
GREAT PRINCIPLES OF COMPUTING

Peter J. Denning, Naval Postgraduate School, Monterey, California

April 2008
(Rev. 8/31/08)

Abstract: The Great Principles of Computing is a framework for
understanding computing as a field of science.
Keywords: computer science structure, body of knowledge, computation,
communication, coordination, recollection, automation, evaluation, design

The Great Principles of Computing is a framework for understanding
fundamental principles computing as an integrated field of science and
engineering.

Few views of the computing field see the integral whole. Many outsiders see
computing as a field of technology, gadgetry, and programming. Insiders often
debate a separatist perspective -- whether computer science is mathematics,
engineering, or science. Indeed, some skeptics even question whether the word
“science” belongs at all -- to them “computer science” is a misnomer because the
subject matter of the field is manmade artifacts, not natural objects.

It is a common practice in science to articulate scientific fields as frameworks
of fundamental principles. Robert Hazen and James Trefil have done this for the
biological and life sciences (1), Richard Feynman for physics (2), and Carl Sagan
for Astronomy (3). Some computer scientists have taken steps in this direction,
notably Alan Biermann (4) and Danny Hillis (5). A sea change of attitude among
other fields of science toward computing, which started around 2000, makes it
important to carry these steps forward to a complete fundamentals framework
for computing.

By the mid 1990s, it became clear that many fields of science were
discovering natural information processes in their deep structures. Biologists
consider DNA transcription as an information process that decodes DNA and
produces new cells. Physicists consider quantum waves as carriers of
information that translate into particles and interactions; from this came
quantum computing and quantum cryptography. Economists consider the
workings of economies as complex information processes. Materials scientists
consider molecules as objects that could be designed by manipulating energy in
accordance with the Schrödinger equation. These fields and many more sought
collaborations with computer scientists to help them understand the information
processes they had discovered.

As we face the modern challenges of understanding nature’s ways of
computation, we find ourselves revisiting old, fundamental questions of
computer science:

What is computation?
What is information?
What can we know through computing?
What can we not know through computing?
How can we build complex systems simply?

Computer scientists have studied these questions since the 1930s. Today, people
in all fields of science, engineering, business, and even politics are asking the
same questions. Even if it seems they are unanswerable, just engaging with them
will advance the scientific and engineering foundations of computing.

Our tradition defines computer science as the study of phenomena
surrounding computers. This definition is no longer workable because we are
studying natural information processes as well as artificial. We are seeing that
the computer is the tool and that computation is the principle. Computing is -- in
fact, always has been -- the science and application of information processes,
natural and artificial.

Evolution of Computing Frameworks
Although computer science was originally conceived as the study of
computational processes (6), the practical challenges of building fast and reliable
computers soon transferred the focus to the computers themselves. From around
1940, we described computing by the ideas in its core technologies -- such as
logic circuits, algorithms, languages, programs, compilers, or operating systems
(4). The computer was a tool for solving equations, cracking codes, analyzing
data, and managing business processes. Computation was the activity of
computers.

Over the next four decades, computing technology advanced and matured
and the supercomputer wrought significant advances in science and engineering.
By 1980, our understanding of computation had been shaken up. Computation
was no longer just the activity of computers; it was a new method in science. It
became the third leg of science along with theory and experiment. It also became
a new method in engineering design.

During the 1990s, our understanding of computation was shaken up again.
People in many fields discovered information processes in their deepest
structures -- for example, DNA in biology, quantum waves in physics, brain
patterns in cognitive science, and information flows in economic systems.
Computation entered everyday life with new ways to solve problems, new forms
of art, music, motion pictures, and commerce, new approaches to learning, new
slang expressions, and even new political jokes (“What did Bill Clinton play on
his saxophone? Al Gore rhythms.”).

Thus the fundamental questions of computing, listed earlier, have become
important in many fields, which now rely heavily on computation and

computational methods to advance their work (7-9). Not only that, but
discoveries in other fields are yielding new fundamental computing principles.

The technology-based framework for computing, which served well for 50
years, came under stress in the 1990s because of its sheer complexity. In 1989, the
ACM listed 9 core technologies of computing (10). In 2001, however, the ACM
listed 14 core areas and 63 core topics under those areas (11). For the newcomer,
learning the inner workings of all technologies and their possible direct
interactions is a daunting challenge.

The Great Principles framework discussed below is much simpler. It has
seven categories of principles with five to eight principles in each. Everything
else flows from those base principles.

