Operating systems principles and
undergraduate computer science curricula*

by PETER J. DENNING

Princeton, University
Princeton, New Jersey

INTRODUCTION

In the years since 1969, the study of computer systems
has assumed a role nearly equal in importance to
“theory of computation” and ‘“programming” in com-
puter science curricula. In contrast, computer systems
was regarded as recently as 1965 as being inferior in
importance to these two more traditional areas of
study. This is a significant change in attitude. The
harbingers of the change appear in ACM’s Curriculum
68,! and the speed of its development is demonstrated
in the report of Task Force VIII of the COSINE
(Computer Science in Electrical Engineering) com-
mittee of the Commission on Education of the National
Academy of Engineering, entitled “An Undergraduate
Course on Operating Systems Principles.’’2

The reasons for this change, the nature of computer-
system studies, and the potential impact on future
developments will be analyzed in this paper. I shall
begin with a brief overview of computer science itself,
in order to place the study of operating systems in
perspective; I shall then discuss the general need in the
computer industry for principles, many of which relate
to computer and operating systems; finally, I shall dis-
cuss how an operating systems principles course may
be organized.

ON COMPUTER SCIENCE

Computer science is the study of the design, analysis,
implementation, and application of information-
processing procedures.!45¢ In their writings, our edu-
cational leaders have consistently stressed the impor-
tance of concepts and first principles in studying the
material of computer science. All proposals for computer

* Work reported herein was supported in part by NSF Grant
GY-6586.

849

science curricula—especially undergraduate curricula—
have distinguished carefully between courses dealing
with first principles and courses dealing with applica-
tions. Courses of the former type tend to be considered
as “core curriculum” courses, but not courses of the
latter type. (It is interesting to note that courses on
operating systems were, until very recently, considered
as being of the latter type. Even as it has been dis-
covered that operating systems has a set of first princi-
ples independent of details depending on the tech-
nology, this subject matter has increasingly been
considered as worthy core material.)

Courses offered in computer science curricula can be
classified (roughly) into four categories: formal sys-
tems, programming systems, computer systems, and
applications. The distribution of courses among the
four areas will depend on the objectives of a given
institution. (I believe they should be of equal impor-
tance.) Formal systems deals with the various mathe-
matical systems for studying computation itself. Some
of the topics taught in courses of this category include:
the theory of automata, the theory of formal languages,
the theory of computability, the theory of complexity
of computations, and the theory of numerical computa-
tions and error propagation. Programming systems
deals with the algorithms that perform computations
on a practical level. The topies taught in courses of
this category include both the concepts of programming
languages and the problems of implementing algo-
rithms. Programming language concepts encompass
topics like programming language control structures
(e.g., sequencing, iteration, conditional transfers, as-
signments), representing data, use of recursion, use of
subroutines, parsing, compilation, and assembly tech-
niques. The study of algorithms includes topies like
language-independent algorithm specification, data
representation, analysis of algorithms and data strue-
tures, proving a priori the correctness of algorithms,
algorithms for searching and sorting, algorithms for

850 Spring Joint Computer Conference, 1972

Operating Systems /
Concepis

Programming APPLICATIONS

Concepts

Programming Language

Concepts /
Theory of
Computation /

Hardware and Logic
Design

FIRST PRINCIPLES
{core curriculum)

Numerical
Anolysis

1940 (945 1950 1955 1960 1965 1970 1975

Figure 1—Evolution of first principles

dynamic storage allocation, and heuristic algorithms.
Computer systems deals with the problems arising when
algorithms are implemented on physical devices. Some
of the topies taught in courses of this category include
design of hardware and logic circuits, organization and
design of standard equipment (e.g., processors, mem-
ories, peripherals), design of software systems, design
of complex systems, control of parallelism and con-
currency, control of processor and memory and other
resources, analysis of system behavior, modeling the
behavior of computing processes. As will be discussed
shortly, these three categories deal with what I call the
“first principles”’ of computer science. Topics which are
dependent on the present-day technology, or are likely
to be of little interest in more than, say, five years,
are the subject of courses in the applications category;
these include discussions of particular languages or
particular machines or particular operating systems,
systems programming techniques, specialized program-
ming techniques, business data processing, and informa-
tion retrieval.

The reader will note that Artificial Intelligence has
not been mentioned in the above. In many respects, it
cuts across all the categories. In many respects, it is an
entirely different approach to computer science than
the one I have outlined. Many computer science de-
partments offer Artificial Intelligence courses on an
elective basis and do not consider them as part of the
core curriculum.

