

Invited Talk

Great Principles in Computing Curricula
Peter J. Denning*

Computer Science Department, Naval Postgraduate School
Monterey, CA 93943 USA

+1-831-656-3603 pjd@nps.navy.mil

ABSTRACT
The nearly three dozen core technologies of computing sit in a
simple framework defined by great principles and by computing
practices. The great principles are of two kinds, mechanics and
design. Computing mechanics comprises computation,
communication, coordination, recollection, and automation. Design
principles address concerns for complexity, resilience, performance,
evolvability, and security. Practices comprise programming,
systems, modeling, innovating, and applying. This framework
opens many new possibilities for teaching computer science,
including new approaches to programming. The new CS curriculum
at the Naval Postgraduate School is based on the framework
presented here.

Categories and Subject Descriptors
A.0 [General Literature]: organization and structure of computing
field. K.0 [Computing Milieux]: organization and structure of
computing field. K.2 [History of Computing]: evolution of
principles and practices of computing. K.3 [Computing Education]:
organization of curriculum, teaching programming. K.4 [Computers
and Society]. K.7 [The Computing Profession]: professional
practices of programming, systems, modeling, innovating, applying.

General Terms
Algorithms, Measurement, Performance, Design, Reliability,
Experimentation, Security, Human Factors, Languages, Theory.

1. INTRODUCTION
The great principles of computing have been interred beneath layers
of technology in our understanding and our teaching. This paper is
about how to set them free. We propose a great principles
framework for computing and discuss some of the reasons it has
been so hard to articulate such a framework. The framework
suggests new ways to organize a computer science curriculum. The
new CS curriculum at Naval Postgraduate School (NPS) adopts the
framework.
The great principles framework is a new organizing principle for
our field. There are four main reasons to be interested:

• Understandability: The field continues rapid growth as new
computing technologies emerge and spread into new
application areas. Our traditional view of the field as a set of
core technologies has become untenable: the number of core
technologies tripled from 10 a decade ago to around 30 today.
A great principles framework does not depend on the number
of core technologies. It will make our field more
understandable and approachable, for insiders as well as
outsiders.

• Curriculum complexity: The Computing Curriculum 2001
(CC2001) committee took 2 years to come to a consensus on a
set of topics that could be covered in the time allocated to the
core in most curricula. The typical first course is now
organized around object-oriented programming (with Java or
C++ as the vehicle), a practice that has spread to the Advanced
Placement (AP) curriculum in high schools. Many novices find
the language details intricate and the course very difficult; they
feel under extreme pressure to perform. There are numerous
reports of high dropout rates in the first course (35 to 50
percent) and of widespread cheating and plagiarism on
programming assignments. The “trauma of the first language”
subverts the ideal of multi-lingual computing professionals. A
great principles framework can help us resolve these
incongruities.

• Computing Practices. The competence of computing
professionals is judged by their ability to perform effectively
with their customers. Computing education currently
emphasizes concepts at the expense of competent practices. A
great principles framework offers a new balance between
concepts and practice.

• Public Image: Despite many years of our trying to broaden
our image, computing is still widely perceived as a
programmer’s field. Computer Science departments have
added to this perception by making an industry-strength
language the centerpiece of introductory courses. Many
outsiders wonder whether CS departments will eventually
disappear as the technology evolves and other fields take over
as the main contributors of new computing technology. A great
principles framework can dispel these misconceptions.

The view of the field to be discussed here identifies a fundamental
base of principles for all the core technologies and a fundamental
set of practices that mark the computing professional. The resulting
framework is simple to grasp and provides a stable context for the
core technologies. It also suggests ways to organize curriculum to
overcome the curriculum difficulties noted above. It puts computing
on an equal basis with other traditional science and engineering
fields.

* Peter Denning (pjd@nps.navy.mil) is Chairman of the Computer
Science Department and Director of the Cebrowski Institute for
Information Innovation and Superiority at NPS.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SIGCSE'04, March 3-7, 2004, Norfolk, Virginia, USA.
Copyright 2004 ACM 1-58113-798-2/04/0003...$5.00.

