
VIRTUAL MEMORY 
 
Peter J. Denning, Naval Postgraduate School, Monterey, California 
 
January 2008 
Rev 6/5/08 
 
 
 

Abstract:  Virtual memory is the simulation of a storage space so large that 
users do not need to recompile their works when storage configurations 
change.  Every byte of the virtual memory is addressed in the same way, 
regardless of the placement of address pace components in the memory 
hierarchy. 
 
Keywords: operating systems, address mapping, address space, address 
tr5anslation, protection, capability machines, object-oriented systems, 
replacement algorithm, working set, locality 

 
 
 
Virtual memory is the simulation of a storage space so large that users do not 
need to recompile their works when the capacity of a local memory or the 
configuration of a network changes.  The name, borrowed from optics, recalls the 
virtual images formed in mirrors and lenses --- images that are not there but 
behave as if they are.  The designers of the Atlas Computer at the University of 
Manchester invented paged virtual memory in the 1950s to eliminate two 
looming problems: planning and scheduling data transfers between main and 
secondary memory and recompiling programs for each change of size of main 
memory. 
 
For the first decade after its invention, virtual memory was the subject of intense 
controversies (1).  It significantly improved programming productivity and ease 
of use, but its performance was unpredictable and it thrashed under 
multiprogramming.  These problems were solved by the 1980s (2).  Virtual 
memory is now so ordinary that few people think much about it.  It is one of the 
engineering triumphs of the computer age. 
 
One of the early lines of virtual memory accommodated objects of various sizes, 
stored in distinct storage segments.  This line produced the first proposal for an 
object oriented operating system (3), which led to a class of machines called 
capability machines (4,5) and even to a computer architecture for general object 
programming (6).  The development of RISC produced such speeds that the 
special hardware in capability machines and their successors was not needed.  
However, all the methods used in these systems for mapping objects to their 
locations, protecting objects, and partitioning memory are at the heart of modern 
object-oriented runtime systems.  We will therefore discuss virtual memory from 
an object point of view. 
 



Virtual Memory P. J. Denning Page 2 

Virtual memory is ubiquitous in networked systems, which have many things to 
hide --- on-chip caches, separate RAM chips, local disk storage, network file 
servers, many separately compiled program modules, multiple computers on the 
network, and the Internet. 
 
 
Mapping 
 
The heart of virtual memory is a mapping between an address space and the real 
memory.  The address space is a set of addresses sufficient to name all 
components of a program independent of their locations in the memory 
hierarchy.  Virtual addresses do not change as objects are moved dynamically to 
various real addresses within the memory system.  Programmers and users see 
only the virtual address space; the details of the real memory system are hidden. 
 
Most early virtual memories were based on paging.  A page is a fixed-size block 
or program code or data.  Main and secondary memory are divided in slots of 
the same fixed size. Pages can then be moved from any memory slot to any other.  
Paging yields the simplest form of mapping but wastes storage in the last page 
assigned to the object. 
 
Some early virtual memories were based on segmentation.  A segment is a set of 
contiguous storage locations of any length.  Segments could be sized as exact 
matches to objects such as procedures and arrays, but they are more difficult 
than pages to place.  Segmentation has become common with object-oriented 
programming. 
 
The method of mapping virtual addresses to real addresses is basically the same 
for both fixed and variable sized objects (paging and segmentation).  The 
associations between virtual and real addresses are held in mapping tables; the 
hardware looks up the current real address for any virtual address generated by 
the processor.  A schematic diagram is shown in Fig. 1. 
 



Virtual Memory P. J. Denning Page 3 

 
Figure 1. Object-oriented virtual memory 

 
 
 
 
 
 
 
Figure 1 shows the processor on the left and the memory system on the right.  
The processor generates virtual addresses from the address space of the process 
it is running.  Virtual addresses are of the form (s,b), meaning byte b within 
segment s.  Objects are stored as contiguous segments in the main and secondary 
memories.  Figure 1 shows a segment of k bytes stored at real address c. 
 
