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In 1975, Jeff Buzen and I discovered we shared a concern about a fundamental 
problem we observed in the field of performance analysis.  This article is about 
that concern, what we did about it, and a key role that Ken Sevick played in the 
outcome. 
 
Dead Cows 
My friend and teacher, Fernando Flores, likes to tell his business clients the story 
of Pasteur and the dead cows.  In the 1870s the French sheep and cattle industry 
was being decimated by anthrax and France’s economic position was in grave 
peril.  At the time, the farmers were completely baffled by the mounting toll of 
dead cows and sheep; the cause, anthrax, had not yet been identified and named.  
Although a few researchers, including Pasteur, believed that a microbe might be 
the cause, the theory that diseases could be caused by microbes was so much at 
odds with conventional thinking that few physicians accepted it; Pasteur could 
not even persuade surgeons to wash their hands and use clean instruments.  
Finally, in 1882, Pasteur was challenged to “put up or shut up” by a French 
veterinarian.  Pasteur vaccinated 25 of a group of 50 sheep with his anthrax 
vaccine; all 50 then received a lethal dose of anthrax.  Every one of the vaccinated 
sheep survived without symptoms and every one of the unvaccinated sheep died 
within three days.  Pasteur became a national hero.  From that time forward, the 
medical profession came to believe in the germ theory of disease and in 
vaccinations to prevent disease.  Within two years, anthrax was virtually 
eliminated from the French cattle and sheep industry. 
Flores aimed the moral of his story at entrepreneurs: if you want to make an 
innovation that people will care about and value, look for the dead cows. 
 
Dead Cows in Markovian Queueing Networks 
Network-of-queues models were very attractive for computing systems and 
networks.  They directly represent systems of servers in which jobs circulate.  
When a job arrives at a server, it waits in queue and then receives an interval of 
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service before departing for another server.  The state of the system at any given 
time is a vector n = (n1,...,nK) saying how many jobs are queued at each server.  
Randomness arises in these systems because the length of service during a visit 
to a server, and the next server visited after a departure, are not known.  The 
randomness is described by a service distribution at each server and by a 
probability distribution of next server after a departure. 
The traditional stochastic model (SM) for such systems assumes that the process 
by which the system moves through its states is Markovian: the successive 
service times are independent, successive transitions between servers are 
independent, the service distributions are exponential, and the system reaches a 
steady state. 
A few tests during the 1960s and 1970s of the fit between these models and the 
throughput and response times of real systems were highly encouraging.  For 
example, in 1965 Alan Scherr of MIT showed that the simple 2-server “machine 
repairman” model could be used to predict quite accurately the throughput and 
response time of the first time-sharing systems.  Forest Baskett observed similar 
fits between models and measurements on systems at the University of Texas in 
the early 1970s. 
Although they had the right structure, queueing network models were 
unattractive because of the high computation needed to calculate performance 
quantities with them.  In the 1950s, Jackson, and again in the 1960s Jackson, 
Gordon, and Newell showed that the equilibrium state probability distribution 
of a network of queues model decomposed into a product form when arrivals 
and service times were all exponentials.  Although the product form was much 
simpler to evaluate than numerically solving the balance equations, the 
computations were still intractable for all but the smallest systems.  Thus testing 
the model was limited to small systems.  In 1971, Jeff Buzen demonstrated a 
breakthrough: a quadratic algorithm for evaluating the product form.  Suddenly 
performance analysts could compare models with large, real systems.  In a long 
line of experimental studies, performance analysts concluded that these models 
would typically get throughput correct to within 10% of the observed value, and 
response time to within 25% of the observed value.  Soon thereafter blossomed 
the now-flourishing industry of system performance evaluation and capacity 
planning. 
But despite their empirical success, these models presented a serious problem. 
While performance analysts repeatedly found users interested in their queueing 
models, they constantly faced skepticism because no one trusted the models’ 
assumptions.  The models assumed that a system was in equilibrium; 
measurements in real systems showed constantly shifting measures and 
parameters at different times of day and days of week.  The models assumed that 
inter-server job transitions were independent; in real systems transitions 
correlated with previous transitions.  The models assumed that the service times 
at the servers were exponentially distributed; real systems had distinctly non-
exponential service distributions, including many with very long tails.  This 
presented a troubling paradox: the real world of computing systems consistently 
violated all the model assumptions, and yet the models agreed remarkably 
closely with observed throughput and response time. 
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This paradox was not a simple annoyance; it was standing in the way of 
business.  Jeff Buzen and his partners, who were establishing a company (BGS 
Systems) to build and market performance prediction and capacity planning 
tools for the computing industry, knew this first hand.  Distributed computing 
systems and networked systems were increasingly common and the performance 
and capacity questions for these systems were high on the minds of designers 
and users.  Business executives were prepared to invest significantly in 
performance prediction and capacity planning -- their customers demanded it -- 
and yet they felt it unsafe to invest in technology based on what appeared to be 
black magic, technology whose limits were not understood. 
To sidestep the skepticism, pragmatists pressed an empirical argument: “So what 
if the model assumptions don’t hold?  We can show empirically that the 
equations from the models work well, and that should be good enough for 
practical performance analysts.”  But business people weren’t buying that 
argument.  Did the empirical models rest on still hidden, deep principles?  Or 
where they ad hoc?  No one knew what the limits of the models might be or for 
which real systems they might fail.  In other words, dead cows littered the 
intellectual landscape of performance modeling. 
 