When I use the term “operating systems principles,”
I mean the software, control, modeling, and analysis
aspects of the computer-systems part of computer
science.

Figure 1 is a very idealized overview of the evolution
of the first principles of computer science. Topics are
listed along the vertical axis, time along the horizontal;

those topics below the curve at a given time are con-
sidered as core-curriculum topics at that time. Con-
ceptual approaches to numerical analysis have been
with us since the beginning of electronic computing,
since these were the primary purposes to which Burks,
Eckert, Goldstine, Mauchly, von Neumann and their
contemporaries envisioned their machines being applied.
Although hardware and combinational logic design
concepts using Boolean algebra to describe switching
functions had been proposed by Shannon before 1945,
this area received a strong impetus from the sequential
machine work of Huffman, Mealy, and Moore during
the early 1950’s. The modern approach to the theory of
computation, which emphasizes the relations among
abstract machines and abstract languages and compu-
tational complexity did not evolve until the mid 1960’s
and the first texts in this area did not appear until the
later 1960’s.”® Programming languages were introduced
in the later 1950’s (FORTRAN in 1956, ALGOL in
1958) but the concepts underlying them were not put
down in systematic, textbook form until the mid-
1960’s.? Concepts about algorithms themselves, con-
cepts more or less independent of programming lan-
guages, did not become systematized until the late
1960’s.1® And finally, the concepts of computer systems
are only recently being put in text form at a graduate
level!! and nothing save a report exists deseribing them
at an undergraduate level.? Thus it is evident that the
development of a wide range of core material—the
first principles of computer science—is quite recent in
the era of electronic computing. Since much of the
material of major interest to the industry itself—pro-
gramming and system concepts—has just recently
entered the “core area”, it is no surprise that the in-
dustry has long regarded computer science as being
somewhat irrelevant. I do think we can expect a change
in this attitude.

On the basis of Figure 1, one can see why the majority
of computer science departments were not established
until after 1965. Academia has always been reluctant
to establish degree programs in subject areas with no
discernible broad base of first principles.

ON THE NEED FOR PRINCIPLES TO BE
APPLIED IN THE COMPUTER INDUSTRY

As mentioned, Figure 1 illustrates why the industry
has tended to hold computer science education in dis-
regard, i.e., because the topics of interest to it (concepts
of programming and design of systems) have not been
treated on a sound coneceptual basis in curricula. Look-
ing at Figure 1 from a different perspective turns up
another interesting observation: For some twenty

Undergraduate Computer Science Curricula 851

years, the leaders of industry (management) have had
to proceed without a set of first principles in the areas
of major interest to them. This perhaps explains (in
part) why so much difficulty has been experienced in
getting “third generation” computer systems opera-
tional: There had been no systematic set of concepts
according to which designers and programmers could
be guided. This had left the industry in the rather un-
comfortable situation of being accused in the public
media of misusing, or condoning the misuse of, com-
puters. Witness, for example, the great public outecry
with respect to privacy and protection of information.

In many respects, then, the allegations that the
computing industry is ‘“‘adrift” and ‘“unprincipled”
have some basis in fact. The allegations that computer
science education has not been of much help to the
industry likewise have some basis in fact. We cannot,
however, afford to wait ten or twenty years for the
present crop of computer science students to move into
the leadership positions of industry. Those presently in
the leadership positions must not only be made aware
of the existence of principles, but they must be made
aware of the principles themselves.

In a recent statement,’? ACM President Walter
Carlson recognized this problem, saying “. .. There is
too little systematic codification of fundamentals (i.e.,
first principles). There is almost no communication
between the research people and system designers or
operators. There is a widening sense of frustration
among academics over misuse (or lack of use) of proven
computer technology in practical operations.” Figure 1
demonstrates that at least a basis exists for reversing
the trend addressed by Carlson’s first point.