Between the processor and the memory is a device called a mapper.  Its job is to 
translate virtual addresses into their current real addresses.  For objects already 
loaded into main memory, translation consists of table lookups that yield the real 
address.  For objects not loaded, the mapper first issues an “up” command to 
move it from its secondary memory file to an unused segment of main memory; 
and then it performs the translation.  If main memory is full, the mapper will also 
issue “down” commands as needed to copy loaded objects back to their files and 
free up their space. 
 



Virtual Memory P. J. Denning Page 4 

The mapper employs two types of tables, the Descriptor Table (DT) and the 
Object Tables (OT).  Consider first the Descriptor Table.  It has one entry for each 
object.  Each object has a unique, system-wide name x.  The entry for object x in 
this table consists of four parts: 
 

• Presence Bit: P=1 means the object is loaded in main memory; P=0 means 
not. 

• Usage Bit: U=1 means the object has been modified since being loaded; 
U=0 means not.  Modified objects need to be copied back to their 
secondary files before their space can be released. 

• Base: The base address of the segment in main memory. 
• Length: The length of the segment in main memory. 

 
The descriptor table is the only table in the system containing information about 
the physical locations of objects.  When an object is moved, only the descriptor 
table must be updated. 
 
The second table used by the mapper is an Object Table.  There are actually 
multiple object tables, one for each process.  A process’s address space is called 
its “domain”, and each address space has a unique domain identifier d.  A 
register in the processor displays the domain of the current process.  When the 
processor switches to a different process, its domain identifier register (did) is 
automatically changed.  Thus, the processor always directs its addresses only to 
the objects of the currently executing process. 
 
An object table has an entry for each segment s of its address space.  That entry 
contains a handle of two parts: 
 

• Access Code: A designates the allowable types of access, for example, read 
or write. 

• Identifier: ID contains the unique system identifier x for the object. 
 
The translation of a virtual address (s,b) to the real address containing the byte is 
straightforward: 
 

1. From OT[d], get the handle for s and extract its identifier x. 
2. From DT, get the base c from the descriptor for x. 
3. Pass the real address c+b to the memory.  (If b≥k, stop with an error.) 

 
The object and descriptor tables are actually stored in a reserved area of main 
memory belonging to the mapper.  Therefore, the table lookups require extra 
memory accesses.  Those extra accesses could slow the system down a fraction of 
the speed without the mapper. 
 
To bypass the table lookups whenever possible, the mapper contains a device 
called the Translation Lookaside Buffer (TLB), or address cache.  It is a small very 
high-speed associative memory that holds the most recently used mapping 
paths.  If segment s has been addressed recently, there will be an entry (s,A,B,L) 
in the TLB.  It is built from the A-field of OT[d] plus the B- and L-fields of DT.  



Virtual Memory P. J. Denning Page 5 

The two table lookups are bypassed and are replaced with one ultra-fast TLB 
lookup. 
 
The mapper’s basic cycle is as follows: 
 
 processor places (s,b) in address register 
 if ((a,c,k)=LOOKUP_TLB(s) undefined) 
  then 
   (a,x):=OT[d,s] 
   (p,c,k):=DT[x] 
   if p=0 then MISSING FAULT 
   DT[x].U:=1 
   LOAD_TLB(s,a,c,k) 
 endif 
 if (b≥k) then BOUNDS FAULT 
 if (request not allowed by a) then PROTECTION FAULT 
 place c+b in memory address register 
 
The operation LOOKUP_TLB(s) scans all the TLB cells in parallel and returns the 
contents of the cell whose key matches s.  The operation LOAD_TLB replaces the 
least-recently-used cell of TLB with (s,a,c,k).  The mapper sets the usage bit U 
to 1 whenever the entry is accessed. 
 