Is Computer Science Science?
Over the years, skeptics have asked whether “science” belongs in the title of the
field. They have said that any field naming itself as a science cannot be. To
them, computer science looks not like a science but a field of artifacts and
concepts about them.

It is worth verifying that computing is really a field of science and, therefore,
that a framework inspired by science is useful and meaningful. To be accepted
as a science, a field of study must satisfy six criteria:

1. Systematically organized body of knowledge
2. An experimental method
3. Reproducible experimental results
4. Testable, falsifiable hypotheses
5. Surprising predictions
6. Natural objects

In 2005, we analyzed the first five criteria and concluded that computer science
meets them all (12). However, skeptics still felt that computer science is an
artificial science rather than a natural science. In 2007, we analyzed the sixth
criterion and demonstrated that computing is a natural science (13).

General Considerations for a Framework
By a principle, we mean a statement that guides or constrains future action.
Computing principles are of two kinds: (1) recurrences, including laws,
processes, and methods that describe repeatable cause-effect relationships, and
(2) guidelines for conduct. An example of a law is as follows: “The fastest sorting
algorithms take time of order of n log n to arrange n items in order.” An example
of a conduct guideline is as follows: “Network designers should divide protocol
software into layers.” The purpose of such guidelines is to reduce apparent
complexity, increase understanding, and enable good design.

By a framework of a field, we mean a set of principles statements and stories
organized into categories (a taxonomy), accompanied by a rationale of how they
fit together into a coherent body and how they influence technology. In

developing a framework for computing, we emphasized the deepest principles
and called the result the Great Principles framework.

The benefits of developing and maintaining a Great Principles framework for
computing are as follows:

• Stimulate deep thinking. Returning to the fundamental questions
advances the field even if we never fully settle them.

• Expose deep structure. Doing so can reduce the apparent complexity of
the field, contributing to greater understanding, better designs, and
simpler, more reliable systems.

• Enable designers and users to see connections among technologies based
on similar principles. This will facilitate sound designs, cross fertilization
among technologies, new discoveries, and innovations.

• Establish a new relationship with people from other fields by offering
computing principles in language that shows them how to map
computing principles into their own fields.

• Provide inspiring stories about the development of the field and its
principles for young people.

• Develop new approaches to teaching computing that inspire curiosity
and excitement.

A Great Principles framework complements the existing technology frameworks
for understanding computing. We will discuss this further below.

As with any other body of knowledge, a Great Principles framework evolves
as new principles are discovered and old principles become obsolete. Examples
of new principles include searching through very large distributed databases,
avoiding information overload, and forming new networks rapidly. Examples of
obsolete principles include construction of logic gates from discrete transistors,
LR parsing, and centralized network routing tables. A principles framework is a
living depiction of the field, always open to births and retirements. Its rate of
change is much slower than for a technology-oriented depiction of the field.

Outline of a Framework
An examination of many computing technologies for their foundational
principles led to a framework of seven categories (14):

Computation (meaning and limits of computing)
Communication (reliable data transmission)
Coordination (networked entities working toward common goals)
Recollection (storage and retrieval of information)
Automation (meaning and limits of automation)
Evaluation (performance prediction and capacity planning)
Design (building reliable computing systems)

These categories resulted from a functional analysis of many computing
technologies and applications:

1. Computing systems are built from processing elements that transform and
store information (computation, recollection);

2. Processing elements exchange information (communication);
3. Processing elements cooperate toward common goals (coordination);
4. Humans delegate tasks to systems of processing elements (automation);
5. Humans predict the speed and capacity of systems (evaluation); and
6. Humans decompose systems into processing elements and organize their

construction (design).
The seven categories are like windows into the one computing knowledge

space rather than slices of the space into separate pieces (Fig. 1). Each window
sees the space in a distinctive way, but the same thing can be seen in more than
one window. Internet protocols, for example, are seen variously as means for
data communication, coordination, and recollection.

Figure 1. Categories of the Great Principles (GP) framework.

Moreover, most computing technologies draw principles from all seven

categories. A principles framework exposes many common factors among
technologies.

A Summary of Principles
The list that follows gives key principles in each of the seven categories. This is
intended not as a “final” statement of principles, but a starting point for fleshing
out a framework. In time, omissions will be overcome, statements clarified, and
the number of statements reduced. The intention is that the operations of all the
technologies linked to each category can be derived from one or more of the
stated principles.

