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The Great Principles of Computing is a framework for understanding 
fundamental principles computing as an integrated field of science and 
engineering. 

Few views of the computing field see the integral whole.  Many outsiders see 
computing as a field of technology, gadgetry, and programming.  Insiders often 
debate a separatist perspective -- whether computer science is mathematics, 
engineering, or science.  Indeed, some skeptics even question whether the word 
“science” belongs at all -- to them “computer science” is a misnomer because the 
subject matter of the field is manmade artifacts, not natural objects. 

It is a common practice in science to articulate scientific fields as frameworks 
of fundamental principles.  Robert Hazen and James Trefil have done this for the 
biological and life sciences (1), Richard Feynman for physics (2), and Carl Sagan 
for Astronomy (3).  Some computer scientists have taken steps in this direction, 
notably Alan Biermann (4) and Danny Hillis (5).  A sea change of attitude among 
other fields of science toward computing, which started around 2000, makes it 
important to carry these steps forward to a complete fundamentals framework 
for computing. 

By the mid 1990s, it became clear that many fields of science were 
discovering natural information processes in their deep structures.  Biologists 
consider DNA transcription as an information process that decodes DNA and 
produces new cells.  Physicists consider quantum waves as carriers of 
information that translate into particles and interactions; from this came 
quantum computing and quantum cryptography.  Economists consider the 
workings of economies as complex information processes.  Materials scientists 
consider molecules as objects that could be designed by manipulating energy in 
accordance with the Schrödinger equation.  These fields and many more sought 
collaborations with computer scientists to help them understand the information 
processes they had discovered. 



As we face the modern challenges of understanding nature’s ways of 
computation, we find ourselves revisiting old, fundamental questions of 
computer science: 

What is computation? 
What is information? 
What can we know through computing? 
What can we not know through computing? 
How can we build complex systems simply? 

Computer scientists have studied these questions since the 1930s.  Today, people 
in all fields of science, engineering, business, and even politics are asking the 
same questions.  Even if it seems they are unanswerable, just engaging with them 
will advance the scientific and engineering foundations of computing. 

Our tradition defines computer science as the study of phenomena 
surrounding computers.  This definition is no longer workable because we are 
studying natural information processes as well as artificial.  We are seeing that 
the computer is the tool and that computation is the principle.  Computing is -- in 
fact, always has been -- the science and application of information processes, 
natural and artificial. 

Evolution of Computing Frameworks 
Although computer science was originally conceived as the study of 
computational processes (6), the practical challenges of building fast and reliable 
computers soon transferred the focus to the computers themselves.  From around 
1940, we described computing by the ideas in its core technologies -- such as 
logic circuits, algorithms, languages, programs, compilers, or operating systems 
(4).  The computer was a tool for solving equations, cracking codes, analyzing 
data, and managing business processes.  Computation was the activity of 
computers. 

Over the next four decades, computing technology advanced and matured 
and the supercomputer wrought significant advances in science and engineering.  
By 1980, our understanding of computation had been shaken up.  Computation 
was no longer just the activity of computers; it was a new method in science.  It 
became the third leg of science along with theory and experiment.  It also became 
a new method in engineering design. 

During the 1990s, our understanding of computation was shaken up again.  
People in many fields discovered information processes in their deepest 
structures -- for example, DNA in biology, quantum waves in physics, brain 
patterns in cognitive science, and information flows in economic systems.  
Computation entered everyday life with new ways to solve problems, new forms 
of art, music, motion pictures, and commerce, new approaches to learning, new 
slang expressions, and even new political jokes (“What did Bill Clinton play on 
his saxophone?  Al Gore rhythms.”). 

Thus the fundamental questions of computing, listed earlier, have become 
important in many fields, which now rely heavily on computation and 



computational methods to advance their work (7-9).  Not only that, but 
discoveries in other fields are yielding new fundamental computing principles. 

The technology-based framework for computing, which served well for 50 
years, came under stress in the 1990s because of its sheer complexity.  In 1989, the 
ACM listed 9 core technologies of computing (10).  In 2001, however, the ACM 
listed 14 core areas and 63 core topics under those areas (11).  For the newcomer, 
learning the inner workings of all technologies and their possible direct 
interactions is a daunting challenge. 

The Great Principles framework discussed below is much simpler.  It has 
seven categories of principles with five to eight principles in each.  Everything 
else flows from those base principles. 

Is Computer Science Science? 
Over the years, skeptics have asked whether “science” belongs in the title of the 
field.  They have said that any field naming itself as a science cannot be.  To 
them, computer science looks not like a science but a field of artifacts and 
concepts about them. 

