locality in the relational theory.

2.6 Frequency Locality

Frequency is concise—for any n accesses to m data, the average access frequency per datum is
n/m, a single number. This is one of the most commonly used approaches to measuring program
locality; as such, we benefit from understanding how it relates to our previous definitions.

It is commonly known as “hotness” (Chilimbi et al. 1999; Rubin et al. 2002). Program data with a
greater number of reuses are hotter. The locality is better if the “temperature” is higher. However,
the ratio completely ignores the order of data access. The following three traces have the same
access frequency but different locality. We name the first two following (Denning and Kahn 1975)
and the last one following (Ding and Kennedy 2004):

cyclic : abc abc

sawtooth : abc cba

fused : aa bb cc

The locality depends on not just the frequency but also the recency of reuse. Although the three
traces reuse the same data, the locality of fused is better than sawtooth, and sawtooth is better than
cyclic. The closer the reuse, the better the locality.

In theory, Snir and Yu showed that the complete locality cannot be captured by a fixed size
representation (Snir and Yu 2005). One way to measure locality is mr (c ) for all c ≥ 0. The Snir-
Yu limit implies that the frequency conversion has lost too much information—it is impossible to
compute the miss ratio from a fixed number of access frequencies.

Not all locality definitions are equally usable. For the example, fused is optimal, because no other
access order can further reduce any reuse distance. This optimality is obvious when analyzed using
the reuse distance but not using the footprint or miss ratio.

3 THE RELATIONAL THEORY

3.1 The Complete Relations

Figure 4 shows the relation graph, where each node is a definition of locality, each directed edge
a conversion and, if the edge has a cross (×), the assertion that no such conversion exists. An
undirected edge means two directed edge in opposite directions. The conversions are injective. A
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Fig. 4. The graph shows the relational theory as the conversion between locality metrics. For relations be-

tween sequence locality definitions (those in the gray box), see Figure 2. New contributions in this article are

shown by the edges marked with a section, equation, algorithm, or theorem number.

Table 3. Comparison of Locality Categories

Category Information stored Strength/weakess in modeling cache

Sequence ordered accesses no compaction, RD→MRC, RI-RD equivalence
Histogram unordered RI/RD compactness, RD histogram→MRC, RI-RD nonequivalence
Timescale unordered RI compactness, RI histogram→MRC, composability

series of directed edges form a path. The transitive relation gives the conversion or its impossibility
between every pair of metrics.

The locality metrics are grouped by categories, which are areas separated by dotted lines.
Timescale locality is centrally connected: It is the hub that connects histogram and cache met-
rics and, through them, all other metrics.

All the metrics in the relation graph are from existing work. The contribution of the preced-
ing sections is the connection of these metrics: In particular, the conversion and non-equivalence
results that are required for all-to-all relations and were absent from past work.

Table 3 compares three categories of locality with respect to information retained and practical
implications. Sequence locality stores full ordering information, while histogram and timescale lo-
cality ignore the ordering among reuses. To compute the miss-ratio curve (MRC), histogram local-
ity needs reuse distances, while timescale locality needs just reuse intervals. There is a significant
gain of space efficiency from sequence to histogram locality and of time efficiency from histogram
to timescale locality. In addition, timescale locality is composable, as discussed in Section 2.5.5.

3.2 Usefulness in Practice

The relational theory helps to solve problems in practice. The first is precision. All metrics in the
relation graph are defined by mathematics or algorithms, based entirely on information extracted
from a reference trace, i.e., the singleton locality. Mathematics is not just precise but maintains the
precision after many steps of derivation. Furthermore, it proves results for all programs, which are
therefore universal.
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The second is brevity and completeness. A metric may be computed in different ways, and this
is shown by multiple paths from singleton locality. Every derivation between two locality concepts
is represented by a path in the graph.

The third is modularity. A path decomposes a complex construction into single steps each rep-
resented by an edge. When there are multiple paths to derive the same metric, their overlap shows
shared intermediate concepts and steps. These combinatorial choices are fully expressed without
having to be enumerated.

The fourth is integration. Researchers can use multiple metrics when solving a problem. As the
example in Section 2.6 shows, it is often convenient to formulate a problem using one metric and
solution in another. The relational theory gives researchers the convenience in mixing these con-
cepts in practice. Its equivalence and conversion results provide safe bridges, and non-equivalence
results mark the boundaries and limitations.

As an example, consider the Denning recursion. As shown in Section 2.4.1, it computes the
working set size iteratively by adding the miss ratio at each timescale. The time and space cost is
linear. From the formula itself, it is unclear how it can be computed in a logarithmic cost using a
compact histogram. Using the relation graph in Figure 4, we now see that this problem is easily
solved. First, the footprint can be computed using a compact histogram. Second, it can derive
the limit-case footprint. Finally, the limit-case footprint can compute the result of the Denning
recursion. In the next section, we will show that a set of techniques are equivalent to the Denning
recursion. Similar reasoning using the relation graph would show that they, too, can be computed
using a compact histogram.

