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ABSTRACT 
The nearly three dozen core technologies of computing sit in a 
simple framework defined by great principles and by computing 
practices. The great principles are of two kinds, mechanics and 
design. Computing mechanics comprises computation, 
communication, coordination, recollection, and automation. Design 
principles address concerns for complexity, resilience, performance, 
evolvability, and security. Practices comprise programming, 
systems, modeling, innovating, and applying. This framework 
opens many new possibilities for teaching computer science, 
including new approaches to programming. The new CS curriculum 
at the Naval Postgraduate School is based on the framework 
presented here. 
 
Categories and Subject Descriptors 
A.0 [General Literature]: organization and structure of computing 
field. K.0 [Computing Milieux]: organization and structure of 
computing field. K.2 [History of Computing]: evolution of 
principles and practices of computing. K.3 [Computing Education]: 
organization of curriculum, teaching programming. K.4 [Computers 
and Society]. K.7 [The Computing Profession]: professional 
practices of programming, systems, modeling, innovating, applying. 
 
General Terms 
Algorithms, Measurement, Performance, Design, Reliability, 
Experimentation, Security, Human Factors, Languages, Theory. 
 
1. INTRODUCTION 
The great principles of computing have been interred beneath layers 
of technology in our understanding and our teaching. This paper is 
about how to set them free. We propose a great principles 
framework for computing and discuss some of the reasons it has 
been so hard to articulate such a framework. The framework 
suggests new ways to organize a computer science curriculum. The 
new CS curriculum at Naval Postgraduate School (NPS) adopts the 
framework. 
The great principles framework is a new organizing principle for 
our field. There are four main reasons to be interested: 

• Understandability:  The field continues rapid growth as new 
computing technologies emerge and spread into new 
application areas. Our traditional view of the field as a set of 
core technologies has become untenable: the number of core 
technologies tripled from 10 a decade ago to around 30 today. 
A great principles framework does not depend on the number 
of core technologies. It will make our field more 
understandable and approachable, for insiders as well as 
outsiders. 

• Curriculum complexity: The Computing Curriculum 2001 
(CC2001) committee took 2 years to come to a consensus on a 
set of topics that could be covered in the time allocated to the 
core in most curricula. The typical first course is now 
organized around object-oriented programming (with Java or 
C++ as the vehicle), a practice that has spread to the Advanced 
Placement (AP) curriculum in high schools. Many novices find 
the language details intricate and the course very difficult; they 
feel under extreme pressure to perform. There are numerous 
reports of high dropout rates in the first course (35 to 50 
percent) and of widespread cheating and plagiarism on 
programming assignments. The “trauma of the first language” 
subverts the ideal of multi-lingual computing professionals. A 
great principles framework can help us resolve these 
incongruities. 

• Computing Practices. The competence of computing 
professionals is judged by their ability to perform effectively 
with their customers. Computing education currently 
emphasizes concepts at the expense of competent practices. A 
great principles framework offers a new balance between 
concepts and practice. 

• Public Image: Despite many years of our trying to broaden 
our image, computing is still widely perceived as a 
programmer’s field. Computer Science departments have 
added to this perception by making an industry-strength 
language the centerpiece of introductory courses. Many 
outsiders wonder whether CS departments will eventually 
disappear as the technology evolves and other fields take over 
as the main contributors of new computing technology. A great 
principles framework can dispel these misconceptions. 