336

2. EXAMPLES FROM OTHER FIELDS
Computer science was born in the mid 1940s with the construction
of the first electronic computers. In just 60 years, computing has
come to occupy a central place in science, engineering, business,
and everyday life. Many whose lives are touched by computing
want to know how computers work and how dangerous or risky
they are; some want to make a profession from working with
computers; and most everyone asks for an uncomplicated
framework for understanding this complex field. Similar questions
have been faced in other fields such as physics, life sciences, and
astronomy. Can we learn from them how to answer such questions
in a compact, compelling, and coherent way?
The mature sciences such as physics, biology, and astronomy
portray themselves with a principles-based approach. Each builds
rich structures from a small set of great principles. The great
principles are simple ideas that affect the entire field. Examples of
this approach are Lectures in Physics by Richard Feynman [5], The
Joy of Science by Robert Hazen and James Trefil [7], and Cosmos
by Carl Sagan [9]. Newcomers find a principles-based approach to
be much more rewarding because it promotes understanding from
the beginning and shows how the science transcends particular
technologies.
A great principles approach for computing needs to deal with
mechanics (how computations work), design (how we organize
computations), and practices (what we must be competent at when
we build computations).

3. MECHANICS
In the 1950s, our field’s founders portrayed their young science as a
set of core technologies that supported application domains. They
listed their core technologies as algorithms, numerical methods,
computation models, compilers, languages, and logic circuits. Over
the next 30 years, our field added a few more: operating systems,
information retrieval, databases, networks, artificial intelligence,
human computer interaction, and software engineering. The 1989
ACM/IEEE report, “Computing as a Discipline,” listed 9 core
technology areas [3]. Since then, the total number of core
technology areas has tripled (see Table 1). Today, learning the
mechanics of these technologies and their hundreds of possible
direct interactions has become a daunting challenge.

Table 1. Core Technologies of Computing

algorithms
artificial intelligence
compilers
computational science
computer architecture
data mining
data security
data structures
databases
decision support systems
distributed computation
e-commerce
graphics
human computer interaction
information retrieval

management info systems
natural language processing
networks
operating systems
parallel computation
programming languages
real-time systems
robots
scientific computation
software engineering
supercomputers
virtual reality
vision
visualization
workflow

In an effort to stem “curriculum bloat” from this growth, the
CC2001 report emphasizes the ideas at the “intersection” of the core
technologies [4]. Two books that popularize computing focus on the
“great ideas” embodied in these areas [1,8]. None of these authors
discusses which ideas are fundamental principles of all the core
technologies. A list of core technologies does little to convey the
great principles of computing.
Locating the fundamental principles of the field looks, therefore, to
be a very attractive project. It calls to mind a picture in which the
principles are the foundation of a pantheon with one pillar for each
great principle. Unfortunately, as we shall soon see, such a picture is
an unsatisfactory portrayal of computing.
Our very first question is: How shall we express our principles? It
seems like we are looking for declarative statements such as

“The Turing machine is a universal model of computation.”
“All information can be encoded as strings of bits.”
“The number of bits in a message source is given by its entropy.”

But this quickly becomes contentious. Some people argue over the
definitions of terms such as computation, information, or message
sources. Others ask whether some of the words ought to be qualified
-- such as algorithmic computation, physically represented bits, or
discrete message sources. Still others ask why these statements are
singled out and not others, such as “Every function imposes a
lower-bound running time on all algorithms that compute it.” Most
everyone demands statements of obvious relevance to the familiar
core technologies. But they wrestle over the selection criteria for
principle statements, such as universality, recurrence, invariance,
action orientation, utility for prediction, or scope of consequences.
How do other fields express their principles? Physicists name key
phenomena like photons, electrons, quarks, quantum wave function,
relativity, and energy conservation. Astronomers name planets,
stars, galaxies, Hubble shift, and black holes. Thermodynamicists
name entropy, first law, second law, and Carnot cycle. Biologists
name phylogeny, ontogeny, DNA, and enzymes. Each of their terms
is actually the title of a story! The principles of a field are actually a
set of interwoven stories about the structure and behavior of field
elements. They are the names of chapters in books about the field
[5,7,9].
Astronomy, thermodynamics, and physics use the term mechanics
for the part of their fields dealing with the behavior and structure of
components -- the so-called “cause-and-effect relationships.” For
example, Celestial Mechanics deals with the motions of heavenly
bodies; Statistical Mechanics with the macro behavior of physical
systems comprising large numbers of small particles; Quantum
Mechanics with wave behaviors of subatomic particles; Rigid-Body
Mechanics with the balance of forces within and between connected
objects. I adopt this term for computing.
Computing Mechanics deals with the structure and operation of
computations -- with the universally occurring phenomena that
appear in computational processes and hardware and software
components. It does so with stories for algorithm, Turing machine,
grammar, message entropy, process, protocol stack, naming,
caching, machine learning, virtual machine, and more. The stories
group into the five categories of computation, communication,
coordination, automation, and recollection (see Table 2). Every core
technology expresses all five in its own way.
The lines between these categories are blurry. For example, the
Internet protocol stack is an element of both communication and
coordination; naming, encoding, and caching are elements of