3.3 Formal Relations with Past Techniques

This section introduces four past techniques. The first three measure the miss ratio curve by using
various types of sampling. This section focuses on how they compute the miss ratio. Using the
new theory, we show that four past techniques, although independently developed with different
areas of applications, produce results mathematically related to previous locality definitions and
hence to each other.

3.3.1 The Shen Formula. Shen was the main inventor of a formula that converts from reuse
interval to reuse distance statistically (2007). Given the reuse interval histogram, the Shen formula
predicts the most likely reuse distance histogram. The conversion was 99% accurate and used by
the open-source programming tool SLO (Beyls and D’Hollander 2006) and by a new tool called
RDX that uses samples collected by hardware counters (Wang et al. 2019).

The formula is derived based statistical inference. The derivation is long and complex. Based on
the article, it is difficult to understand why the formula should be such and why it is accurate in
experiments. The authors actually admitted in the paper that their “formula is hard to interpret
intuitively.”

The key invention in the Shen formula is p (w ), which is “the probability of any given data
element to appear in a time interval of length”w and is computed as follows from the reuse interval
histogram:

p (w ) =
w∑

i=1

n−1∑
j=i+1

rt (j )

m − 1
.

If we take the differencep (w + 1) − p (w ), then we see that it is equivalent to the Denning-Schwartz
formula divided bym − 1:

p (w + 1) − p (w ) =
n∑

i=w+2

rt (i )

m − 1
.
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From Section 2.4.1, the probability is equivalent to p (w ) = s (w )/(m − 1). It now has a clear mean-
ing, which is that the probability an access in a window adds a distinct data item (to reuse distance)
is the ratio of the working set size divided by the data size minus one. The reason for m − 1 is to
model a reuse window, where the reused datum cannot be accessed inside the window.

We can analyze the properties of the Shen formula using the new theory. For example, mathe-
matically the probability p (w ) may exceed 1, because s (w ) is not bounded bym. The formula may
use the footprint, i.e., setting p (w ) = fp(w )/(m − 1), to avoid this problem.

3.3.2 Statcache. In 2010, Eklov and Hagersten developed Statcache and showed that it was
highly accurate (98%) for computer-architecture evaluation. Statcache estimates the average reuse
distance ES (r ) of all the accesses with the same reuse interval r . Eklov and Hagersten (2010) defined
Fj as the fraction of all memory references with a reuse interval greater than j and computed the
average reuse distance ES (r ) using the following formula:

ES (r ) =
r∑

j=1

Fj =

r∑
j=1

n∑
i=j+1

rt (i ).

The purpose and the method of Statcache are similar to Shen. While the basic formula is identical
to Denning-Schwartz, Statcache also developed extremely fast measurement through a novel type
of random sampling (Eklov and Hagersten 2010). The subsequent application of Statstack won a
Best Paper award a year later for its efficiency and accuracy (Eklov et al. 2011).

3.3.3 Cache Fill Times and Eviction Times. In the higher-order theory of locality (HOTL), Xiang
et al. (2013) defined the cache fill time, which we denote as ft (c ), as the average amount of time
for a program to access an amount of data equal to a cache size c , i.e., the time for an empty cache
to incur c misses. They defined it as the inverse function of the footprint. Mathematically, the fill
time and the footprint are opposite mappings between time and space, more specifically, between a
timescale and a data (cache) size. The fill time of the footprint of timescale x is x , i.e., ft (fp(x )) = x .
Equivalently, the footprint of the fill time of the cache size c is c , i.e., fp(ft (c )) = c .

Intuitively, the cache fill time is the time a program takes to fill the cache with recently accessed
data. Any data block previously accessed is evicted after the cache fill time. As the cache is larger,
the fill time longer, and the chance of a miss lower. Formally, an access is a miss if and only if its
reuse interval is greater than or equal to the cache fill time, and the miss ratio can be computed
by:

mr (c ) = P (ri > ft (c )), (10)

where c is the cache size, ft (c ) the fill time, and P (ri) the distribution of reuse intervals.
Hu et al. (2018) defined an eviction time as the time between the last access of a data block and

its eviction from the cache, and the average of all eviction times is the average eviction time (AET),
defined for each cache size c as AET (c ). The miss ratio is computed as the portion of accesses
whose reuse interval is greater than the AET of the cache,

mr (c ) = P (ri > AET (c )), (11)

where c is the cache size, AET (c ) its AET, and P (ri) the distribution of reuse intervals.
The fill time and the average eviction time are mathematically different. The first is based on

footprint. AET is equivalent to Denning-Schwartz as shown by Hu et al. (2018). Therefore, the
difference between the two has been analyzed previously in Section 2.4.4. In particular, from the
WS-RTFP relation, if the fill time is computed from the limit-case Xiang formula as the inverse
function of rtfp(x ) − rtfp(0), it is equivalent to the average eviction time. Because of its mono-
tonicity and concavity, it implies that the inverse of the limit-case footprint is unique.
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The fill time is mainly a metric for explaining the footprint theory. AET has been used in man-
aging and optimizing the memory and storage cache (Byrne et al. 2018; Chen et al. 2018; Hu et al.
2018; Xiang et al. 2018). For static analysis, Chen et al. (2018) found it more convenient to use AET,
because it required only the reuse interval, not the first- and last-access times.

