
THE LOCALITY PRINCIPLE 
 
Peter J. Denning, Naval Postgraduate School, Monterey, California 
 
January 2008 
Rev 6/22/08 
 
 

Abstract: Locality is a universal behavior of all computational 
processes: They tend to refer repeatedly to subset of their 
resources over extended time intervals.  System designers have 
exploited this behavior to optimize performance in numerous 
ways, which include caching, clustering of related objects, 
search engines, organizations of databases, spam filters, and 
forensics. 
 
Keywords: locality, virtual memory, caching, thrashing, 
working sets, execution phases, phase transitions, program 
behavior 

 
 
 
 
Locality is a universal behavior of all computational processes: They tend to 
refer repeatedly to subsets of their resources over extended time intervals.  
System designers have exploited this behavior to optimize performance in 
numerous ways, which include caching, clustering of related objects, search 
engines, organization of databases, spam filters, and forensics. 

Every executing computation generates references to objects, such as 
memory pages, disk sectors, database records, and web pages.  These 
references are not uniform: Some objects are referenced more often than 
others, and references to each object come in bursts.  Another way to say this 
is that execution of a computation consists of a series of phases; phase i has 
holding time Ti and locality set Li.  The locality set is the set of objects 
referenced in the phase.  A particular object is referenced only in the phases in 
which it is a member of the locality set.  Thus, the history of the computation 
appears as a sequence,  

(L1,T2), (L2,T2), (L3,T3), ... , (Li,Ti), ... 
The locality set of a multithreaded computation at a particular time is the 
union of the individual thread locality sets at that time. 

Knowledge of a computation’s locality behavior has several significant 
benefits: 



• The local storage of a processor (cache) needs to contain only the 
current localities, not the entire object space.  The cache provides 
significant savings in local storage without loss of performance. 

• If the phase boundaries are unknown (the usual case), the best 
predictor of objects the computation will use in the immediate future 
is its current locality set. 

• Objects that tend to be in the same locality sets can be grouped in 
storage systems so that they can be loaded together (efficiently) into a 
processor’s cache. 

There are two aspects of locality: (1) temporal locality means that references 
to the same objects are grouped in time, and (2) spatial locality means that 
objects close to each other tend to be referenced together.  These two aspects 
give the phase-transition definition above. 

Locality is among the oldest systems principles in computer science.  It was 
discovered in 1966 during efforts to make early virtual memory systems work 
well.  Working-set memory management was the first exploitation of this 
principle; it prevented thrashing while maintaining near optimal system 
throughput, and eventually it enabled virtual memory systems to be reliable, 
dependable, and transparent.  Today the locality principle is being applied to 
computations that adapt to the neighborhoods in which users are situated, 
inferring those neighborhoods by observing user actions, and then optimizing 
performance for users. 

The remainder of this article reviews the history of the locality principle 
and its new applications in context-aware computing. 

Models of Locality 
A model of locality is a description of a mechanism to generate the locality 
behavior of a computation without having to run the computation.  The 
earliest notion of locality was a nonuniform distribution of references over a 
computation’s objects.  Thus, the objects could be ordered so that their 
probabilities of use follow the relation 

p1 > p2 > p3 > ... > pk > ... 
When these probabilities are measured, they often follow a Zipf Law, which 
means that pk is proportional to 1/k. 

This law is called a static representation of locality because a single 
distribution of probabilities holds for all time; there is no differentiation into 
phases.  Empirically, when a computation is modeled this way, the model 
overestimates the average locality size by factors of 2 or 3. 

In contrast are dynamic representations that recognize phases and allow for 
different probability distributions in each phase.  Dynamic models tend to 
estimate average locality size well. 