337

communication and recollection; co
computation and coordination. There
the categories as windows into com
Although the views through the edges
through the centers is distinctive.

4. DESIGN
Computing Mechanics does not exha
our field. Computing professionals fo
enable them to harness mechanics
customers. Five concerns drive the des

• Simplicity: Various forms of a
overcome the apparent complexit

• Performance: predicting th
bottlenecks; capacity planning.

• Resilience: reliability, redundan
retransmission, majority voti
integrity, system trust.

• Evolvability: adapting to change

• Security: access control, secr
integrity, safety.

The design principles themselves inc
hiding, modules, separate compilatio
divide-and-conquer, functional le
separation of concerns, reuse, encaps
machines. These principles are conv
have found to lead consistently to dep
systems, and applications. These con
constraints of cost, schedule, compatib

Design is not the same in computin
computing we design abstract object
fields use abstraction to explain or

Window Cen

Computation What can be c
limits of com

Communication Sending mess
another.

Coordination Multiple entit
a single result

Automation Performing co
computer.

Recollection Storing and re
Table 2: The Five Windows of Computing Mechanics
tral Concern Principal Stories

omputed and how;
puting.

Algorithm, data structure, automata, languages, Turing machine, universal
computer, Turing complexity, Chaitin complexity, self reference,
approximations, heuristics, non-computability, translations, compilations,
physical realizations

ages from one point to Data transmission, Shannon entropy, encoding to medium, channel capacity,
noise suppression, error correcting codes, end-to-end-error correction,
Huffman and Reed-Solomon codes, file compression, cryptography, packet
networking

ies cooperating toward
.

Human-to-human (action loops, workflows as supported by communicating
computers), human-computer (interface, input, output, response time, data
visualization); computer-computer (concurrency control, races,
synchronization, deadlock, serializability, atomic actions)

gnitive tasks by Simulation and machine performance of cognitive tasks, philosophical
distinctions about automation, expertise and expert systems, enhancement of
intelligence, Turing tests, machine learning and recognition, bionics

trieving information. Hierarchies of storage, locality of reference, caching, address space and
ncurrency is an element of
fore, I found it better to view
puting mechanics (Figure 1).
 of windows overlap, the view

ust all the principles used in
llow principles of design that
in the service of users and
ign principles:

bstraction and structure that
y of the applications.

roughput, response time,

cy, forward error correction,
ng, recovery, checkpoint,

s in function and scale.
ecy, privacy, authentication,

lude abstraction, information
n, packages, version control,
vels, layering, hierarchy,
ulation, interfaces, and virtual
entions that we collectively
endable and useful programs,
ventions are practiced within
ility, and usability.

g as it is in other fields. In
s that perform actions. Other
to organize tangible objects.

Since design tells us about arrangements of basic components,
design sits above mechanics in our picture of the field.

Figure 1. The five windows.