The view of the field to be discussed here identifies a fundamental 
base of principles for all the core technologies and a fundamental 
set of practices that mark the computing professional. The resulting 
framework is simple to grasp and provides a stable context for the 
core technologies. It also suggests ways to organize curriculum to 
overcome the curriculum difficulties noted above. It puts computing 
on an equal basis with other traditional science and engineering 
fields. 
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2. EXAMPLES FROM OTHER FIELDS 
Computer science was born in the mid 1940s with the construction 
of the first electronic computers. In just 60 years, computing has 
come to occupy a central place in science, engineering, business, 
and everyday life. Many whose lives are touched by computing 
want to know how computers work and how dangerous or risky 
they are; some want to make a profession from working with 
computers; and most everyone asks for an uncomplicated 
framework for understanding this complex field. Similar questions 
have been faced in other fields such as physics, life sciences, and 
astronomy. Can we learn from them how to answer such questions 
in a compact, compelling, and coherent way? 
The mature sciences such as physics, biology, and astronomy 
portray themselves with a principles-based approach. Each builds 
rich structures from a small set of great principles. The great 
principles are simple ideas that affect the entire field. Examples of 
this approach are Lectures in Physics by Richard Feynman [5], The 
Joy of Science by Robert Hazen and James Trefil [7], and Cosmos 
by Carl Sagan [9]. Newcomers find a principles-based approach to 
be much more rewarding because it promotes understanding from 
the beginning and shows how the science transcends particular 
technologies. 
A great principles approach for computing needs to deal with 
mechanics (how computations work), design (how we organize 
computations), and practices (what we must be competent at when 
we build computations). 
 
3. MECHANICS 
In the 1950s, our field’s founders portrayed their young science as a 
set of core technologies that supported application domains. They 
listed their core technologies as algorithms, numerical methods, 
computation models, compilers, languages, and logic circuits. Over 
the next 30 years, our field added a few more: operating systems, 
information retrieval, databases, networks, artificial intelligence, 
human computer interaction, and software engineering. The 1989 
ACM/IEEE report, “Computing as a Discipline,” listed 9 core 
technology areas [3]. Since then, the total number of core 
technology areas has tripled (see Table 1). Today, learning the 
mechanics of these technologies and their hundreds of possible 
direct interactions has become a daunting challenge. 

Table 1. Core Technologies of Computing 

algorithms 
artificial intelligence 
compilers 
computational science 
computer architecture 
data mining 
data security 
data structures 
databases 
decision support systems 
distributed computation 
e-commerce 
graphics 
human computer interaction 
information retrieval 
 

management info systems 
natural language processing 
networks 
operating systems 
parallel computation 
programming languages 
real-time systems 
robots 
scientific computation 
software engineering 
supercomputers 
virtual reality 
vision 
visualization 
workflow 

 

In an effort to stem “curriculum bloat” from this growth, the 
CC2001 report emphasizes the ideas at the “intersection” of the core 
technologies [4]. Two books that popularize computing focus on the 
“great ideas” embodied in these areas [1,8]. None of these authors 
discusses which ideas are fundamental principles of all the core 
technologies. A list of core technologies does little to convey the 
great principles of computing. 
Locating the fundamental principles of the field looks, therefore, to 
be a very attractive project. It calls to mind a picture in which the 
principles are the foundation of a pantheon with one pillar for each 
great principle. Unfortunately, as we shall soon see, such a picture is 
an unsatisfactory portrayal of computing. 
Our very first question is: How shall we express our principles?  It 
seems like we are looking for declarative statements such as 

“The Turing machine is a universal model of computation.” 
“All information can be encoded as strings of bits.” 
“The number of bits in a message source is given by its entropy.” 