The phase-transition model is a successful dynamic model.  It consists of a 
macromodel that generates phase and transition intervals and their holding 
times, and a micromodel that generates references from a locality set associated 
with the phase.  The holding times in the states are random variables, with the 
average holding in the phase state being much longer than in the transition 
state.  While in the phase state, the model uses a static representation for a 



single locality set, such as the distribution above.  During the transition phase, 
the model allows for random references to all objects.  (1) 

The working set model defines a program’s working set at time t, W(t,T), 
as the set of objects referenced in the time window of length T extending 
backward from the current time t.  It is usually possible to choose the window 
size T so that it is contained within phases most of time, in which case the 
working set measures the current locality set.  Thus, the working set is a good 
way to track the localities and phases of a program dynamically.  (2) 

History 
Locality was discovered from efforts to make virtual memory systems work 
well.  Virtual memory was first developed in 1959 on the Atlas system at the 
University of Manchester (3).  Its superior programming environment 
doubled or tripled programmer productivity.  Its automatic caching boosted 
performance (4).  But its performance was finicky: It was sensitive to the 
choice of replacement algorithm and to the ways compilers grouped code on 
to pages.  Worse, when it was coupled with multiprogramming, it was prone 
to thrashing, the near-complete collapse of system throughput because of 
heavy paging.  (5)  The locality principle guided the design of robust 
replacement algorithms, compiler code generators, and thrashing-proof 
systems.  It transformed virtual memory from an unpredictable to a robust 
technology that regulated itself dynamically and optimized throughput 
without user intervention. 

Atlas included the first demand-paged virtual memory, which automated 
the process of transferring pages between random access memory (RAM) and 
disk.  The designers grappled with two performance problems, either one of 
which could scuttle the system: One was translating addresses to locations, 
the other replacing pages already loaded into RAM.  They quickly found a 
solution to the translation problem using page tables stored in RAM and 
address caches in the central processing unit (CPU).  The replacement 
problem was much more difficult. 

Because the disk access time was about 10,000 times slower than the CPU 
instruction cycle, each page fault added a significant delay to a job’s 
completion time.  Therefore, minimizing page faults was critical to system 
performance.  The ideal page to replace from main memory is the one that 
will not be used again for the longest time.  But next-use time cannot be 
known with certainty.  The Atlas system used a “learning algorithm” that 
hypothesized a loop cycle for each page, measured each page’s period, and 
estimated which page was not needed for the longest time. 

The learning algorithm was controversial.  It performed well on programs 
with well-defined loops and poorly on many other programs.  In numerous 
experimental studies well into the 1960s, researchers sought to determine 
what replacement rules might work best over the widest possible range of 
programs.  Belady’s study in 1966 (6) was the most comprehensive and 
scientific.  Eventually, it became apparent that the volatility resulted from 
variations in compiling methods: The way in which a compiler grouped code 
blocks onto pages strongly affected the program’s performance under a given 
replacement strategy (7). 



The major computer makers were drawn to multiprogrammed virtual 
memory because of its superior programming environment.  RCA, General 
Electric, Burroughs, and Univac all included virtual memory in their 
operating systems of the mid-1960s.  Because a bad replacement algorithm 
could cost a million dollars of lost machine time over the life of a system, they 
all had a keen interest in finding good replacement algorithms. 

Imagine their chagrin when by 1966 these companies reported a new, 
unexplained, catastrophic problem they called thrashing.  It was a sudden 
collapse of throughput as the multiprogramming level rose.   It had nothing to 
do with the choice of replacement policy. A thrashing system spent most of its 
time resolving page faults and little running the CPU.  Thrashing was far 
more damaging than a poor replacement algorithm.  It scared the daylights 
out of the computer makers. 

IBM avoided these uncertainties by excluding virtual memory from its 
OS360 in 1964.  Instead, it sponsored at its Watson laboratory one of the most 
comprehensive experimental systems projects of all time.  Led by Bob Nelson, 
Les Belady, and David Sayre, the project team built the first virtual-machine 
operating system and used it to study the performance of virtual memory.  
(The term “virtual memory” seems to have come from this project.)  By 1966 
they had tested every replacement policy that anyone had ever proposed and 
a few more they invented.  Many of their tests involved the use bits built into 
page tables.  By periodically scanning and resetting the bits, the replacement 
algorithm distinguishes recently referenced pages from others.  Belady 
concluded that policies that favor recently used pages performed better than 
other policies; least recently used (LRU) replacement was consistently the best 
performer among those tested (6).  He said that this resulted from reference 
clustering locality behavior.  His colleagues verified that many programs 
exhibited locality behavior (8). 