To illustrate Carlson’s third point, let me discuss
three examples of common misconceptions attributable
to a lack of understanding of the first principles of
computer science: (1) The “software problem,” i.e., the
increasingly high costs of software development and
lack of quality control over software packages, is a long
way from being solved. (2) The “protection problem,”
i.e., that of guaranteeing the privacy, security, and
integrity of information, is yet to be solved adequately.
(3) The “computer utility” was a fad which, thank-
fully, is dead. It would astonish some managers to
know the facts: Solutions to the software and protection
problem exist now—and have existed, in computer
utility research projects, since at least 1965! (I will
elaborate below.) While much work remains to be done,
I think it is safe to say that these solutions are ade-
quate for present-day purposes. The solutions to these
problems evolved in the design and use of such systems
as the CTSS (Compatible Time Sharing System) and
its successor MULTICS (Multiplexed Information
and Computing Service) at MIT. Both these systems

are regarded as first steps in the evolution of the com-
puter utility, and rely on the computer-utility environ-
ment for their viability; thus, the attitude that the
computer utility was a fad is in fact an attitude hostile
to the solutions of the two problems. That so many
who hold leadership positions in the computer industry
have failed to recognize that CTSS and MULTICS
implement solutions to these problems—even as under-
graduate students exposed to an operating systems
principles course seem to have no such difficulty—
further reinforces my conviction that the first principles
of computer science are not widely disseminated or
appreciated.

The solution to the software problem in CTSS and
MULTICS is based on the concepts of programming
modularity and sharing of information; the requisite
mechanism took the forms of the CTSS file system and
the MULTICS virtual memory.* The solution to the
protection problem in MULTICS is based on the con-
cepts protection rings (or “domains”) and on controlled
access to information.** An important aspect of these
two solutions is, neither can be accommodated on most
systems presently on the market without major altera-
tions in hardware and software architecture. It is the
failure of management to understand the principles on
which the solutions are based that has made them un-
able to recognize that CTSS and MULTICS solve
these problems, and has led them to market systems in
which technically sound solutions to the software and
protection problems are not possible.

The foregoing criticisms of management are meant to
be constructive in the sense that managers (and other
elements of the computing profession as well) cannot
play their roles to perfection without a thorough under-
standing of the principles of computer science. And,
because it is only recently that the first principles have
become systematized, it is difficult to expect managers
to interpret new developments in the light of guiding
principles.

ON THE IMPORTANCE OF COMPUTER
SYSTEMS CONCEPTS

I have devoted a considerable amount of space to
emphasizing the first principles of computer science and

* A description of the CTSS file system can be found in Wilkes’
remarkably concise 96-page book,® a description of the
MULTICS virtual memory can be found in the paper by
Bensoussan, Clingen, and Daley.* Both these descriptions make
it adequately clear that these systems, in their own contexts,
have solved the software problem.

** The concepts of protection systems are discussed by Lampson,
and by Graham and Denning;' systems implications of protection
are discussed by Wilkes'® and by Schroeder and Saltzer.!?

852 Spring Joint Computer Conference, 1972

analyzing the effects in the computer industry of having
no first principles. I have done this to emphasize how
the first principles of computer systems have a natural
place in computer science. Aside from these larger con-
siderations, there are several reasons why a systematic
presentation of the first principles of computer systems
is important in and of itself.

First, the so-called case-study approach to teaching
computer systems has been more or less unsuccessful
wherever it has been tried: The student becomes so
immersed in the particulars of the given system that he
cannot distinguish important principle from irrelevant
detail. In my limited experience, I have met only with
success using the ‘“modeling and analysis” approach.
Thus, computer system principles are useful in the
practical task of teaching others about computer
systems.

Second, it is increasingly evident throughout the
computer industry that we literally can no longer
afford to develop ever larger, ever more complex sys-
tems without solid notions of how they are to be strue-
tured or how they are to behave. We can no longer
afford to put together systems which are extremely
wasteful of their own resources. We can no longer
afford not to apply the concepts and principles in
practice.

Third, for some inexplicable reason, the design of
complex software and hardware systems has been con-
sidered traditionally as an ‘‘application” problem, a
“technology-dependent’’ problem. In contrast, it is now
being realized that designing complex systems—sys-
tems which operate as intended, whose correctness and
behavior can be established a priori, whose perform-
ance can be monitored easily—is an intellectual task
worthy of our best minds. (In other words, the com-
puter-systems area has inherited one of the most im-
portant problem areas of computer science.) This
realization has stimulated increasing amounts of re-
search in computer system modeling and analysis, a
principal result of which has been the emergence of a
teachable, comprehendable body of operating systems
principles. Much of “computer system theory” is con-
cerned in one way or another both with managing
complexity in software and hardware systems and with
complex algorithms involving parallel processes, so
that it is relevant to many practical problems now
facing the industry.