3.3.4 The Easton-Fagin Recipe. Easton and Fagin (1978) were among the first to study cache
sharing, in particular, the effect from context switching. They defined a “cold-start cache” as one
when a program is switched back and its earlier data have been all wiped out, and, to distinguish
from it, a “warm-start cache” is used to refer to a regular, solo-use cache.

The cold-start miss ratio was difficult to simulate, because a program may be interrupted and
then restarted at any point. The warm-start cache had no breaks in execution and was easy to
simulate. Section 5 of the 1978 paper gave an ingenious solution that computes the cold-start miss
ratio from the warm-start miss ratio.

The solution computes LIFE∗c (c ), the time to have c misses in the cold-start cache of size
c as the sum of the inter-miss time of all warm-start caches of size 0 ≤ j < c , i.e., LIFE∗c (c ) =∑c−1

j=0 LIFE(j ) (Easton and Fagin 1978, Sec. 5). It expresses a simple but compelling intuition—the
time from the jth miss to the next in the cold-start cache is probably similar to the inter-miss time
of the warm-start cache of size j. Initially, the first access to the cold-start cache is the first miss,
which is the inter-miss time of zero-size warm-start cache, LIFE(0) = 1.

The intuition seemed correct. Easton and Fagin found that the “estimate was almost always
within 10–15 percent of the directly observed average cold-start miss ratio.” They “gave a rough
explanation as to why our recipe is reasonable” but “remark without proof that this need not be
the case.” They called the formula a recipe rather than a model.

With the relational theory, we can now derive the recipe. First, we see that LIFE∗c (c ) = ft (c )
and LIFE(j ) = im(j ). Therefore, the recipe says that the fill time ft (c ) can be computed from the
inter-miss times of the cache of all smaller sizes j or, formally, ft (c ) ≈ ∑c−1

j=0 im(j ).
We rewrite the fill time as the sum of c inter-miss times,

ft (c ) =
c−1∑
j=0

(ft (j + 1) − ft (j )) ≈
c−1∑
j=0

im(j ).

We see that the key assumption of the recipe is that the time between the jth miss and the next
is approximately the inter-miss time of cache size j. We can rewrite the inter-miss time as the
inverse of the miss ratio and compute it using the Denning-HOTL conversion. In addition, we
have fp(ft (j + 1)) − fp(ft (j )) = j + 1 − j = 1. The approximation is therefore as follows:

ft (j + 1) − ft (j ) ≈ im(j ) =
1

mr (j )
=

fp(ft (j + 1)) − fp(ft (j ))

fp(ft (j ) + 1) − fp(ft (j ))
.

Examining both sides of ≈, we see that the change in the fill time function is approximated
by the change in the footprint function. It assumes a linear relation between the two changes.
Mathematically, the approximation is equivalent to f (x + Δ) − f (x ) ≈ ( f (x + 1) − f (x ))Δ, where
Δ = ft (j + 1) − ft (j ) and f (x ) is fp(ft (j )). The change in ft, i.e., Δ, is proportional to the change in
fp, i.e., fp(x + 1) − fp(x ).

4 RELATED WORK

We review more related work in more detail in the following areas.

Observational Stochastics. Denning and Buzen (1978) formulated a new theory of queueing anal-
ysis now called observational stochastics. Conventional analysis was based on classic queuing mod-
els with idealistic assumptions such as infinite stationary processes. Observational stochastics are
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based on directly measurable variables and directly verifiable assumptions. The theory and appli-
cations in system and network analysis are enunciated in two recent books (Buzen 2015; Denning
and Martell 2015). All locality definitions and properties in this article are based on direct mea-
surements, do not depend on idealistic assumptions, and hence are extensions of observational
stochastics.

The original timescale definition of locality is the Denning recursion, which can be derived using
stochastic assumptions—that a trace is infinite and generated by a stationary Markov process, i.e., a
limit value exists (Denning and Schwartz 1972). In later work, Denning and his colleagues adopted
observational stochastics and used the formula on finite-length traces, with adjustments to account
for boundary effects (Denning and Slutz 1978; Slutz and Traiger 1974). The footprint is also a type
of observational stochastics. The equivalence theorem in Section 2.4.4 shows the mathematical
relation between the two.