At MIT Project MAC in 1966, Peter Denning hypothesized that the 
controversies over replacement algorithms could be settled by defining an 
intrinsic memory demand: “This process needs p pages at time t.”  Intrinsic 
demand was the first notion of “working set”.  Individual replacement 
algorithms could then be rated by their abilities to detect working sets.  
Inspired by Belady’s concept of locality, Denning formally defined a process’s 
working set as the set of pages used during a fixed-length sampling window 
in the immediate past (2).  A working set could be measured by periodically 
reading and resetting the use bits in a page table. 

This method solved thrashing because if every process is guaranteed its 
working set, then no process can overload the paging disk and system 
throughput can be maintained (5).  Thrashing is impossible for a working-set 
policy.  Experiments with real operating systems confirmed that this policy 
gives high efficiency and prevents thrashing (9). 

The working-set idea worked because the pages observed in the backward 
window were highly likely to be used again in the immediate future.  Was 
this assumption justified?  The idea that reference behavior could be 
described as a sequence of phases and locality sets seemed natural because 
programmers planned overlays using diagrams that showed subsets and time 
phases (Fig. 1).  But what was strikingly interesting was that programs 
showed this behavior even when it was not explicitly preplanned.  Each 
program had its own distinctive usage pattern, like a voiceprint (Fig. 2). 



 
Figure 1.  Locality sequence behavior diagrammed by programmer 
during overlay planning. 

 
 

 
Figure 2.  Locality sequence behavior observed by sampling use bits 
during program execution.  Programs exhibit phases and localities 
naturally, even when overlays are not preplanned. 

 
Two effects could make this happen: (1) temporal clustering caused by 

looping and executing within modules with private data, and (2) spatial 
clustering caused by related values being grouped into arrays, sequences, 
modules, and other data structures.  Both these reasons followed from the 
human practice of “divide and conquer” -- breaking a large problem into 
parts and working separately on each part.  The locality bit maps captured 
someone’s problem-solving method in action.  The working set measures an 
approximation of a program’s intrinsic locality sequence. 

A distance function gives a single measure of temporal and spatial locality.   
D(x,t) measures the distance from the execution point of a process to an object 
x at time t.  Distances can be temporal, such as the time since prior reference 
or access time within a network; spatial, measuring hops in a network or 
address separation in a sequence; or cost, which measures any nondecreasing 
accumulation of cost since prior reference.  Object x is in the locality set at 
time t if the distance is withins a threshold: D(x,t) ≤ T. 



By 1980 the locality principle was understood as a package of three ideas 
(1): 

1. Computational processes pass through a sequence of phases. 
2. The locality sets of phases can be inferred by applying a distance 

function to a program’s address trace observed during a backward 
window. 

3. Memory management is optimal when it guarantees each program that 
its locality sets will be present in high-speed memory. 

Adoption of Locality Principle 
The locality principle was adopted almost immediately by operating systems, 
databases, and hardware architects.  It was soon adopted into ever-widening 
circles: 
• In virtual memory to organize caches for address translation and to 

design the replacement algorithms 
• In data caches for CPUs, originally as mainframes and now as 

microchips 
• In buffers between main memory and secondary memory devices 
• In buffers between computers and networks 
• In video boards to accelerate graphics displays 
• In modules that implement the information-hiding principle 
• In accounting and event logs in that monitor activities within a system 
• In alias lists that associate longer names or addresses with short 

nicknames 
• In the “most recently used” object lists of applications 
• In Web browsers to hold recent web pages 
• In file systems, to organize indexes (e.g., B-trees) for fastest retrieval of 

file blocks 
• In database systems, to manage record-flows between levels of memory 
• In search engines to find the most relevant responses to queries 
• In classification systems that cluster related data elements into similarity 

classes 
• In spam filters, which infer which categories of email are in the user’s 

locality space and which are not 
• In “spread spectrum” video streaming that bypasses network 

congestion and reduces the apparent distance to the video server 
• In “edge servers” to hold recent web pages accessed by anyone in an 

organization or geographical region 
• In the field of computer forensics to infer criminal motives and intent by 

correlating event records in many caches 



• In the field of network science by defining hierarchies of self-similar 
locality structures within complex power-law networks 