The Birth of Operational Analysis 
Several of us were concerned about this and had started independent searches 
for a “vaccine”.  Dick Muntz and John Wong published a paper in the 1974 
Princeton Conference showing that some of the formulas, including those for 
utilization, response time, and throughput, held in the limit for very general 
networks [11].  Jeff Buzen and I started to discuss this in 1975.  We were struck 
by the parallels in our thinking and decided to collaborate.  Jeff had already 
drafted papers, published in 1976, about fundamental laws (again utilization, 
throughput, and response time) that were always true because of the way they 
were defined for collected data [2,3].  Jeff suggested the term “operational 
analysis” to differentiate the approach from stochastic analysis.  With my 
students I worked on a series of technical reports applying this form of analysis 
to multiprogrammed virtual memory systems in 1975 [1,14,15,16].  Jeff and I 
published a series of papers taking operational analysis into queueing networks 
beginning in 1977 [4,5,6,7,13].  I followed up with versions for American Scientist 
in 1991 [8,9]. 
The operational approach goes to fundamentals.  In validating models, analysts 
substitute measured, operational values of parameters for the model’s stochastic 
parameters.  We wondered whether the direct substitution of measured values 
might be equivalent to interpreting the product form as the solution to a broader 
class of systems than the Markovian assumptions suggested.  Could we find 
another set of assumptions that give the same equations but apply to large 
classes of real systems? 
Queueing theory gives various limit theorems relating basic quantities for 
systems in equilibrium.  For example, the utilization of a server is the product of 
the arrival rate and the mean service time (U = XS).  In those days, we would 
“prove” this by solving a system’s equations for utilization as a function of time 
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and then taking the limit as time becomes infinite.  Because students found it 
difficult to follow the mathematical details of such a proof, we would also offer 
an “intuitive” explanation based on how we would verify the limit theorem 
through an experiment.  The intuitive explanation was this.  If we observe a 
server for a period of time T, we can measure the number of service completions, 
C, and the total busy time, B.  We can then empirically define the utilization as U 
= B/T, the mean service time as S = B/C, and the throughput as X = C/T.  But with 
these definitions, it is always true that U = XS.  The limit theorem of stochastic 
theory becomes an operational law when applied directly to the measured data. 
We quickly found that several other limit theorems are also laws in the same 
way.  For example, Little’s law is N=RX, for mean number N in the system and 
mean response time R of the system.  The forced flow law in a network is Xi=XVi 
where Xi is the throughput at server i, X the system throughput, and Vi the mean 
number of visits by a job to server i.  The time sharing response time law is 
R=N/X-Z, where N is the number of users and Z is the average think time 
between submitting new commands.  The memory space-time law says XY=M, 
where Y is the mean space-time per job and M is the total amount of memory 
used by jobs. 
Jeff and I decided to see if we could start there, rather than finish there.  Instead 
of concluding that U=XS is true of systems in the limit, why not start with the 
observation that U=XS is always true because of the way we define our 
measurements?  In other words, U=XS is a law that holds for all observation 
periods, including but not limited to those in Markovian equilibrium. 
We found this so compelling that we then asked: Can we build a queueing 
theory that starts from the operational laws and avoids making any Markovian 
or equilibrium assumptions?  To our delight we were able to do this.  
Operational Analysis (OA) became a vaccine whose new interpretation of 
systems prevented the death of trust in models (the cows). 
 