If the TLB already contains the path requested, the mapper bypasses the lookups 
in the object and descriptor tables.  In practice, small TLBs (e.g., 64 or 128 cells) 
give high enough hit ratios that address-translation efficiency goals are easy to 
meet (7).  The TLB is a powerful and cost-effective accelerator. 
 
Faults 
 
A fault is a condition that prevents additional processing.  The mapper can 
generate three faults: missing object, out of bounds, and protection violation.  
Those three fault signals trigger the operating system to execute corresponding 
fault-handler routines that take corrective action. 
 
The bounds fault and protection fault are fatal.  References outside a segment are 
prohibited because they might read or write memory allocated to other objects.  
Unauthorized references of the wrong kind are also prohibited -- for example 
attempting to write into a read-only object.  The fault handlers for these two 
faults generally abort the running process. 
 
The missing object fault occurs when the mapper encounters a not-present bit 
(P=0).  The operating system interrupts with a missing object fault routine that 
 

1. Locates the needed object in the secondary memory, 
2. Selects a region of main memory to put that object in, 
3. Empties that region by copying its contents to the secondary memory, 
4. Copies the needed object into that region, 
5. Updates the descriptor table, and then 
6. Restarts the interrupted program, allowing it to complete its reference. 



Virtual Memory P. J. Denning Page 6 

 
 
Performance 
 
The replacement policy is invoked by the missing object handler at step 2.  The 
performance of virtual memory depends critically on the success of the 
replacement policy.  Each missing object fault carries a huge cost: Accessing the 
object in main memory might take 10 nanoseconds while retrieving it from 
secondary memory might take 10 milliseconds -- a speed differential of 100,000.  
It does not take very many missing object faults to seriously slow a process 
running in a virtual memory. 
 
The ultimate objective of the replacement policy is to minimize the number of 
missing object faults.  To do this, it seeks to minimize “mistakes” -- replacements 
that are quickly undone when the process refers to those objects again.  This 
objective is met ideally when the object selected for replacement will not be used 
again for the longest time among all the loaded objects.  Unfortunately, the ideal 
cannot be realized because we have no way to look ahead into the future.  A 
variety of non-lookahead replacement policies have been studied extensively to 
see how close they come to this ideal in practice.  When the memory space 
allocated to a process is fixed in size, this usually is LRU (least recently used); 
when space can vary, it is WS (working set) (2). 
 
The operating system can adjust the size of the main memory region allocated to 
a process so that the rate of missing object faults stays within acceptable limits.  
System throughput will be near-optimal when the virtual memory guarantees 
each active process just enough space to hold its working set (2). 
 
 
Protection 
 
This structure provides the memory partitioning needed for multiprogramming.  
A process can refer only to the objects listed in its object table.  It is impossible for 
a process to accidentally (or intentionally) read or write objects in another 
address space. 
 
This structure also allows the operating system to restrict every process to a 
domain of least privilege.  Only the objects listed in a domain’s object table can 
be accessed by a process in that domain, and only then in accord with the access 
codes stored in the object’s handle.  In effect, the operating system walls each 
process off, giving it no chance to read or write the private objects of any other 
process.  This has important benefits for system reliability.  Should a process run 
amok, it can damage only its own objects: A program crash does not imply a 
system crash.  This benefit is so important that many systems use virtual 
memory even if they allocate enough main memory to hold a process’s entire 
address space. 
 
 
 



Virtual Memory P. J. Denning Page 7 

The WWW: Virtualizing the Internet 
 
The World Wide Web extends virtual memory to the Internet.  The Web allows 
an author to embed, anywhere in a document, a “universal resource locator” 
(URL), which is an Internet address of a file.  By clicking the mouse on a URL 
string, the user triggers the operating system to map the URL to the file and then 
bring a copy of that file from the remote server to the local workstation for 
viewing.  The URLs thus act as virtual addresses, and the combination of a 
server’s IP address and a local file path name is the real address. 
 