Cache Benchmark Synthesis. Benchmark synthesis is the construction of a synthetic program
with desirable locality. It is locality metric conversion in the opposite direction to a trace. Synthesis
has been used to solve two practical problems. The first is memory probing with parameterized
locality to examine machine performance in multiple use scenarios. The probe program APEX-
MAP can be configured to exhibit a distribution of reuse distances similar to a given target (Ibrahim
and Strohmaier 2010). While APEX-MAP approximates, an algorithm by Shen and Shaw (2008)
generates a trace that has the exact reuse distance histogram as specified. The second use cache
behavior cloning. A system called WEST generates a stochastic trace based on the RD distribution
within each cache set (Balakrishnan and Solihin 2012), while Hierarchical Reuse Distance (HRD)
matches the RD distributions at multiple cache-line granularities or cache levels (Maeda et al.
2017).

Sampling. A real-world application usually generates a memory address trace of an extremely
large length. Existing locality models (Hu et al. 2016; Wires et al. 2014) often employ sampling
techniques to reduce the profiling overhead. There exist many sampling techniques: address sam-
pling using hardware counters (Tam et al. 2009; Wang et al. 2019), random sampling (Eklov and
Hagersten 2010; Hu et al. 2018), reservoir sampling (Beyls and D’Hollander 2006), and static sam-
pling (Chen et al. 2018). Overall, sampling is a technique orthogonal to the definition of locality
used in the analysis. The use of the new theory in sampling is beyond the scope of this article.

5 SUMMARY

This article has formalized major definitions of locality, grouped them into six categories, and
showed a series of relations and properties, including the equivalence between sequence locality
definitions, non-equivalence between histogram metrics, the equivalence between two timescale
definitions, a formal justification of the Easton-Fagin recipe, the first solution that computes the
footprint in linear time from either a precise or a compact histogram, and, from these results, a
complete relational theory of locality.

APPENDIX

Here we present Algorithm 3, a more detailed version of Algorithm 1 for which we have a proof
of correctness. Proof of Theorem 2.3.

Proof. The first appearance of each data item is placed correctly. Later appearances of each data
item are also placed correctly, because the calculation of nextpos converts from reuse distance to
reuse interval. After an access of e , nextpos[e] is set initially by the reuse distance. Whenever
there is a reuse, nextpos[e] increments (Line 13). At the next access of e , nextpos[e] equals the last
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ALGORITHM 3: PD·RD→ AI conversion (vector based)

1 lastpos[1 . . .m]← pd[1 . . .m][1]

2 nextpos[1 . . .m]← pd[1 . . .m][1]

3 cnt[1 . . .m]← {1}
4 for i = 1 to n do

5 e ← 0

6 for e ′ = 1 tom do

7 if nextpos[e ′] = i && (e = 0 | | lastpos[e] < lastpos[e ′]) then

8 e ← e ′

9 end

10 end

11 for e ′ = 1 tom do

12 if lastpos[e ′] < lastpos[e] then

13 nextpos[e ′]← nextpos[e ′] + 1

14 end

15 end

16 ai[i]← e

17 cnt[e]← cnt[e] + 1

18 lastpos[e]← i

19 nextpos[e]← i + pd[e][cnt[e]]

20 end

access time plus the reuse interval. Therefore, all later occurrences of data elements are placed
correctly. �

Algorithm 3 gives the conversion PD · RD → AI. The main loop of Algorithm 3, starting at
Line 4, constructs the AI trace ai[1 . . .n] by selecting the datum e accessed at each time i . Lines 1
to 3 initialize the auxiliary data: The last access time lastpos[e] is the time of e’s last access before
i , nextpos[e] the estimated time of its next access, and the access count cnt[e] the number of times
e has been accessed. Initially, for each datum e , the first access is fe , and its access count cnt[e] = 1.

The main loop has two inner loops: the selection loop and the update loop. The selection loop,
Lines 6–10, chooses e for ai[i] if its estimated next access time is i . There may be multiple choices.
The selection loop does not stop at the first such datum. It finds every such item and chooses the
one with the largest last access time. This is a choice based on recency, i.e., most recent last access.
Naturally, this choice is unique.

The recency choice at line 7 is necessary. Consider the AI trace (e1, e2, e3, e2, e1). When time
i = 4, the next access times of e1, e2 are both estimated as 4. The selection loop must choose e2,
which is more recently accessed.

The update loop is the second inner loop. Lines 11–15 update nextpos for all other elements
e ′. If e has been accessed after the last e ′, then the e access is a recurrence, so the estimated next
access time of e ′ is increased by 1. Then, Lines 16–19 update for e: the current access is now the
last access, the access count cnt[e] is increased by 1, and the next access time is estimated to be
the current time plus the next reuse distance pd[e][cnt[e]].
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