Computation
• Representations hold information.
• Computation is a sequence of representations.
• Computations can be open or closed.
• Computations have characteristic speeds of resolution.
• Complexity measures the time or space essential to complete

computations.
• Finite representations of real processes always contain errors.

Communication
• Information can be encoded into messages.
• Data communication always takes place in a system consisting of a

message source, an encoder, a channel, and a decoder.
• Information in a message source places a hard lower bound on channel

capacity for accurate reception (Shannon Capacity Theorem).
• Messages corrupted during transmission can be recovered during

reception (Error Correction).
• Messages can be compressed.
• Messages can hide information.

Coordination
• A coordination system is a set of agents interacting within a finite or

infinite game toward a common objective.
• Action loop is the foundational element of all coordination protocols.
• Coordination tasks can be delegated to computational processes.
• The protocols of coordination systems manage dependencies of flow,

sharing, and fit among activities.
• It is impossible to select one of several simultaneous or equally attractive

alternatives within a preset deadline (Choice Uncertainty Principle).

• All coordination systems depend on solutions to the concurrency control
problems of arbitration, synchronization, serialization, determinacy, and
deadlock.

Recollection
• All computations take place in storage systems.
• Storage systems comprise hierarchies with volatile (fast) storage at the top

and persistent (slower) storage at the bottom.
• The principle of locality dynamically identifies the most useful data,

which can be cached at the top of the hierarchy.
• Thrashing is a severe performance degradation caused when parallel

computations overload the storage system.
• Access to stored objects is controlled by dynamic bindings among names,

handles, addresses, and locations.
• Hierarchical naming systems allow local authorities to assign names that

are globally unique in very large name spaces.
• Handles enable sharing by providing unique-for-all-time object identifiers

that are independent of all address spaces.
• Data can be retrieved by name or by content.

Automation
• Physical automation maps hard computational tasks to physical systems

that perform them acceptably well.
• Artificial intelligence maps human cognitive tasks to physical systems that

perform them acceptably well.
• Artificial intelligence maps tasks to systems through models, search,

deduction, induction, and collective intelligence.
• Models represent processes by which intelligent beings generate their

behavior.
• Search finds the subsets of states of a complex system that must

participate in the final outcome of a task.
• Deduction locates the outcome of a task by applying rules of logic to move

from axioms to provable statements.
• Induction builds models by generalizing from data about a complex task's

behavior.
• Collective intelligence exploits large-scale aggregation and coordination in

networks to produce new knowledge.

Evaluation
• The principal tools of evaluation are modeling, simulation, experiment,

and statistical analysis of data.
• Computing systems can be represented as sets of equations balancing

transition flows among states.
• Network of servers is a common, efficient representation of computing

systems.
• Network-of-server systems obey fundamental laws on their utilizations,

throughputs, queueing, response times, and bottlenecks.
• Resource sharing, when feasible, is always more efficient than

partitioning.

Design
• Design principles are conventions for planning and building correct, fast,

fault-tolerant, and fit computing systems.
• Error confinement and recovery are much harder in the virtual worlds of

computing than in the real world of physical objects.
• The four base principles of computer system design are hierarchical

aggregation, levels, virtual machines, and objects.
• Abstraction, information hiding, and decomposition are complementary

aspects of modularity.
• Levels organize the functions of a system into hierarchies that allow

downward invocations and upward replies.
• Virtual machines organize software as simulations of computing

machines.
• Objects organize software into networks of shared entities that activate

operations in each other by exchanging signals.
• In a distributed system, it is more efficient to implement a function in the

communicating applications than in the network itself (end-to-end
principle).

Principle-Stories
The list above is a set of statements. Simple statements, however, do not capture
the richness or the surprising implications of a principle. For this reason many
fields express their principles with stories. In physics, for example, the main
terms -- such as photons, electrons, quarks, quantum wave function, relativity,
and energy conservation -- are actually the titles of stories. So it is in astronomy
for planets, stars, galaxies, quasars, black holes, and Hubble shift; in
thermodynamics for entropy, first law, second law, and Carnot cycle; in biology
for phylogeny, ontogeny, DNA, and enzymes; and in electrical engineering for
vacuum tube amplification, oscillator feedback, AM-FM radio, and transistors.

The principles of a field are actually a set of interwoven stories about the
structure and behavior of field elements. They are the names of chapters in
books about the field.