A URL is invalidated when the object’s owner moves or renames the object.  This 
can present operational problems to people who link to that object and depend 
on its presence.  To overcome this problem, Kahn and Wilensky proposed a 
scheme that refers to mobile objects by location-independent “handles” and, with 
special servers, tracks the correspondence between handles and object locations 
(Kahn 1995).  Their method is equivalent to that described earlier in Fig. 1: First it 
maps a URL to a handle, and then it maps the handle to the Internet location of 
the object. 
 
 
Conclusion 
 
Virtual memory is one of the great engineering triumphs of the computing age.  
Virtual memory systems meet one or more of the following needs: 
 
Automatic Storage Allocation:  Solving the overlay problem that originates when a 
program exceeds the size of the main memory available to it.  Also solves the 
relocation and partitioning problems that develop with multiprogramming. 
 
Protection:  Each process is given access to a limited set of objects --- its protection 
domain.  The operating system enforces the rights granted in a protection 
domain by restricting references to the memory regions in which objects are 
stored and by permitting only the types of reference stated for each object (e.g., 
read or write).  These constraints are easily checked by the hardware in parallel 
with the main computation.  The same principles are used for efficient 
implementations of object-oriented programs. 
 
Modular Programs:  Programmers prepare codes as separately compiled, reusable, 
and sharable components into programs; their internal structure is hidden 
behind a public interface.  Linker programs combine separate modules into a 
single address space. 
 
Object-Oriented Programs:  Programmers should be able to define managers of 
classes of objects and be assured that only the manager can access and modify 
the internal structures of objects (6).  Objects should be freely sharable and 
reusable throughout a distributed system (9,10).  Virtual memory mappings are 
designed for these objectives. 
 



Virtual Memory P. J. Denning Page 8 

Data-Centered Programming:  Computations in the World Wide Web tend to 
consist of many processes navigating through a space of shared, mobile objects.  
Objects can be bound to a computation only on demand. 
 
Parallel computations on multicomputers:  Scaleable algorithms that can be 
configured at runtime for any number of processors are essential to mastery of 
highly parallel computations on clusters of computers.  Virtual memory can join 
the memories of the component computers into a single address space and can 
reduce communication costs by eliminating some of the copying inherent in 
message-passing.  This is known as distributed virtual memory (10). 
 
 
 
 
BIBLIOGRAPHY 
 
1. P. J. Denning, Virtual memory, Comput. Surv. 2(3): 153-189, 1970. 
 
2. P. J. Denning, Working sets past and present, IEEE Trans. Softw. Eng. SE-6(1): 

64-84, 1980. 
 
3. J. B. Dennis and E. C. Van Horn, Programming semantics for 

multiprogrammed computations, ACM Commun. 9(3): (March): 143-155, 1966. 
 
4. R. Fabry, Capability based addressing, ACM Commun. 17(7): 403-412, 1974. 
 
5. M. V. Wilkes and R. Needham, The Cambridge CAP Computer and Its Operating 

System.  Amsterdam, The Netherlands: North-Holland, 1979. 
 
6. G.J. Myers, Advances in Computer Architecture, 2nd ed.  New York: Wiley, 1982. 
 
7. J. Hennessey and D. Patterson, Computer Architecture: A Quantitative Approach.  

New York: Morgan-Kaufmann, 1990. 
 
8. R. Kahn and R. Wilensky, A framework for distributed digital object services.  

Technical Note 95-01, Corporation for National Research Initiatives.  
Available: http://www.cnri.reston.va.us, 1995. 

 
9. J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska, Sharing and 

protection in a single-address-space operating system, ACM TOCS 12(4): 271-
307, 1994. 

 
10. A. S. Tanenbaum and M. van Steen, Distributed Systems: Principles and 

Paradigms.  Englewood Cliffs, NJ: Prentice-Hall, 2006. 
 
 
FURTHER READING 
 
P. J. Denning, Virtual memory, Comput. Surv. 28(4): 213-216, 1996. 