The Fundamental Assumptions of Operational Analysis 
We insisted that all assumptions we would make in our theory be operational: 
meaning that one can design an experiment to observe all the quantities we 
define.  The experimental measurements would always be calculated in a given, 
arbitrary observation period of length T. 
We insisted on testability, not because we advocated that everything be tested, 
but because we wanted the theory to be founded on behaviors that people can 
easily visualize.  We often made an analogy with an old argument in physics 
where field theory replaced action-at-a-distance.  One could explain the electrical 
attraction of two charged particles as an action over a distance (Coulomb’s law); 
or one could say that one particle moves in an electric field of the other.  The 
electric field was operational: one can imagine a small particle placed at any 
point in the field, and from the field direction and intensity one could say how 
the particle would move (a ∆x in the next ∆t).  We fully realized that the large 
state spaces of networked systems would preclude actually testing all the 
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assumptions, but we wanted to state them in a way that anyone wishing to 
understand the experiment would know exactly what we meant. 
For queueing systems, the states n=(n1,...,nK) are vectors giving the number of 
jobs queued up at each server.  Stochastic modeling assigns an equilibrium 
probability p(n) to each state.  Operational analysis instead interprets the p(n) as 
the proportions of time that the system spends in state n.  We called these p(n) 
the state occupancies. 
We re-formulated the familiar balance equations among the equilibrium p(n) into 
balances of state transitions: entries=exits.  We called this assumption flow 
balance.  Entries and exits from states are observable and can be measured.  
Because the numbers of entries and exits need not match, we said that it is only 
an assumption that they are equal. We calculated the error that would arise in a 
solution of the balance equations when flow is not balanced in the real system.  
We showed that in long observation periods of systems with finite state spaces, 
the error caused by flow balance is negligible. 
Because we wanted the balance equations to conform to the operational laws, we 
wanted the state transitions of the system to coincide with job completions at the 
individual servers.  In other words, we wanted state transitions to correspond 
one-one with inter-server job transitions.  This was easily accomplished with a 
second assumption: that each state change is caused by exactly one job 
completion.  We called this assumption one-step behavior.  As with flow balance, 
we calculated the error caused by this assumption and showed that in most real 
systems the error would be negligible. 
With these two assumptions, the balance equations are mathematically identical 
to the equilibrium state probability equations of the same system interpreted as 
Markovian.  We needed a third operational assumption to reduce these 
equations to the same form from which Jackson, Gordon, and Newell obtained 
the product form solution.  This happened when we assumed that the rate of 
transitions between two states is identical to the rate of job-flow between the 
servers causing the transitions.  We called this assumption homogeneity.  As with 
the other two assumptions, we could calculate the error caused by this 
assumption.  Unlike the other two assumptions, however, we could not show 
that the homogeneity error is negligible.  In fact, in some systems, homogeneity 
introduces considerable error. 
Under the homogeneity assumption, the configuration of queue lengths in the 
rest of the system does not affect the completion rate of a server, and hence that 
rate can be measured by studying the server in isolation from all other servers.  
Thus the homogeneity assumption is equivalent to an assumption that a server 
has the same completion rate (for a given queue length) in an on-line 
measurement as it will in an off-line measurement.  For this reason we also called 
the homogeneity assumption the “on-line equals off-line” assumption. 
Taken together, the three assumptions allowed us to reduce the balance 
equations and conclude that the state occupancies obey the same product form 
structure as had been found by Jackson, Gordon, and Newell. 
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We thus arrived at the same mathematical form as the Markovian theory, but 
with a completely operational interpretation.  In addition to dealing directly with 
measured parameters, the operational interpretation can be applied in any finite 
observation period.  It allows us to calculate the error caused by any of the three 
key assumptions.  We had found a way to formulate queueing network theory so 
that the product form solution holds for finite intervals in which the system is 
flow balanced, one step, and homogeneous.  Therefore, all the algorithms for 
solving product form networks could be used with confidence in many practical 
situations where their validity was dubious according to Markovian 
assumptions. 
We found that operational analysis was less satisfactory for more complex 
systems such as an M/G/1 queue.  Although we were able to formulate 
operational assumptions for the famous Pollaczek-Khinchtine formula for the 
mean queue length, the assumptions were more complex hard to understand.    
The mathematics of transform analysis, which are well known in SM, got to the 
same result more quickly. 
 
Controversy 
The new theory attracted a lot of attention -- from strong praise to strong 
criticism. In 1979, Ken Sevcik summarized the best and worst as follows [12]: 

“OA offers nothing but tautologies.” 
“OA makes SM obsolete.” 
“OA is a smokescreen for trivially deriving the obvious from the known.” 
“SM is a security blanket used to smother intuition by those who lack it.” 