5. COMPUTING PRACTICES
Our picture of computing is needs more than mechanics and design.
It needs an account of the computing practices that characterize our
skills as professionals. Our competence is judged not by our ability
to explain principles, but by the quality of what we do. We found
five main categories of computing practice:
Programming -- Using programming languages to build software
systems that meet specifications created in cooperation with the
users of those systems. Computing professionals must be
multilingual, facile with the numerous programming languages,
each attuned to its own strategies for solving problems.

mapping, bindings, naming, sharing, thrashing, retrieval by name, retrieval
by content

338

• Engineering Systems -- Designing and constructing systems
of software and hardware components running on servers
connected by networks. These practices include a design
component concerned with organizing a system to produce
valuable and tangible benefits for the users; and an
engineering component concerned with the modules,
abstractions, revisions, design decisions, and risks in the
system; and an operations component concerned with
configuration, management, and maintenance of the system.
High levels of skill are needed for large programmed systems
encompassing thousands of modules and millions of lines of
code.

• Modeling and validation -- Building models of systems to
make predictions about their behavior under various
conditions; and designing experiments to validate algorithms
and systems.

• Innovating -- Bringing about lasting changes in the ways
groups and communities operate by exercising technical
leadership. Innovators watch for and analyze opportunities,
listen to customers, formulate offers customers see as
valuable, and manage commitments to deliver the promised
results. Innovators are history-makers who have strong
historical sensibilities.

• Applying -- Working with practitioners in application
domains to produce computing systems that support their
work. Working with other computing professionals to produce
core technologies that support attributes common to many
applications. Working according to the standards of practice,
conduct, and ethics to increase public trust in the profession
and its members.

It is best to think of practices and principles in an endless cycle of
mutual reinforcement: our practice is shaped by principles, and our
perceptions of principles are shaped by practice.

Our portrait is now complete (see Figure 2). It consists of
computing mechanics (the laws and universal recurrences that
govern the operation of computations), design principles (the
conventions for designing computations), computing practices (the
standard ways of building and deploying computing systems), and
core technologies (organized around shared attributes of
application domains). Although not shown in the figure, the entire
framework floats in a rich contextual sea of application domains,
collectively exerting strong influences on core technologies,
design, and practice. Each of the four levels at which we act as
designers and users of computation is also a domain of practice
with its own supporting technologies (see Table 3). Each level of
the picture has a characteristic question that justifies its place in the
hierarchy and exposes the integral role of practices.

6. AN IMPLEMENTATION AT NPS
At the Naval Postgraduate School, the Computer Science
Department offers a graduate curriculum leading to MS in CS. The
students are mostly officers of the US Navy, Marine Corps, Army,
and Air Force, and of similar military services in 53 other
countries. They are professional leaders who are seeking a solid
grounding in the principles of computing and who will be project
leaders, program managers, strategists, change agents, and
innovators. Most are in mid-career, 5-10 years since their BS
degrees, and some are seeking formal education in CS for the first
time. They attend for 2 years and take courses continuously for 8
quarters. Their first year establishes a base in CS and their second
develops depth in a track supporting a required master’s thesis.
(Although we have a few PhD students, the bulk of student support
for our $18M of sponsored research comes from MS theses.)

Figure 2. Principles-Based Portrait of Computing

339

Table 3. Levels of Action in Computing Practices

Levels Central Questions Example Technologies

Application Domains How do we work with others to design
computing that serves them?

Supercomputers, grid computing, graphics
design, interfaces, ...

Core Technologies How do we design computations that support
common elements across applications?

Algorithms, databases, networks, operating
systems, HCI, AI, …

Design Principles How do we organize ourselves and our
thinking when designing computations?

Design tools, object-oriented programming,
layering, virtual machines, authentication, …

Computing Mechanics What are computing machines doing? Logic simulators, protocol stack, workflow,
expert systems, virtual memory, …

We implemented the great principles framework in our context as
follows.
• We designed a new course, Great Principles of Computing

Technology, which is the opening course for the curriculum.
• We matched it with a final, integrative capstone course that

considers contemporary issues interpreted in the light of the
great principles.

• We revised our core courses so that they build on the
principles introduced at the start, rather than reinventing them
from scratch. The content of these courses is consistent with
the core content recommendations of the ACM 2001
Curriculum.

• Created a set of computing practices courses for
programming, engineering of systems, modeling, and
innovating.

The computing practices courses are as follows.
• Programming Practices are 3 courses. The first two cover

object programming using Java and a rich repertoire of actions
that programmers can take. They are similar to standard
versions of the first and second CS courses, except they
unabashedly focus on programming practice and not on the
development of concepts. The third PP course is a survey of
languages, introducing CS students to their responsibility to
be multilingual.