Modern Model of Locality: Context Awareness 
As the uses of locality expanded into more areas, our understanding of 
locality has evolved.  Locality is the consequence of a more basic principle: 
Everything we do, we do in a context.  Context awareness embraces four key 
ideas: 
• An observer 
• Neighborhoods: One or more sets of objects that are most relevant to 

the observer at any given time 
• Inference: A method of identifying the most relevant objects by 

monitoring the observer’s actions and interactions and other 
information about the observer contained in the environment 

• Optimal actions: An expectation that the observer will complete work 
in the shortest time if neighborhood objects are ready accessible in 
nearby caches 

These four ideas can be recognized in the original definition.  The observer 
is the execution point of the computational process; the neighborhood is the 
current locality set; the distance function is the inference mechanism; the 
optimal action is to guarantee that the current locality is present in a 
processor’s cache.  Let us examine the generalizations of these ideas. 

The observer is the agent who is trying to accomplish tasks with the help of 
software, and who places expectations on its function and performance (Fig. 
3).  In most cases, the observer is the user who interacts with software.  In 
some cases, such as a program that computes a mathematical model, the 
observer can be built into the software itself. 



 
Figure 3.  The modern view of locality is a means of inferring the 
context of an observer using software, so that the software can 
dynamically adapt its actions to produce optimal behavior for the 
observer. 

 

A neighborhood is a group of objects related to the observer by some 
metric.  Newer examples of neighborhoods include email correspondents, 
non-spam email, colleagues, teammates, objects used in a project, favorite 
objects, user’s web, items of production, texts, and directories.  Some 
neighborhoods can be known by explicit declarations; for example a user’s file 
directory, address book, or web pages.  But most neighborhoods can only be 
inferred by monitoring the event sequences of an observer’s actions and 
interactions. 

Inference can be any reasonable method that measures the content of 
neighborhoods.  Newer inference methods include Google’s counting of 
incoming hyperlinks to a web page, patterns generated by connectionist 
networks after being presented with many examples, and Bayesian spam 
filters. 

Optimal actions are performed by the software on behalf of the observer.  
These actions can come either from inside the software with which the 
observer is interacting, or from outside that software, in the run-time system. 

The matrix below shows four quadrants that correspond to the four 
combinations of inference data collection and locus of action just mentioned.  
Examples of software are named in each quadrant and are summarized 
below.  “Inside” and “outside” are relative to the context-aware software. 
 
 



  ORIGIN OF DATA FOR INFERENCE 

  Inside Outside 

Inside Amazon.com, 
Bayesian spam 
filter 

Semantic web 
Google LOCUS OF 

ADAPTIVE 
ACTION 

Outside Linkers and loaders Working sets, 
Ethernet load control 

 
• Amazon.com, Bayesian spam filters.  Amazon collects data about user 

purchasing histories and recommends other purchases, by the user or 
others, that resemble the user’s previous purchases.  Bayesian spam 
filters gather data about which emails the user considers relevant and 
then block irrelevant emails.  (Data collection inside, optimal actions 
inside.) 

• Semantic web, Google.  Semantic web is a set of declarations of 
structural relationships that constitute context of objects and their 
connections.  Programs read and act on it.  Google gathers data from the 
Web and uses it to rank pages that seem to be most relevant to a 
keyword query posed by user.  (Data collection outside, optimal actions 
inside.) 

• Linkers and loaders.  These workhorse systems gather library modules 
mentioned by a source program and link them together into a self-
contained executable module.  The libraries are neighborhoods of the 
source program.  (Data collection inside, optimal action outside.) 

• Working sets, Ethernet load controls.  Virtual memory systems 
measure working sets and guarantee programs enough space to contain 
them, which thereby prevents thrashing.  Ethernet prevents the 
contention-resolving protocol from getting overloaded by making 
competing transactions wait longer for retries if load is heavy (10).  
(Data collection outside, optimal action outside.) 

In summary, the modern principle of locality is that observers operate in 
one or more neighborhoods that can be inferred from dynamic action 
sequences and static structural declarations.  Systems can optimize the 
observer’s productivity by adapting to the observer’s neighborhoods, which 
they can estimate by distance metrics or other inferences. 

Future Uses of Locality Principle 
Locality principles are certain to remain at the forefront of systems design, 
analysis, and performance, because locality flows from human cognitive and 
coordinative behavior.  The mind focuses on a small part of the sensory field 
and can work most quickly on the objects of its attention.  People organize 
their social and intellectual systems into neighborhoods of related objects, and 
they gather the most useful objects of each neighborhood close around them 
to minimize the time and work of using them.  These behaviors are 
transferred into computational systems they design and into the expectations 
users have about how their systems should interact with them. 