The most popular criticism focused on the homogeneity assumption, which the 
critics believed to be fundamentally equivalent to the exponential assumption.  
Ken attacked this criticism head on.  In 1979 (with Maria Klawe) he gave several 
examples of deterministic systems that are flow-balanced, one-step, and 
homogeneous -- but obviously not Markovian.  That was a turning point in the 
acceptance of operational analysis as a valid alternative to the traditional 
queueing theory.  Many skeptics came on board after that.  Ken drew several 
conclusions about the debate in 1979: 

OA invokes a different level of abstraction from the SM: the two 
systems have the same symbols but interpret them differently.  SM 
refers to probabilistic ensembles of system behaviors; OA refers to one 
behavior at a time.  OA is more obviously relevant to real systems than 
SM.  OA generates confidence in applying models by offering 
assumptions that are understandable and testable.  OA and SM are 
complementary approaches.  OA offers much that is new; SM isn’t 
obsolete. 

After that, the debate became more philosophical.  What does it mean to 
model?  How are the approaches of SM and OA to creating and 
interpreting system models the same?  Different?  A hot example of this 
kind was the use of the models for performance prediction.  The 
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traditional practice of SM was to assume that the same stochastic process 
governs both the base and future observation periods.  Therefore, one 
estimates the parameters from data in the base period and extrapolates 
them to the future period.  Jeff and I argued that this practice didn’t 
depend on an underlying SM.  All it depended on was extrapolation of 
parameters to the future period.  In any observation period, the 
computation of performance metrics from parameters uses algorithms that 
do not care whether the product form solution comes of operational or 
stochastic assumptions. 
In 1981 I was present at a debate between Jeff Buzen and his critics.  
Neither the OA believers nor the SM believers were able to muster any 
argument that would change minds.  Afterwards I wrote a fable to satirize 
the debate and suggest that the two sides may never come to an accord.  A 
copy is attached as an appendix. 
Despite their differences, the OA and SM believers did have one major point of 
agreement: most everyone found it much easier to teach queueing networks to 
beginning students when starting with the operational interpretation.  I was able 
to teach queueing network basics to undergraduate computer science students in 
about two weeks of an operating systems class, compared to almost a whole 
course for Markovian theory.  By thinking in the operational framework, my OS 
students developed a much better “feel” for how the models worked and their 
scopes of applicability.  Ken Sevcik experienced the same thing with his students.  
Jeff Buzen experienced it in teaching his clients how the models work and why 
they can be trusted.  Operational analysis gave an indisputable edge to teaching, 
understanding, and communicating about queueing networks.  Because of this 
Ken embraced operational analysis to explain queueing theory in his best-selling 
book, which became the leading book in the field for many years [10].  More 
recent authors, such as Menascé and Almeida, have adopted operational analysis 
as their pedagogic tool for the same reason. 
 
Salute 
So I salute Ken Sevcik, whose insight at a critical point turned the tide in our 
favor and showed the skeptics that homogeneity was indeed a new assumption, 
more primitive and broader in scope than Markovian assumptions.  Ken helped 
clear the field of its dead cows. 
 
An Historical Footnote 
When we formulated operational analysis, “queueing” had two “e’s” in it.  
Microsoft Office spell checker now claims that “queuing” is the proper spelling.  
I tell recalcitrant editors that queueing is the only word in English with five 
consecutive vowels.  So far this argument has prevailed. 
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Operational queueing theory was controversial among queueing theorists.  A 
popular criticism was that the operational assumption of homogeneity --- service 
rates of servers do not depend on total system state -- was nothing more than an 
exponential service-time assumption in disguise.  That criticism was neatly 
dispelled by Ken Sevick and Maria Klawe, whose examples of operationally-
deterministic systems in no sense satisfied an exponential service time 
assumption, but satisfied product form solutions.  Another criticism was that one 
cannot make predictions of a future system’s performance without assuming the 
present and future systems are manifestations of the same underlying stochastic 
process.  Buzen said that stochastic processes had nothing to do with it; he 
argued that prediction in practice operates as a process of extrapolating present 
to future parameter values and then using a validated model to calculate future 
performance measures.  Such logic did little to assuage some critics, who 
maintained that operational analysis denied the existence of stochastic processes. 
 
