
THE CHOICE UNCERTAINTY PRINCIPLE†

Peter J. Denning, Naval Postgraduate School, Monterey, California

January 2008
Rev 6/5/08

Abstract: The choice uncertainty principle says that it is impossible to
make an unambiguous choice between near-simultaneous events under
a deadline. This principle affects the design of logic circuits in computer
hardware, real-time systems, and decision systems.

Keywords: uncertainty principles, half-signals, metastable state, arbiter,
threshold flip-flop, choices under deadlines

The choice uncertainty principle says that it is impossible to make an
unambiguous choice between near-simultaneous events under a deadline. This
principle affects the design of logic circuits in computer hardware, real-time
systems, and decision systems.

One of the first persons to notice that a fundamental principle might be at
work in circuits that make decisions was David Wheeler of the University of
Cambridge. In the early 1970s, he sought to build a computer whose hardware
did not suffer from “hardware freezes” that were common in earlier computers.
Wheeler noticed the lockups never occurred when the interrupts were turned off.
Interrupt signals were recorded on a flip-flop the CPU consulted between
instructions: The CPU decided either to enter the next instruction cycle or to
jump to a dedicated subroutine that responded to the interrupt signal. He
suspected that the timing of the interrupt signal’s arrival to that flip-flop
occasionally caused it to misbehave and hang the computer. Imagine that: The
simplest, most fundamental memory circuit of a computer could malfunction.

The Half-Signal
A digital machine consists of storage elements interconnected by logic circuits.
The storage elements, implemented as arrays of flip-flops, hold the machine’s
state. The machine operates in a cycle: (1) Flip-flops enter a state; the switching
time is 10-12 to 10-15 seconds. (2) The logic circuits take the state as input and
produce a new state; the propagation time of all inputs through the circuits is
slower, 10-9 to 10-10 seconds. (3) The new state is read into the flip-flops. A clock
sends pulses that tell the flip-flops when to read in the next state.

†This article is adapted from the author’s article of the same title, ACM Communications 50:11
(November), 2007.

The clock cycle must be longer than the propagation delay of the logic
circuits. If it is any shorter, the inputs to some flip-flops may still be changing at
the moment the clock pulse arrives. If an input voltage is changing between the
0 and 1 values at the time the clock pulse samples it, the flip-flop sees a “half
signal” -- an in-between voltage but not a clear 0 or 1. Its behavior becomes
unpredictable. A common malfunction is that the flip-flop ends up in the wrong
state: the clock-sampled value of an input intended to switch the flip-flop to 1
might not be strong enough, so the flip-flop remains 0.

The Metastable State
Unfortunately, there is a worse malfunction. A half signal input can cause the
flip-flop to enter a “metastable state” for an indeterminate time that may exceed
the clock interval by a large amount. The flip-flop eventually settles into a stable
state, equally likely to be 0 or 1.

A flip-flop’s state is actually a voltage that moves continuously between the 0
and 1 values. The 0 and 1 states are stable because they are attractors: Any small
perturbation away from either is pulled back. A flip-flop switches because the
input adds enough energy to push the state voltage closer to the other attractor.
However, a half-signal input can sometimes leave the state voltage poised
precisely at the midpoint between the attractors. The state balances precariously
there until some noise pushes it closer to one of the attractors. That midpoint is
called the metastable state. The metastable state is like a ball poised perfectly on
the peak of a roof: It can sit there for a long time until air molecules or roof
vibrations cause it to lose its balance, causing it to roll down one side of the roof.

In 1973, Chaney and Molnor at Washington University in St Louis measured
the occurrence rate and holding times of metastable states (1); see Fig. 1. By
synchronizing clock frequency with external signal frequency, they attempted to
induce a metastable event on every external signal change. They saw frequent
metastable events on their oscilloscope, some of which persisted 5, 10, or even 20
clock intervals. Three years later, Kinniment and Woods documented metastable
states and mean times until failure for a variety of circuits (2).

In 2002, Sutherland and Ebergen reported that contemporary flip-flops
switched in about 100 picoseconds (10-10 seconds) and that a metastable state
lasting 400 picoseconds or more occurred once every 10 hours of operation (3).

Xilinx.com reports that its modern flip-flops have essentially zero chance of
observing a metastable state when clock frequencies are 200 MHz or less (4). At
these frequencies, the time between clock pulses (5 nanoseconds) is longer than
all metastable events. But in experiments with interrupt signals arriving 50
million times a second, a metastable state occurs about once a minute at a clock
frequency of 300 MHz, and about once every two milliseconds at a clock
frequency of 400 MHz.

Fig. 1. Experimental setup for observing flip-flop (FF) metastability. Each clock
pulse triggers the FF state to match the input signal. If the input signal is changing
when the clock pulse arrives, FF may enter an indefinite state that lasts more than
one clock interval (dotted lines). The test repeats cyclically after the external signal
returns to 0. To maximize metastable events, the clock frequency is tuned to a
multiple of the external signal frequency. In a digital computer, the indefinite output
becomes the input of other logic circuits at the next clock pulse, causing half-signal
malfunctions.