Fourth, and perhaps of the most long-term signifi-
cance, there is an ever widening appreciation of the
view that our world has become a vast real-time system
whose complexity is beyond the reach of the unaided
human mind to understand. It is not difficult to identify
the essential elements of information systems in busi-
ness systems, economic systems, urban systems, and

even social systems. Again and again we see decisions
being taken to regulate such systems as these which,
despite the best of intentions, often turn out to have
the opposite of the intended effect. Jay Forrester has
called this phenomenon the ‘‘counterintuitive behavior”
of complex systems.’® It is explained by the inability of
the unaided mind fu'ly to grasp why the long-term
effect of a policy is often the opposite of its short-term
effect, or fully to comprehend the complexities of, and
interrelations among, the various parameters that influ-
ence a system. Forrester’s simulation experiments of
urban and business systems show that the intended re-
sult may normally be obtained only when all the con-
trollable parameters of a system are governed by a
single policy, not when each such parameter is con-
trolled individually. This type of phenomenon is hardly
new in the experience of computer system designers.
As computer system ‘‘theorists’” axiomatize information
systems, developing systematic approaches both for
managing complexity and for guaranteeing a priors
that a system will operate as intended, the results of
their efforts should be applicable to the solutions of
problems in social, urban and other noncomputer in-
formation systems.

ON THE APPROACH

As T have stated, I call this the modeling-and-analysis
approach to studying operating systems, to distinguish
it from the case-study approach. The material can be
organized and presented as a sequence of abstractions
together with examples of their applications, each ab-
straction being a principle from which most imple-
mentations can be deduced. The concept-areas (in
which teachable abstractions exist) are:

procedure implementation
concurrent processes
memory management
name management
resource allocation
protection

Experience shows that the most coherent treatment is
obtained if the topics are organized according to this
list of concept-areas.

The COSINE report? goes into some detail instruet-
ing instructors how to present these abstractions; a
COMPUTING SURVEYS paper® explores them in
some detail from a student’s viewpoint, the Coffman-
Denning text! treats the mathematical analysis related
to them. Accordingly, I shall restrict myself here to
outlining their content.

The background required of students undertaking

Undergraduate Computer Science Curricula 853

this type of course should include: a working knowledge
of programming language features; an elementary un-
derstanding of compilation and loading processes;
processor organization and operation, including inter-
rupts; memory organization and operation; and data
structures such as stacks, queues, arrays, and hash
tables. This background could be obtained from a
course on programming languages (e.g., ACM’s Course
I-2)! and a course on computer organization (e.g.,
ACM’s Course I-3).! A data structures course (e.g.,
ACM’s Course I-1)! is helpful but not necessary.

The course itself is related to ACM’s systems pro-
gramming course (ACM Course 1-4)! but differs in at
least two significant ways. First, the ACM outline sug-
gests a “‘descriptive,” case-study approach whereas
this course is organized along conceptual lines. Second,
ACM’s course emphasizes techniques of systems pro-
gramming whereas this course emphasizes the principles
of system organization and operation. This shift in
emphasis is made possible by new developments, since
the ACM report predates the appearance of much of
the modeling and analysis material on which this
course is based.

The instructor of this course will find it useful to
introduce the subject by pointing out how, despite the
wide range of operating systems types and capabilities,
there is a set of characteristics common to these sys-
tems. These characteristics include: (1) concurrency,
ie., many activities proceeding simultaneously, (2)
sharing of resources and the existence of a centralized
resource allocation mechanism, (3) sharing of informa-
tion, (4) protection for information, (5) long-term storage
of information, (6) muliiplexing, i.e., the technique of
switching a resource (rapidly) among many requestors
so that it is assigned to at most one at a time, (7)
remote conversational access, (8) nondeterminacy, i.e.,
unpredictability of the order in which events will oceur,
and (9) modularity in design and operation of systems.
It is important to point out that, for pedagogic reasons,
the course material is presented (more compactly) ac-
cording to the six concept-areas stated earlier, and not
directly among the lines of these nine common
characteristics.

The area of procedure implementation is important
because the reason computer systems exist at all is to
provide an efficient environment for executing pro-
grams. The notion of procedure is important because of
its close relation to programming modularity. The basic
concepts—pure procedure, procedure activations and
activation records, parameters, local and nonlocal
references—should be presented first. Then the main
coneept, ‘‘procedure in execution’” (i.e., a procedure
which has been called but has not yet returned) and
its implementations, is presented. An abstract desecrip-

tion of “procedure in execution” is a pair of pointers
(4,) where 1 is an instruction pointer and r an activa-
tion-record pointer (local environment pointer). Every
implementation must solve three problems: (1) allocat-
ing and freeing storage on procedure call and return,
(2) interpreting local references, i.e., those to objects
in the activation record, and (3) interpreting nonlocal
references, i.e., those to objects in other activation
records. The implementations of “procedure in execu-
tion” in languages like FORTRAN, ALGOL, or PL/1
can be deduced from these concepts by considering the
restrictions imposed by these languages.