In 1981, I witnessed a debate between Buzen and his critics.  I was struck by the 
symmetry of their arguments.  Each started with his domain as the ground and 
claimed that the other was in effect performing unneeded, error-inducing 
mappings to get to the same answer.  They were both describing the same loop 
from different angles!  This prompted me to write the following little fable. 
 
 

A Tale of Two Islands 
 
Once upon a time there were two islands.  The citizens of Stochasia had organized 
their society around a revered system of mathematics for random processes.  The 
citizens of Operatia had organized their society around a revered system for 
experimentation with nondeterminate physical processes.  Both societies were 
closed. Neither would ever have known of the other’s existence, had it not been for 
the events I shall now describe. 
 
At a moment now lost in the mists of antiquity, a great sage of Stochasia posed 
this problem: Given a matrix of transition probabilities, find the corresponding 
equilibrium probability distribution of occupying the possible states.  He worked 
out the solution, which he engraved on stones.  Ever since, whenever they 
encounter a problem in life, the Stochasians phrase it in these terms and, using 
the stones, they find and implement its solution. 
 
At a moment now lost in the mists of antiquity, a great sage of Operatia posed 
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this problem: Having observed a matrix of transition frequencies, calculate the 
corresponding distribution of proportions of time of occupying the possible states.  
He worked out the solution, which he engraved on stones.  Ever since, whenever 
they encounter a problem in life, the Operatians phrase it in these terms and, 
using the stones, they find and implement its solution. 
 
In a recent time there was an anthropologist who specialized in islands.  He 
discovered these two islands from photographs taken by an orbiting satellite.  He 
went to visit Stochasia, where he learned the secrets of their stones.  He also 
visited Operatia, where he learned the secrets of their stones. 
 
Struck by the similarities, the anthropologist asked the elders of each island to 
evaluate the approach used by the other island.  In due course, each island’s elders 
reached a decision. 
 
The elders of Operatia told the anthropologist: “The Stochasians are hopelessly 
confused.  They have developed a highly indirect approach to solving the problem 
posed by our great sage.  First, they transform the problem into an untestable 
domain by a process we would call ‘abstraction’.  Using their stones, they find the 
abstract answer corresponding to the abstract problem.  Finally, they equate the 
abstract answer with the real world by a process we would call ‘interpretation’.  
They make the audacious claim that their result is useful, even though the two key 
steps, abstraction and interpretation, can nowise be tested for accuracy.  Indeed, 
these two steps cannot be tested even in principle!  Our stones tell us elegantly 
how to calculate the real result directly from the real data.  No extra steps are 
needed, and nothing untestable is ever used.” 
 
The elders of Stochasia told the anthropologist: “The Operatians are hopelessly 
confused.  They have developed a highly indirect approach to solving the problem 
posed by our great sage.  First, they restrict the problem to a single case by a 
process we would call ‘estimation’.  Using their stones, they estimate the answer 
corresponding to their estimate of the problem.  Finally, they equate the estimated 
answer with the real world by a process we would call ‘induction’.  They make the 
audacious claim that their result is useful, even though the two key steps, 
estimation and induction, are nowise error free.  Indeed, these two steps cannot be 
accurate even in principle!  Our stones tell us elegantly how to calculate the 
general answer directly from the parameters.  No extra steps are needed, and 
nothing inaccurate is ever used.” 
 
The anthropologist believed both these arguments and was confused.  So he went 
away and searched for new islands. 
 
Some years later, the anthropologist discovered a third island called Determia.  Its 
citizens believe randomness is an illusion.  They are certain that all things can be 
completely explained if all the facts are known.  On studying the stones of 
Stochasia and Operatia, the elders of Determia told the anthropologist: “The 
Stochasians and Operatians are both hopelessly confused.  Neither’s approach is 
valid.  All you have to do is look at the real world and you can see for yourself 
whether or not each state is occupied.  There is nothing uncertain about it: each 
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state is or is not occupied at any given time.  It is completely determined.” 
 
Later, he told this to an Stochasian, who laughed: “That’s nonsense.  It is well 
known that deterministic behavior occurs with probability zero.  Therefore, it is of 
no importance.  How did you find their island at all?”  Still later, he told this to 
an Operatian, who laughed: “I don’t know how to respond.  We have not observed 
such behavior.  Therefore it is of no importance. How did you find their island at 
all?” 
 
The anthropologist believed all these arguments and was profoundly confused.  So 
he went away and searched for more new islands.  I don’t know what became of 
him, but I heard he discovered Noman.  (Noman is an island.) 

 