Wheeler’s Threshold Flip-flop
Aware of the Chaney-Molnor experiments, Wheeler realized that an interrupt
flip-flop driven metastable by an ill-timed interrupt signal can still be metastable
at the next clock tick. Then the CPU reads neither a definite 0 nor a definite 1
and can malfunction.

Wheeler saw he could prevent the malfunction if he could guarantee that the
CPU could only read the interrupt flip-flop while it was stable. He made an
analogy with the common situation of two people about to collide on a sidewalk.
On sensing their imminent collision, they both stop. They exchange eye signals,
gestures, head bobs, sways, dances, and words until finally they reach an
agreement that one person goes to the right and the other to the left. This could
take a fraction or a second or minutes. They then resume walking and pass one
another without a collision. The key is that the two parties stop for as long as is
needed until they decide.

Wheeler designed a flip-flop with an added threshold circuit that output 1
when the flip-flop state was near 0 or 1. He used this for the interrupt flip-flop
with the threshold output wired to enable the clock to tick (see Fig. 2). The CPU
could not run as long as the interrupt flip-flop was in a metastable state, and thus
it could observe that flip-flop only when it was stable.

With threshold interrupt flip-flops, Wheeler’s computer achieved the
reliability that he wanted.

Fig 2. Threshold flip-flop (TFF) output T is 1 when the state is 0 or 1 and is 0 when
the state is metastable. Output T enables the clock. TFF can become metastable if the
external interrupt signal changes just as the clock pulse arrives. Since the CPU does
not run when the clock is off, it always sees a definite 0 or 1 when it samples for
interrupts.

Arbiter Circuit
Unambiguous choices between near-simultaneous signals must be made in many
parts of computing systems, not just at interrupt flip-flops. Examples:

• Two CPUs request access to the same memory bank.
• Two transactions request a lock on the same record of a database.
• Two external events arrive at an object at the same time.
• Two computers try to broadcast on an Ethernet at the same time.
• Two packets arrive together to the network card.

• An autonomous agent receives two request signals at the same time.
• A robot perceives two alternatives at the same time.
In each case, a chooser circuit must select one of the alternatives for

immediate action and defer the other for later action. There is no problem if the
signals are separated enough that the chooser can tell which one came first. But
if the two signals are near simultaneous, the chooser must make an arbitrary
selection. This selection problem is also called the arbitration problem, and the
circuits that accomplish it are called arbiter or synchronizer circuits (5,6). Ran
Ginosar gives a nice account of modern synchronizers (7).

The arbiter incorporates circuits, as in the Wheeler flip-flop, that will prevent
it from sending signals while in a metastable state. Therefore, all entities
interacting with the arbiter will be blocked while the arbiter is metastable, and
there is no need to stop a clock. The main effect of the metastable state is to add
an unknown delay to the access time to the shared entity.

The Uncertainty Principle
We can summarize the analysis above as the Choice Uncertainty Principle (8):
No choice between near-simultaneous events can be made unambiguously
within a preset deadline. The source of the uncertainty is the metastable state
that can be induced in the chooser by conflicting forces generated when two
distinct signals change at the same time.

In 1984, Leslie Lamport stated this principle in a slightly different way: A
discrete decision based upon an input having a continuous range of values
cannot be made within a bounded length of time (9). He gave numerous
examples of decision problems involving continuous inputs with inherent
uncertainty about decision time. The source of the uncertainty, however, is not
necessarily the attempt to sample a continuous signal; it is the decision
procedure itself. A device that selects among alternatives can become metastable
if the signals denoting alternatives arrive at nearly the same time.

It might be asked whether there is a connection between the choice
uncertainty principle and the Heisenberg Uncertainty Principle (HUP) of
quantum physics. The HUP says that the product of the standard deviations of
position and momentum is lower-bounded by a number on the order of 10-34
joule-seconds. Therefore, an attempt to reduce the uncertainty of position
toward zero may increase the uncertainty of momentum; we cannot know the
exact position and speed of a particle at once. This principle manifests at
quantum time scales and subatomic particle sizes -- look at how small that bound
is -- but does not say much about the macro effects of millions of electrons
flowing in logic circuits.

The HUP is sometimes confused with a simpler phenomenon, which might
be called the observer principle. This principle states that if the process of
observing a system either injects or withdraws energy from the system, the act of
observation may influence the state of the system. There is, therefore,
uncertainty about whether what is observed is the same as what is in the system
when there is no observer. The observer principle plays an important role in

quantum cryptography, where the act of reading the quantum state of a photon
destroys the state. The information of the state is transferred to the observer and
is no longer in the system.

The choice uncertainty principle is not an instance of the Heisenberg
principle because it applies to macrolevel choices as well as to microscopic circuit
choices. Neither is it an instance of the observer principle because the metastable
state is a reaction of the observer (arbiter) to the system and does not exchange
information with the system. (Neither is it related to the Axiom of Choice in
mathematics, which concerns selecting one representative from each of an
infinite number of sets.)