Here are seven modern areas that offer challenging research problems that 
locality may be instrumental in solving. 

Architecture 
Computer architects have heavily exploited the locality principle to boost the 
performance of chips and systems.  Putting cache memory near the CPU, 
either on board the same chip or on a neighboring chip, has enabled modern 
CPUs to pass the 1 GHz speed mark.  Locality within threaded instruction 
sequences is being exploited by a new generation of multicore processor 
chips.  The “system on a chip” concept places neighboring functions on the 
same chip to decrease delays of communicating between components 
significantly.  Animated sequences of pictures can be compressed by locality: 
by detecting the common neighborhood behind a sequence, transmitting it 
once, and then transmitting the differences for each picture.  Architects will 
continue to examine locality carefully to find new ways to speed up chips, 
communications, and systems. 

Caching 
The locality principle is useful wherever there is an advantage in reducing the 
apparent distance from a process to the objects it can access.  Objects in the 
neighborhood of the process are kept in a local cache with fast access time.  
The performance acceleration of a cache generally justifies the modest 
investment in the cache storage.  Novel forms of caching have sprung up in 
the Internet.  One prominent example is edge servers that store copies of Web 
objects near their users.  Another example is the clustered databases built by 
search engines (like Google) to retrieve relevant objects instantly from the 
same neighborhoods as the asker.  Similar capabilities are available in MacOS 
Windows to speed up finding relevant objects. 

Bayesian Inference 
A growing number of inference systems exploit Bayes’s principle of 
conditional probability to compute the most likely internal (hidden) states of a 
system given observable data about the system.  Spam filters, for example, use 
it to infer the email user’s mental rules for classifying certain objects as spam.  
Connectionist networks use it for learning: Their internal states abstract from 
desired input-output pairs shown to the network; the network gradually 
acquires a capability for new action.  Bayesian inference is an exploitation of 
locality because it infers a neighborhood given observations of what a user or 
process is doing. 

Forensics 
The burgeoning field of computer forensics owes much of its success to the 
ubiquity of caches.  They are literally everywhere in an operating systems and 
applications.  By recovering evidence from these caches, forensics experts can 
reconstruct (infer) an amazing amount of a criminal’s motives and intent (11).  
Criminals who erase data files are still not safe, because experts use advanced 
signal-processing methods to recover the faint magnetic traces of the most 
recent files from the disk (12).  Learning to draw valid inferences from data in 



a computer’s caches, and from correlated data in caches in other computers 
with which the subject has communicated, is a challenging research problem. 

Web-Based Business Processes 
Web-based business systems allow buyers and sellers to engage in 
transactions using web interfaces to sophisticated database systems.  
Amazon.com illustrates how a system can infer “book interest 
neighborhoods” of customers and (successfully) recommend additional sales.  
Many businesses employ customer relationship management systems that 
infer “customer interest neighborhoods” and allow the company to provide 
better, more personalized service.  Database, network, server, memory, and 
other caches optimize the performance of these systems (13). 

Context Aware Software 
More software designers are coming to believe that most software failures can 
be traced to the inability of software to be aware of and act on the context in 
which it operates.  More and more modern software uses inferred context to 
be consistently more reliable, dependable, usable, safe, and secure. 

Network Science 
Many scientists have begun to apply statistical mechanics to large random 
networks, typically finding that the distribution of node connections is power 
law with degree -2 to -3 (14,15).  These networks are self-similar, which means 
that if all neighborhoods (nodes within a maximum distance of each other) 
are collapsed to single nodes, then the resulting network has the same power 
distribution as the original (16).  The idea that localities are natural in complex 
systems is not new; in 1976, Madison and Batson (17) reported that program 
localities have self-similar sub-localities; and in 1977, P. J. Courtois (18) 
applied it to cluster similar states of complex systems to simplify their 
performance analyses.  The locality principle may offer new understandings 
of the structure of complex networks. 

Researchers looking for challenging problems can find many in these areas 
and can exploit the principle of locality to solve them. 
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