Principle-stories seek to make simple the complex history of a complex area.
They tell how the principle evolved and grew in acceptance over time. They
name the main contributors. They chronicle feats of heroes and failures of
knaves. They lay out obstructions and how they were overcome. They explain
how the principle works and how it affects everything else. The game is to
define many terms in terms of a few terms and to derive many statements
logically from a few statements.

Principle stories for computing are still relatively uncommon. We have
many stories tracing inventions and innovations but not very many tracing the
discovery of a principle and its effects on practice. Such stories will become
more common in the future.

Using a Principles Oriented Body of Knowledge
A body of knowledge (BOK) is an organized description of the knowledge of a
field. There are two basic, useful strategies for representing a field’s BOK:
enumerate its technologies, and enumerate its principles. They are different
interpretations of the same knowledge space. The different kinds of users --
particularly the philosopher, the interested outsider, the technology designer,
and the educator -- can act in new, useful ways with a principles representation.

Curriculum developers often work with a BOK so that they can be sure that
they cover the essential knowledge of their field. The ACM includes a
computing BOK in its Curriculum 2001 recommendation (11). That BOK is a list
of core technologies of the computing field, the ones every computing
professional should know. The main headings of the ACM BOK are core
technologies, methods, devices, processes, or key concepts.

A principles framework is orthogonal to a technology-oriented framework.
The same principle may appear in several technologies, and any technology
relies on several principles. The set of active principles (those used in at least one
technology) evolves much more slowly than the technologies.

Although the two styles of framework are different, they are strongly
connected. To see the connection, imagine a two-dimension matrix. The rows
are the topics from a technology-oriented framework, and the columns are the
categories of principles. (We sometimes refer to the categories as windows
because each category represents a distinctive way of viewing technologies.) The
interior of the matrix is the knowledge space of the field (Fig. 2).

Figure 2. Computing knowledge space as a 2-D structure of technology topics and
principles categories.

Under topics, we can list the technologies from the ACM BOK. Under

categories, we can list the seven windows of the GP framework. A box in the
matrix can be inscribed with the principles from the category (column) expressed
through the technology (row). Figure 3 illustrates a matrix and a few of the
many technology names; security technology shows two principles in the
coordination category.

Figure 3. A portion of knowledge space covering six technology topics. Two
coordination principles for security technology are shown (key distribution protocols
and zero knowledge proofs).

Thus, the technology-oriented BOK enumerates the knowledge by rows of

the matrix, whereas the principles-oriented BOK enumerates by columns. The
important point is that they see the same knowledge -- from different
perspectives and interpretations.

To illustrate this further, imagine someone who wants to enumerate all the
principles involved with a technology. The answer is obtained simply by
analyzing the technology for its principles in each of the seven categories. In Fig.
4, the security topic draws principles from all seven categories.

Figure 4. Security technology draws principles from all seven categories.

The Great Principles framework opens new kinds of questions. For example,

someone can enumerate all the technologies that employ a particular principle,
or category of principles, as indicated in Figure 5, which shows an enumeration
of security coordination principles. We see that the coordination category
contributes principles to all the technologies listed.

Figure 5. Coordination principles are key parts of the six technologies.

Among the many likely users for a Great Principles framework, four groups
stand out:

Philosophers of Science. These people inquire into the deep structures and
truths of the field. They seek to understand what is true before science and
engineering “facts” are established. They raise the bar for reflection and
interpretation in the field.
Interested outside observers. These are people in other fields, or newcomers
to the computing field, who seek a conceptual road map for the field. With a
principles framework, they can explore the breadth and scope of the field,
learn about the powers and limitations of all computing technologies, and
find out how various aspects of computation work.
Technology designers. These are people who design or refine technologies,
including innovators who seek new technologies. With a principles
framework, they can

1. See the guiding principles of a technology;
2. See the limitations of a technology (imposed by principles);
3. See ways to simplify and reduce the perceived complexity of a

technology; and
4. Find connections with other technologies that share the same

principles.

Educators. These are people who teach computing and design curricula.
With a principles framework, they can

1. Check the completeness of a BOK;
2. Given a topic for a course, determine the principles that must be

brought out in the course;
3. Given a principle, find examples of technologies that exemplify it;
4. Design a course or series of lectures around a principle and the

technologies that exploit it; and
5. Design a science map of the field.