• System Practices is one course, a modified introduction to
software engineering, emphasizing the practices of putting
systems together from modules, tools for software
development, assembly, testing, and risk assessment.

• Modeling Practices is a new course created in cooperating
with the Operations Research department. It teaches how to
use basic queueing tools for predicting throughput and
response time of networks of computers, how to set up
experiments and discrete simulation, and how to gather and
present data.

• Technology, Innovation, and Leadership teaches the practices
of innovation in computing. Innovation means a change of
practices in a community that produces new value for all
members. We use relevant case studies to teach the process of
innovation, and language-action philosophy to teach the
embodiment of the practice of innovation. This course is an
excellent fit for our officers, who are expected to be
innovators and change agents.

Early in our deliberations, we considered a more radical reshaping,
in which we would create full courses (or sequences) for the five
windows of computing mechanics and the design principles. We
decided against this because our graduates will be practicing in a
world of technologies and will be experts in some of the
technologies. There are well-established communities of practice
around these technologies. We therefore retained the technology-
oriented structure in our core courses.

7. REFLECTIONS
By aligning with traditions of other science fields, a curriculum
organized around great principles and practices promotes a greater
understanding of the science and engineering behind information
technology. It improves our students’ abilities to discuss risks,
benefits, capabilities, and limitations with technicians and with
people outside the field. It recognizes that computing is action
oriented and has many customers, and that the context in which
computing is used is as important as the mechanics of computing.
It also clarifies professional competence, which depends on
dexterity with mechanics, design, practices, core technologies, and
applications.
In teaching and writing about the elements of computing
mechanics, we emphasize the way the principles developed over
time and what has made them so durable and ubiquitous. For
example, Turing machines are not a obscure mathematician’s
conceit, but are the essence of all computing and the vehicle for
seeing why a great many practical problems are intractable. Error
correcting codes are not amusing tricks in discrete mathematics,
they are essential to making all practical communication systems
work in the perpetual presence of noise.
We also emphasize how the context of use has shaped our practices
and our perceptions of principles. For example, the different styles
of the different programming languages flow out of the application
domains that inspired them. The controversies about the limits of
machine intelligence cannot be understood without reference to
cognitive science and linguistic philosophy. The debates about
software development process turn on different ways that engineers
and architects use the term “design”: does it mean a highly
methodical engineering process, or does it mean agile processes
promoting systems built for customer satisfaction, artistry, good
taste, simplicity, and elegance?
A great principles framework may offer a new approach to the
endlessly vexing issue of the role of programming in our field.
Computer science is seen by many as “programming exalted.” For
many years, we have tried to organize our first courses in

340

computing (CS1, CS2, CS3) around important concepts of
algorithms and data structures integrated with programming. Over
the years, the growing complexity of the industrial-strength
languages has turned CS1 and CS2 into grueling ordeals for many
students. Overwhelmed with the mechanics of programming and an
almost-obsessive drive to pass these courses, many have resorted to
cheating and plagiarism; dropout rates typically run at 35 to 50
percent. Many do not experience the joy of computing: the
interplay between the great principles, the ways of algorithmic
thinking, and the solutions of interesting problems. The great
principles framework creates a distinction between the principles
and the practices of using the principles. Programming practices
cannot crowded out the learning of principles in this context. Mark
Guzdial’s recent experiment at Georgia Tech demonstrated this in a
new way with a pilot first course on “media computation” that
introduced computing in a world of audio and visual media. The
course attracted more women than men, had a dropout rate of under
1.5%, and produced enormous interest in the rest of the CS
curriculum [6].
Some have asked about the relationship between the great
principles framework and the matrix of 9 core technologies versus
the 3 processes of theory, abstraction, and design discussed in
“Computing as a Discipline” in 1989 [3]. The older model is based
on technologies, rather than enduring principles. It mentions
practices as lab sections and projects but not as distinguishing
characteristics of computing professionals and the bases of
professional competence. Theory, abstraction, and design were
inherited from mathematics, science, and engineering, but have
merged together as our field matures. In the great principles
framework, theory appears in every window, abstraction is a design
principle, and design has its own layer.
In 1989 we were deeply concerned about the outside perception
that we are a field of programmers. We argued that our field has
much more breadth and depth than programming. The record of
history shows that our argument was not persuasive, not even
among ourselves. Programming still dominates the first course,
even more so than in 1989, and outsiders still see us as
programmers. The 1989 framework was ineffective at helping us
escape this millstone. We hope that the great principles framework
will be more successful.
Some have asked about the relationship between the great
principles framework and the recommendations of Curriculum
2001 [4]. They are complementary with great potential synergy.
The great principles framework offers a new way to organize the
body of knowledge, demonstrating underlying stability in the face
of rapid technological change. It distinguishes principles and
practice, permitting individual departments to find a balance where
programming does not overwhelm principles. It distinguishes the
social conventions of design from laws and recurrences of
computing mechanics. It reveals two gaps in CC2001. One is the
lack of a modeling practices course to support the important aspect
of experimental computer science. The other is a lack of support for
the important objective that computing professionals be capable of
producing innovations for their customers.
A final question concerns how existing trends will shape our future
perceptions of principles. Examples of important trends are
pervasive and mobile computing, context-aware computers, self-
healing systems, and hyper-computing (beyond Turing machines).
These trends will exploit and enrich the give windows. For
example, pervasive and mobile computing is a form of distributed
computing, which is an aspect of both computation and