But this quickly becomes contentious. Some people argue over the 
definitions of terms such as computation, information, or message 
sources. Others ask whether some of the words ought to be qualified 
-- such as algorithmic computation, physically represented bits, or 
discrete message sources. Still others ask why these statements are 
singled out and not others, such as “Every function imposes a 
lower-bound running time on all algorithms that compute it.”  Most 
everyone demands statements of obvious relevance to the familiar 
core technologies. But they wrestle over the selection criteria for 
principle statements, such as universality, recurrence, invariance, 
action orientation, utility for prediction, or scope of consequences. 
How do other fields express their principles? Physicists name key 
phenomena like photons, electrons, quarks, quantum wave function, 
relativity, and energy conservation. Astronomers name planets, 
stars, galaxies, Hubble shift, and black holes. Thermodynamicists 
name entropy, first law, second law, and Carnot cycle. Biologists 
name phylogeny, ontogeny, DNA, and enzymes. Each of their terms 
is actually the title of a story!  The principles of a field are actually a 
set of interwoven stories about the structure and behavior of field 
elements. They are the names of chapters in books about the field 
[5,7,9]. 
Astronomy, thermodynamics, and physics use the term mechanics 
for the part of their fields dealing with the behavior and structure of 
components -- the so-called “cause-and-effect relationships.”  For 
example, Celestial Mechanics deals with the motions of heavenly 
bodies; Statistical Mechanics with the macro behavior of physical 
systems comprising large numbers of small particles; Quantum 
Mechanics with wave behaviors of subatomic particles; Rigid-Body 
Mechanics with the balance of forces within and between connected 
objects. I adopt this term for computing. 
Computing Mechanics deals with the structure and operation of 
computations -- with the universally occurring phenomena that 
appear in computational processes and hardware and software 
components. It does so with stories for algorithm, Turing machine, 
grammar, message entropy, process, protocol stack, naming, 
caching, machine learning, virtual machine, and more. The stories 
group into the five categories of computation, communication, 
coordination, automation, and recollection (see Table 2). Every core 
technology expresses all five in its own way. 
The lines between these categories are blurry. For example, the 
Internet protocol stack is an element of both communication and 
coordination; naming, encoding, and caching are elements of 
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communication and recollection; co
computation and coordination. There
the categories as windows into com
Although the views through the edges
through the centers is distinctive. 
 
4. DESIGN 
Computing Mechanics does not exha
our field. Computing professionals fo
enable them to harness mechanics 
customers. Five concerns drive the des

• Simplicity: Various forms of a
overcome the apparent complexit

• Performance: predicting th
bottlenecks; capacity planning. 

• Resilience: reliability, redundan
retransmission, majority voti
integrity, system trust. 

• Evolvability: adapting to change

• Security: access control, secr
integrity, safety. 

The design principles themselves inc
hiding, modules, separate compilatio
divide-and-conquer, functional le
separation of concerns, reuse, encaps
machines. These principles are conv
have found to lead consistently to dep
systems, and applications. These con
constraints of cost, schedule, compatib

Design is not the same in computin
computing we design abstract object
fields use abstraction to explain or 

Window Cen

Computation What can be c
limits of com

Communication Sending mess
another. 

Coordination Multiple entit
a single result

Automation Performing co
computer. 

Recollection Storing and re
Table 2: The Five Windows of Computing Mechanics 
tral Concern Principal Stories 

omputed and how; 
puting. 

Algorithm, data structure, automata, languages, Turing machine, universal 
computer, Turing complexity, Chaitin complexity, self reference, 
approximations, heuristics, non-computability, translations, compilations, 
physical realizations 

ages from one point to Data transmission, Shannon entropy, encoding to medium, channel capacity, 
noise suppression, error correcting codes, end-to-end-error correction, 
Huffman and Reed-Solomon codes, file compression, cryptography, packet 
networking 

ies cooperating toward 
. 

Human-to-human (action loops, workflows as supported by communicating 
computers), human-computer (interface, input, output, response time, data 
visualization); computer-computer (concurrency control, races, 
synchronization, deadlock, serializability, atomic actions) 

gnitive tasks by Simulation and machine performance of cognitive tasks, philosophical 
distinctions about automation, expertise and expert systems, enhancement of 
intelligence, Turing tests, machine learning and recognition, bionics 

trieving information. Hierarchies of storage, locality of reference, caching, address space and 
ncurrency is an element of 
fore, I found it better to view 
puting mechanics (Figure 1). 
 of windows overlap, the view 

ust all the principles used in 
llow principles of design that 
in the service of users and 
ign principles: 

bstraction and structure that 
y of the applications. 

roughput, response time, 

cy, forward error correction, 
ng, recovery, checkpoint, 

s in function and scale. 
ecy, privacy, authentication, 

lude abstraction, information 
n, packages, version control, 
vels, layering, hierarchy, 
ulation, interfaces, and virtual 
entions that we collectively 
endable and useful programs, 
ventions are practiced within 
ility, and usability. 

g as it is in other fields. In 
s that perform actions. Other 
to organize tangible objects. 