The area of concurrent (parallel) processes is im-
portant because one of the purposes of an operating
system is controlling many, independently-timed activi-
ties. A “‘process” can be regarded as a ‘“‘program in
execution” and has an abstract description much like
‘“procedure in execution.” ‘“‘Parallel Processes” is the
notion that, at any given time, more than one program
will be observed to be somewhere between its initiation
and termination points. There are four process control
problems of principal concern: (1) determinacy, i.e., the
property that the result of a computation by cooperat-
ing processes on common memory cells is independent
of their relative speeds, (2) freedom from deadlock, i.e.,
the property that allocation of resources is controlled
so that at no time does there exist a set of processes,
each holding some resources and requesting additional
resources, such that no process’s request can be satisfied
from the available resources, (3) mutual exclusion, i.e.,
the property that, of a given set of processes, at most
one is executing a given set of instructions at any time,
and (4) synchronization, i.e., the property that a pro-
cess, whose progress past a given point depends on re-
ceiving a signal from another, is stopped at that point
until the signal arrives.

The area of memory management is important be-
cause every practical computer system incorporates a
hierarchy of storage media characterized by various
compromises among access time, capacity, and cost; a
set of policies and mechanisms is required to increase
system efficiency by arranging that the most frequently
accessed information resides in fast access memory.
The abstractions used here are those of “virtual mem-
ory”: address space, memory space, and address map.
The common implementations of virtual memory (e.g.,
paging, segmentation) ecan be deduced from these ab-
stractions by considering factors such as efficiency of
mapping operations and efficiency of storage utiliza-
tion. Once the implementations have been studied, one
can study the policies for managing them. Finally, it is
straightforward to generalize the discussion to the im-
plementations and policies of multiprogramming and of
auxiliary memory problems. The foregoing develop-

854 Spring Joint Computer Conference, 1972

ment will lead to a computational storage system (i.e.,
that part of the memory system in which references
are interpreted by the hardware) which presents to
each programmer a large, linear address space.

The area of name management is important because
a linear address space such as provided by the preced-
ing development has inherent limitations from the
standpoint of programmers and system users. It cannot
handle growing or shrinking objects, provide different
contexts in which processes may operate, allow for
sharing or protecting objects, or implement a long-term
storage system in which objects may reside independ-
ently of any context. In other words, linear address
space cannot support modular programming to the ex-
tent required by today’s system objectives. These
limitations can be overcome by extending the memory
system to allow programmers to define objects of vari-
able size, assign names and (variable) contexts to these
objects, allow shared access to objects, and specify
dynamically which subset of a universe of objects
should participate in a computation. That part of the
memory system which implements these new objectives
is called the “long-term storage system”; it may be
distinct from the computational storage system or it
may be one and the same. Computers implementing a
virtual memory and a file system are examples of the
former, computers implementing segmentation are ex-
amples of the latter. In either case, a global (system-
wide) scheme for naming objects must be devised (in
order to allow sharing), the (directory) tree hierarchy
with “pathnames’” being most common (in this case
the long-term storage system provides a tree-structured
space of objects in addition to the linear space or
spaces provided by the computational storage system).

The area of resource allocation is important partly
because the complexities of the interactions among all
the processes in the system dictate that a central policy
regulate resource usage to optimize performance, and
partly because one effect of implementing the previous
abstractions is to hide machine details from users,
placing the burden of allocation decisions squarely on
the system. One can distinguish long-term from short-
term policies, the latter being of primary concern here.
One can model a process (from a resource-allocation
view) as cycling among the “demand-states” ready,
running, blocked; correspondingly one finds a network
of queues with feedback in the computer system. Pro-
cesses are distributed among the queues according to
demand-states, and change queues according to changes
in demand-state. In terms of this, one ean study specific
queueing policies and overall network control policies;
one can study the meaning of concepts like “system
balance’” and “thrashing’”’; and one can study what
evaluation techniques are applicable. Models of pro-

gram behavior and the use of statistical analysis are
important to an understanding of resource allocation
and are used throughout.