coordination; context-awareness is an aspect of automation; self-
healingness extends design principles for reliability into a world of
ubiquitous computers; hyper-computing is a debate within
computation. New practices around these new issues will displace
older practices.
It is time for us to make ourselves known by saying our mechanics,
our design principles, and our practices. It is time to stop hiding the
enormous depth and breadth of our field.

8. READINGS
[1] Biermann, Alan. Great Ideas in Computer Science (2nd

Ed.). MIT Press (1997).
[2] Denning, Peter. “Great Principles of Computing.” ACM

Communications 46, 11 (Nov 2003), to appear.
[3] Denning, Peter et al. “Computing as a discipline”. ACM

Communications 32, 1 (Jan 1989), 9-23.
[4] Curriculum 2001 Final Report.

<computer.org/education/cc2001/final/>
[5] Feynman, Richard. Lectures in Physics. Addison-Wesley

(1970).
[6] Guzdial, Mark, and Elliot Solloway. “Computer science is

more important than calculus: The challenge of living up
to our potential.” Inroads (ACM SIGCSE Bulletin), June
2003, 5-8.

[7] Hazen, Robert, and James Trefil. Science Matters. Anchor
(1991).

[8] Hillis, Danny. The Pattern on the Stone. Basic Books
(1999).

[9] Sagan, Carl. Cosmos. Random House (2002).

9. BIO
PETER J. DENNING is Chairman of the Computer Science
Department at the Naval Postgraduate School in Monterey,
California. He is also director of the Cebrowski Institute, a research
center for information innovation and superiority. He came to NPS
in 2002 from George Mason University, where he served as vice
provost, associate dean, and chair of the CS Department. He was
founding director of RIACS at the NASA Ames Research Center,
co-founder of CSNET, and head of the computer science
department at Purdue. He received a PhD from MIT and BEE from
Manhattan College. He invented the working set model for
program behavior and helped establish virtual memory as a
permanent part of operating systems. He co-invented operational
analysis, an approach to computer system performance prediction.
He was president of the Association for Computing Machinery
1980-82. He chaired the ACM publications board 1992-98 where
he led the development of the ACM digital library, and chaired the
ACM Education Board 1998-2003. He has published 7 books and
300 articles on computers, networks, and their operating systems,
and is working on 3 more books. In 2002, he was named one of the
top 5 best teachers at George Mason University and the best
teacher in the School of Information Technology and Engineering.
In 2003, he received one of Virginia's 10 outstanding faculty
awards. He holds three honorary degrees, three professional society
fellowships, two best-paper awards, three distinguished service
awards, the ACM Outstanding Contribution Award, the ACM
SIGCSE Outstanding CS Educator Award, and the prestigious
ACM Karl Karlstrom Outstanding Educator Award.

341