Since design tells us about arrangements of basic components, 
design sits above mechanics in our picture of the field. 

 
Figure 1. The five windows. 

 
5. COMPUTING PRACTICES 
Our picture of computing is needs more than mechanics and design. 
It needs an account of the computing practices that characterize our 
skills as professionals. Our competence is judged not by our ability 
to explain principles, but by the quality of what we do. We found 
five main categories of computing practice: 
Programming -- Using programming languages to build software 
systems that meet specifications created in cooperation with the 
users of those systems. Computing professionals must be 
multilingual, facile with the numerous programming languages, 
each attuned to its own strategies for solving problems. 

 

mapping, bindings, naming, sharing, thrashing, retrieval by name, retrieval 
by content 
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• Engineering Systems -- Designing and constructing systems 
of software and hardware components running on servers 
connected by networks. These practices include a design 
component concerned with organizing a system to produce 
valuable and tangible benefits for the users; and an 
engineering component concerned with the modules, 
abstractions, revisions, design decisions, and risks in the 
system; and an operations component concerned with 
configuration, management, and maintenance of the system. 
High levels of skill are needed for large programmed systems 
encompassing thousands of modules and millions of lines of 
code. 

• Modeling and validation -- Building models of systems to 
make predictions about their behavior under various 
conditions; and designing experiments to validate algorithms 
and systems. 

• Innovating -- Bringing about lasting changes in the ways 
groups and communities operate by exercising technical 
leadership. Innovators watch for and analyze opportunities, 
listen to customers, formulate offers customers see as 
valuable, and manage commitments to deliver the promised 
results. Innovators are history-makers who have strong 
historical sensibilities. 

• Applying -- Working with practitioners in application 
domains to produce computing systems that support their 
work. Working with other computing professionals to produce 
core technologies that support attributes common to many 
applications. Working according to the standards of practice, 
conduct, and ethics to increase public trust in the profession 
and its members. 

It is best to think of practices and principles in an endless cycle of 
mutual reinforcement: our practice is shaped by principles, and our 
perceptions of principles are shaped by practice. 

Our portrait is now complete (see Figure 2). It consists of 
computing mechanics (the laws and universal recurrences that 
govern the operation of computations), design principles (the 
conventions for designing computations), computing practices (the 
standard ways of building and deploying computing systems), and 
core technologies (organized around shared attributes of 
application domains). Although not shown in the figure, the entire 
framework floats in a rich contextual sea of application domains, 
collectively exerting strong influences on core technologies, 
design, and practice. Each of the four levels at which we act as 
designers and users of computation is also a domain of practice 
with its own supporting technologies (see Table 3). Each level of 
the picture has a characteristic question that justifies its place in the 
hierarchy and exposes the integral role of practices. 
 
6. AN IMPLEMENTATION AT NPS 
At the Naval Postgraduate School, the Computer Science 
Department offers a graduate curriculum leading to MS in CS. The 
students are mostly officers of the US Navy, Marine Corps, Army, 
and Air Force, and of similar military services in 53 other 
countries. They are professional leaders who are seeking a solid 
grounding in the principles of computing and who will be project 
leaders, program managers, strategists, change agents, and 
innovators. Most are in mid-career, 5-10 years since their BS 
degrees, and some are seeking formal education in CS for the first 
time. They attend for 2 years and take courses continuously for 8 
quarters. Their first year establishes a base in CS and their second 
develops depth in a track supporting a required master’s thesis. 
(Although we have a few PhD students, the bulk of student support 
for our $18M of sponsored research comes from MS theses.)