The area of protection is important in any system
where there may reside procedure and data belonging to
more than one individual. It must not be possible for
one process to disrupt or corrupt service to others, and
access to information (especially if confidential or pro-
prietary) must be permitted only under appropriate
authorization. The abstract model of a protection sys-
tem includes: (1) a set of “domains’ or “protection
contexts,” i.e., sets of constraints according to which a
process may access objects, (2) a set of ‘‘objects,” i.e.,
everything to which access must be protected or con-
trolled (including the domains), and (3) a mechanism
that both specifies and enforces access rules by processes
to objects, the type of access depending on the domain
with which the process is associated. The mechanism
can be specified in the form of an “access matrix” (e.g.,
if A is the access matrix, A[d, z] specifies the types of
access a process associated with domain d has to object
z). Most of the implementations of protection found in
practice can be deduced from this model.

There remain certain issues that have not been
treated definitively in the literature but which nonethe-~
less are of central importance in computer system
operation and design. These include: reliability, per-
formance evaluation, design methodologies, and im-
plementation strategies. They must, unfortunately, be
relegated to a pedagogically inferior position at the end
of the course. I should emphasize that this reflects the
absence of teachable material, not the importance of
the issues. As viable abstractions in these areas are
evolved, they will be welcome additions to the course.

CONCLUSIONS

Operating systems principles can be regarded as the
study of complex algorithms comprising parallel activi-
ties. This paper has reviewed and analyzed the im-
portance of a significant change in attitude: The as-
sumption of computer operating systems principles into
the core of computer science. The analysis of this
change was done in the light of the evolution of the
“first principles”’ of computer science, of the need for
these principles to be applied in the computer industry,
and of the increasing need for systematic ways of deal-
ing with complex, real-time information systems. An
outline for a course on operating systems principles
was described, the concepts being chosen for inclusion
in the course on the basis both of demonstrated utility
in practice and of their being straightforward generali-
zations of widely accepted viewpoints.

Undergraduate Computer Science Curricula gx5

The first twenty-five years of the computer industry,
years of remarkable achievement, have not been with-
out their problems. Now that computer science educa-
tion is maturing, we should be able to expect closer
cooperation between universities and industry in solv-
ing these problems.

REFERENCES

1 ACM Curriculum Committee on Computer Science (C38)
Curriculum 68: Recommendations for academic programs in
compuler science
Comm ACM 11 3 March 1968 151-197

2 COSINE Task Force VIII
An undergraduate course on operating systems principles
(The members of the task force were: Peter J. Denning,
Jack B. Dennis, A. Nico Habermann, Butler W. Lampson,
Richard R. Muntz, and Dennis Tsichritzis.) June 1971.
Available free of charge from: Commission on Education
National Academy of Engineering 2101 Constitution
Avenue NW Washington DC 20418

3 S AMAREL
Compulter science: a conceptual framework for curriculum
planning
Comm ACM 14 6 June 1971 391-401

4 G E FORSYTHE
A university’s educational program in computer science
Comm ACM 10 1 Jan 1967 3-11

5 R W HAMMING
One man's view of compuler science
JACM 10 1 Jan 1969 3-12

6 A L PERLIS
University education in computing science
Proc Stony Brook Conf Academic Press 1968 70ff

7 J E HOPCROFT J D ULLMAN
Formal languages and their relation to automata
Addison-Wesley 1969

8 M M MINSKY
Computation: Finite and infinite machines
Prentice-Hall 1967
9 I FLORES

Computer programming
Prentice-Hall 1966

10 D E KNUTH
The art of computer programming
Addison-Wesley Vol I 1968 Vol II 1969

11 E G COFFMAN JR P J DENNING
Operating systems theory
Prentice-Hall to appear

12 W M CARLSON
President’s letter: reflections on Ljubljana
Comm ACM 14 10 Oct 1971

13 M V WILKES
Time sharing computer systems
American Elsevier 1968

14 A BENSOUSSAN C T CLINGEN R C DALEY
The MULTICS virtual memory
Proc 2nd ACM Symposium on Operating Systems
Principles Oct 1969 30-42

15 B W LAMPSON
Protection
Proc 5th Annual Princeton Conference on Information
Science and Systems Department of Electrical
Engineering Princeton University Princeton New Jersey
08540 March 1971

16 G S GRAHAM P J DENNING
Protection: principles and practice
Proc AFIPS Conf 40 Spring Joint Computer Conference
1972

17 M D SCHROEDER J H SALTZER
A hardware architecture for implementing protection rings
Comm ACM 15 3 March 1972

18 J W FORRESTER
Urban dynamics
MIT Press 1969

19 P J DENNING
Third generation computer systems
Computing Surveys 3 4 Dec 1971

	No 1
	No 2
	No 3
	No 4