Choice Uncertainty as a Great Principle
The choice uncertainty principle is not about how a system reacts to an observer,
but how an observer reacts to a system. It also applies to choices at time scales
much slower than computer clocks. For example,

• A teenager must choose between two different, equally appealing prom
invitations.

• Two people on a sidewalk must choose which way each goes to avoid a
collision.

• A driver approaching an intersection must choose to brake or accelerate
on seeing the traffic light change to yellow.

• The commander in the field must choose between two adjutants, both
demanding quick decisions on complex tactical issues at different
locations.

• A county social system must choose between a development plan that
limits growth and one that promotes growth.

These examples all involve perceptions; the metastable (indecisive) state occurs
in single or interacting brains as they try to choose between equally attractive
perceptions. At these levels, a metastable (indecisive) state can persist for
seconds, hours, days, months, or even years.

The possibility of indefinite indecision is often attributed to the fourteenth
century philosopher Jean Buridan, who described the paradox of the hungry dog
that, being placed midway between two equal portions of food, starved (5).
[Some authors use the example of an ass (donkey) instead of a dog, but it is the
same problem (3,9).] If he were discussing this today with cognitive scientists,
Buridan might say that the brain can be immobilized in a metastable state when
presented with equally attractive alternatives.

At these levels it is not normally possible to turn off clocks until the
metastable state is resolved. What happens if the world is impatient and
demands a choice from a metastable chooser? A common outcome is that no
choice is made and the opportunities represented by the choices are lost. For
example, the teenager gets no prom date, the pedestrians collide, the driver runs
a red light, the commander loses both battles, or the county has no plan at all.

Another outcome is that the deciding parties get flustered, adding to the delay of
reaching a conclusion.

Conclusion
Modern software contains many external interactions with a network and must
frequently choose between near-simultaneous signals. The process of choosing
will always involve the possibility of a metastable state and, therefore, a long
delay for the decision. Real-time control systems are particularly challenging
because they constantly make choices under deadlines.

The metastable state can occur in any choice process where simultaneous
alternatives are equally attractive. In that case, the choosing hardware, software,
brain, or social process cannot make a definitive choice within any preset
interval. If we try to force the choice before the process exits a metastable state,
we are likely to get an ambiguous result or no choice at all.

The choice uncertainty principle applies at all levels, from circuits, to
software, to brains, and to social systems. Every system of interactions needs to
deal with it. It qualifies, therefore, as a Great Principle.

It is a mistake to think that the choice uncertainty principle is limited to
hardware. Suppose that your software contains a critical section guarded by
semaphores. Your proof that the locks choose only one process at a time to enter
the critical section implicitly assumes that only one CPU at a time can gain access
to the memory location holding the lock value. If that is not so, then occasionally
your critical section will fail no matter how careful your proofs. Every level of
abstraction at which we prove freedom from synchronization errors always relies
on a lower level at which arbitration is solved. But arbitration can never be
solved absolutely.

Therefore, software’s assumption that variables denoting alternatives are
well defined and unchanging when we look at them is not always valid. The
choice uncertainty principle warns us of this possibility and helps to manage it.

BIBLIOGRAPHY
1. T. J. Chaney and C. E. Molnor. Anomalous behavior of synchronizer and

arbiter circuits. IEEE, Transactions Comput., 22: 421-422, 1973.
2. D. J. Kinniment and J. V. Woods, Synchronization and arbitration circuits in

digital systems. IEEE Proc., 961-966, 1976.
3. I. Sutherland and J. Ebergen, Computers without clocks, Scientif. Am., 62-69, Aug.

2002. Available from Sun Microsystems,
http://research.sun.com/async/Publications/KPDisclosed/SciAm/SciAm.pdf .

4. P. Alfke, Metastable recovery in Virtex-II Pro FPGAs. Technical Report
xapp094 (Feb. 2005). Available from Xilinx.com website.

5. P. Denning, The arbitration problem, Am. Scient. 73: 516-518, 1985. It is
interesting that some authors ascribe the indecision paradox to an “ass”,
although Buridan’s original text refers to a “dog”.

6. C. L. Seitz, System timing, in C. Mead and L. Conway (ed.), Introduction to
VLSI Systems. Reading, MA: Addison-Wesley, 1980, pp. 218-262.

7. R. Ginosar, Fourteen ways to fool your synchronizer”. Proc. 9th Int’l Symp. on
Asynchronous Circuits and Systems, IEEE, 2003, 8pp. Available:
http://www.ee.technion.ac.il/~ran/papers/Sync_Errors_Feb03.pdf .

8. Great Principles Web site: http://cs.gmu.edu/cne/pjd/GP .
9. L. Lamport, Buridan’s principle. Technical report, 1984. Available:

http://research.microsoft.com/users/lamport/pubs/buridan.pdf .