 
Figure 2. Principles-Based Portrait of Computing 
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Table 3. Levels of Action in Computing Practices 

Levels Central Questions Example Technologies 

Application Domains How do we work with others to design 
computing that serves them? 

Supercomputers, grid computing, graphics 
design, interfaces, ... 

Core Technologies How do we design computations that support 
common elements across applications? 

Algorithms, databases, networks, operating 
systems, HCI, AI, … 

Design Principles How do we organize ourselves and our 
thinking when designing computations? 

Design tools, object-oriented programming, 
layering, virtual machines, authentication, … 

Computing Mechanics What are computing machines doing? Logic simulators, protocol stack, workflow, 
expert systems, virtual memory, … 

 

We implemented the great principles framework in our context as 
follows. 
• We designed a new course, Great Principles of Computing 

Technology, which is the opening course for the curriculum. 
• We matched it with a final, integrative capstone course that 

considers contemporary issues interpreted in the light of the 
great principles. 

• We revised our core courses so that they build on the 
principles introduced at the start, rather than reinventing them 
from scratch. The content of these courses is consistent with 
the core content recommendations of the ACM 2001 
Curriculum. 

• Created a set of computing practices courses for 
programming, engineering of systems, modeling, and 
innovating. 

The computing practices courses are as follows. 
• Programming Practices are 3 courses. The first two cover 

object programming using Java and a rich repertoire of actions 
that programmers can take. They are similar to standard 
versions of the first and second CS courses, except they 
unabashedly focus on programming practice and not on the 
development of concepts. The third PP course is a survey of 
languages, introducing CS students to their responsibility to 
be multilingual. 

• System Practices is one course, a modified introduction to 
software engineering, emphasizing the practices of putting 
systems together from modules, tools for software 
development, assembly, testing, and risk assessment. 

• Modeling Practices is a new course created in cooperating 
with the Operations Research department. It teaches how to 
use basic queueing tools for predicting throughput and 
response time of networks of computers, how to set up 
experiments and discrete simulation, and how to gather and 
present data. 

• Technology, Innovation, and Leadership teaches the practices 
of innovation in computing. Innovation means a change of 
practices in a community that produces new value for all 
members. We use relevant case studies to teach the process of 
innovation, and language-action philosophy to teach the 
embodiment of the practice of innovation. This course is an 
excellent fit for our officers, who are expected to be 
innovators and change agents. 

Early in our deliberations, we considered a more radical reshaping, 
in which we would create full courses (or sequences) for the five 
windows of computing mechanics and the design principles. We 
decided against this because our graduates will be practicing in a 
world of technologies and will be experts in some of the 
technologies. There are well-established communities of practice 
around these technologies. We therefore retained the technology-
oriented structure in our core courses. 
 