Science and Art in Computing
To help define the boundaries of a field, we distinguish science from art. Art
refers to the useful practices of a field (not to drawings or sculptures). Table 1
lists some terms that are often associated with science and with art.
Programming, design, software and hardware engineering, building and
validating models, and building user interfaces are all examples of “computing
arts”. If aesthetics is added, the computing arts extend to graphics, layout,
drawings, photography, animation, music, games, and entertainment. All this
computing art complements and enriches the science. Don Knuth once said that
everything in the field begins at art and becomes science only when we
understand it really well (15) .

Science versus Art
Science Art
principles practice

fundamental recurrences skilled performance

theory engineering

explanation action

discovery invention

analysis synthesis

dissection construction

To be complete, therefore, the framework needs to provide an account of

computing practice as well as computing principles. Our competence is judged
not by our ability to explain principles but by the quality of our performance.
There are four main categories of computing practice:

• Programming -- Using programming languages to build software systems
that meet specifications created in cooperation with the users of those
systems. Computing professionals must be multilingual and facile with the
numerous programming languages (each attuned to a set of problem-solving
strategies).

• Engineering Systems -- Designing and constructing systems of software and
hardware components running on servers connected by networks. These
practices include an architectural design component concerned with
organizing a system to produce valuable and tangible benefits for the users;
an engineering component concerned with the modules, abstractions,
revisions, design decisions, and risks in the system; and an operations
component concerned with configuration, management, and maintenance of
the system. High levels of skill are needed for large programmed systems
encompassing thousands of modules and millions of lines of code.

• Modeling and Validation -- Building models of natural and artificial systems
to make predictions about their behavior under various conditions; and
designing experiments to validate algorithms and systems.

• Innovating -- Exercising leadership to design and bring about lasting changes
to the ways groups and communities operate. Innovators watch for and
analyze opportunities, listen to customers, formulate offers customers see as
valuable, manage commitments to deliver the promised results, and inspire
adoption. Innovators have strong historical sensibilities.

Summary
The Great Principles framework articulates the principles of the science and
engineering of computing. We can view the field through seven themes --
computation, communication, coordination, recollection, automation, evaluation,
and design -- that are interwoven into a single tapestry called computing. The
principles listed here are a “proof of concept” that a compelling principles
framework can be built. However, it will take some years of community
discussion before everyone accepts a “final” framework.

The framework offers an integrated view of the field. Mathematics,
engineering, and science appear in every category and often within the same
principle. It is no longer necessary to ask is CS mathematics, engineering, or
science. Computing stands on its own.

A Great Principles framework complements, but does not replace,
technology frameworks for the field. It deals with the reality that computing is a
natural science as well as a field of engineering. The framework gives a common
language for computing that facilitates collaboration between computing people
and other fields.

We hope that this framework invites the reader to think “out-of-the-box” and
to understand computing in a broader context that serves many fields.

References
1. R. Hazen and J. Trefil, Science Matters, Sioux City, IA: Anchor, 1991.
2. R. Feynman, Lectures in Physics, New York: Addison-Wesley, 1970.
3. C. Sagan, Cosmos, New York: Random House, 2002.
4. A. Biermann, Great Ideas in Computer Science 2nd ed., Cambridge, MA: MIT

Press, 1997.
5. D. Hillis, The Pattern on the Stone, Jackson, TN: Basic Books, 1999.
6. A. M. Turing, On computable numbers, with an application to the

Entscheidungsproblem. Proc. London Math. Soc., 2-42 1936, pp. 230-265.
(Correction ibid. 2-43, 544-546.)

7. P. Rosenbloom, A new framework for computer science and engineering.
IEEE Computer: November 2004, pp. 31-36.

8. J. Wing, Computational thinking. ACM Communications 49: March 2006, pp.
33-35.

9. J. Wing, Five deep questions in computing. ACM Communications 51: January
2008, pp. 58-60.

10. P. Denning, D. Comer, D. Gries, M. Mulder, A. Tucker, J. Turner, and P.
Young. Computing as a discipline, ACM Communications 32(1), January 1989,
pp. 9-23. A condensed version was published in IEEE Computer, February
1989.

11. ACM, Curriculum 2001 Final Report, Available:
<acm.org/education/education/education/curric_vols/cc2001.pdf>

12. P. Denning, Is Computer Science Science? ACM Communications 48: April
2005, pp. 27-31.

13. P. Denning, Computing is a natural science, ACM Communications 50: July
2007, pp. 13-18.

14. P. Denning, Great Principles of Computing, ACM Communications 46:
November 2003, pp. 15-20.

15. D. Knuth, Computer Programming as an Art, ACM Communications 17:
December 1974, pp. 667-673.