7. REFLECTIONS 
By aligning with traditions of other science fields, a curriculum 
organized around great principles and practices promotes a greater 
understanding of the science and engineering behind information 
technology. It improves our students’ abilities to discuss risks, 
benefits, capabilities, and limitations with technicians and with 
people outside the field. It recognizes that computing is action 
oriented and has many customers, and that the context in which 
computing is used is as important as the mechanics of computing. 
It also clarifies professional competence, which depends on 
dexterity with mechanics, design, practices, core technologies, and 
applications. 
In teaching and writing about the elements of computing 
mechanics, we emphasize the way the principles developed over 
time and what has made them so durable and ubiquitous. For 
example, Turing machines are not a obscure mathematician’s 
conceit, but are the essence of all computing and the vehicle for 
seeing why a great many practical problems are intractable. Error 
correcting codes are not amusing tricks in discrete mathematics, 
they are essential to making all practical communication systems 
work in the perpetual presence of noise. 
We also emphasize how the context of use has shaped our practices 
and our perceptions of principles. For example, the different styles 
of the different programming languages flow out of the application 
domains that inspired them. The controversies about the limits of 
machine intelligence cannot be understood without reference to 
cognitive science and linguistic philosophy. The debates about 
software development process turn on different ways that engineers 
and architects use the term “design”: does it mean a highly 
methodical engineering process, or does it mean agile processes 
promoting systems built for customer satisfaction, artistry, good 
taste, simplicity, and elegance? 
A great principles framework may offer a new approach to the 
endlessly vexing issue of the role of programming in our field. 
Computer science is seen by many as “programming exalted.”  For 
many years, we have tried to organize our first courses in 
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computing (CS1, CS2, CS3) around important concepts of 
algorithms and data structures integrated with programming. Over 
the years, the growing complexity of the industrial-strength 
languages has turned CS1 and CS2 into grueling ordeals for many 
students. Overwhelmed with the mechanics of programming and an 
almost-obsessive drive to pass these courses, many have resorted to 
cheating and plagiarism; dropout rates typically run at 35 to 50 
percent. Many do not experience the joy of computing: the 
interplay between the great principles, the ways of algorithmic 
thinking, and the solutions of interesting problems. The great 
principles framework creates a distinction between the principles 
and the practices of using the principles. Programming practices 
cannot crowded out the learning of principles in this context. Mark 
Guzdial’s recent experiment at Georgia Tech demonstrated this in a 
new way with a pilot first course on “media computation” that 
introduced computing in a world of audio and visual media. The 
course attracted more women than men, had a dropout rate of under 
1.5%, and produced enormous interest in the rest of the CS 
curriculum [6]. 
Some have asked about the relationship between the great 
principles framework and the matrix of 9 core technologies versus 
the 3 processes of theory, abstraction, and design discussed in 
“Computing as a Discipline” in 1989 [3]. The older model is based 
on technologies, rather than enduring principles. It mentions 
practices as lab sections and projects but not as distinguishing 
characteristics of computing professionals and the bases of 
professional competence. Theory, abstraction, and design were 
inherited from mathematics, science, and engineering, but have 
merged together as our field matures. In the great principles 
framework, theory appears in every window, abstraction is a design 
principle, and design has its own layer. 
In 1989 we were deeply concerned about the outside perception 
that we are a field of programmers. We argued that our field has 
much more breadth and depth than programming. The record of 
history shows that our argument was not persuasive, not even 
among ourselves. Programming still dominates the first course, 
even more so than in 1989, and outsiders still see us as 
programmers. The 1989 framework was ineffective at helping us 
escape this millstone. We hope that the great principles framework 
will be more successful. 
Some have asked about the relationship between the great 
principles framework and the recommendations of Curriculum 
2001 [4]. They are complementary with great potential synergy. 
The great principles framework offers a new way to organize the 
body of knowledge, demonstrating underlying stability in the face 
of rapid technological change. It distinguishes principles and 
practice, permitting individual departments to find a balance where 
programming does not overwhelm principles. It distinguishes the 
social conventions of design from laws and recurrences of 
computing mechanics. It reveals two gaps in CC2001. One is the 
lack of a modeling practices course to support the important aspect 
of experimental computer science. The other is a lack of support for 
the important objective that computing professionals be capable of 
producing innovations for their customers. 
A final question concerns how existing trends will shape our future 
perceptions of principles. Examples of important trends are 
pervasive and mobile computing, context-aware computers, self-
healing systems, and hyper-computing (beyond Turing machines). 
These trends will exploit and enrich the give windows. For 
example, pervasive and mobile computing is a form of distributed 
computing, which is an aspect of both computation and 

coordination; context-awareness is an aspect of automation; self-
healingness extends design principles for reliability into a world of 
ubiquitous computers; hyper-computing is a debate within 
computation. New practices around these new issues will displace 
older practices. 
It is time for us to make ourselves known by saying our mechanics, 
our design principles, and our practices. It is time to stop hiding the 
enormous depth and breadth of our field. 
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