It is worth verifying that computing is really a field of science and, therefore, 
that a framework inspired by science is useful and meaningful.  To be accepted 
as a science, a field of study must satisfy six criteria: 

1. Systematically organized body of knowledge 
2. An experimental method 
3. Reproducible experimental results 
4. Testable, falsifiable hypotheses 
5. Surprising predictions 
6. Natural objects 

In 2005, we analyzed the first five criteria and concluded that computer science 
meets them all (12).  However, skeptics still felt that computer science is an 
artificial science rather than a natural science.  In 2007, we analyzed the sixth 
criterion and demonstrated that computing is a natural science (13). 

General Considerations for a Framework 
By a principle, we mean a statement that guides or constrains future action. 
Computing principles are of two kinds: (1) recurrences, including laws, 
processes, and methods that describe repeatable cause-effect relationships, and 
(2) guidelines for conduct.  An example of a law is as follows: “The fastest sorting 
algorithms take time of order of n log n to arrange n items in order.”  An example 
of a conduct guideline is as follows: “Network designers should divide protocol 
software into layers.”  The purpose of such guidelines is to reduce apparent 
complexity, increase understanding, and enable good design. 

By a framework of a field, we mean a set of principles statements and stories 
organized into categories (a taxonomy), accompanied by a rationale of how they 
fit together into a coherent body and how they influence technology.  In 



developing a framework for computing, we emphasized the deepest principles 
and called the result the Great Principles framework. 

The benefits of developing and maintaining a Great Principles framework for 
computing are as follows: 

• Stimulate deep thinking.  Returning to the fundamental questions 
advances the field even if we never fully settle them. 

• Expose deep structure.  Doing so can reduce the apparent complexity of 
the field, contributing to greater understanding, better designs, and 
simpler, more reliable systems. 

• Enable designers and users to see connections among technologies based 
on similar principles.  This will facilitate sound designs, cross fertilization 
among technologies, new discoveries, and innovations. 

• Establish a new relationship with people from other fields by offering 
computing principles in language that shows them how to map 
computing principles into their own fields. 

• Provide inspiring stories about the development of the field and its 
principles for young people. 

• Develop new approaches to teaching computing that inspire curiosity 
and excitement. 

A Great Principles framework complements the existing technology frameworks 
for understanding computing.  We will discuss this further below. 

As with any other body of knowledge, a Great Principles framework evolves 
as new principles are discovered and old principles become obsolete.  Examples 
of new principles include searching through very large distributed databases, 
avoiding information overload, and forming new networks rapidly.  Examples of 
obsolete principles include construction of logic gates from discrete transistors, 
LR parsing, and centralized network routing tables.  A principles framework is a 
living depiction of the field, always open to births and retirements.  Its rate of 
change is much slower than for a technology-oriented depiction of the field. 

Outline of a Framework 
An examination of many computing technologies for their foundational 
principles led to a framework of seven categories (14): 

Computation (meaning and limits of computing) 
Communication (reliable data transmission) 
Coordination (networked entities working toward common goals) 
Recollection (storage and retrieval of information) 
Automation (meaning and limits of automation) 
Evaluation (performance prediction and capacity planning) 
Design (building reliable computing systems) 



These categories resulted from a functional analysis of many computing 
technologies and applications: 

1. Computing systems are built from processing elements that transform and 
store information (computation, recollection); 

2. Processing elements exchange information (communication); 
3. Processing elements cooperate toward common goals (coordination); 
4. Humans delegate tasks to systems of processing elements (automation); 
5. Humans predict the speed and capacity of systems (evaluation); and 
6. Humans decompose systems into processing elements and organize their 

construction (design). 
The seven categories are like windows into the one computing knowledge 

space rather than slices of the space into separate pieces (Fig. 1).  Each window 
sees the space in a distinctive way, but the same thing can be seen in more than 
one window.  Internet protocols, for example, are seen variously as means for 
data communication, coordination, and recollection. 
 

 
Figure 1.  Categories of the Great Principles (GP) framework. 

 
Moreover, most computing technologies draw principles from all seven 

categories.  A principles framework exposes many common factors among 
technologies. 



A Summary of Principles 
The list that follows gives key principles in each of the seven categories.  This is 
intended not as a “final” statement of principles, but a starting point for fleshing 
out a framework.  In time, omissions will be overcome, statements clarified, and 
the number of statements reduced.  The intention is that the operations of all the 
technologies linked to each category can be derived from one or more of the 
stated principles. 

Computation 
• Representations hold information. 
• Computation is a sequence of representations. 
• Computations can be open or closed. 
• Computations have characteristic speeds of resolution. 
• Complexity measures the time or space essential to complete 

computations. 
• Finite representations of real processes always contain errors. 

Communication 
• Information can be encoded into messages. 
• Data communication always takes place in a system consisting of a 

message source, an encoder, a channel, and a decoder. 
• Information in a message source places a hard lower bound on channel 

capacity for accurate reception (Shannon Capacity Theorem). 
• Messages corrupted during transmission can be recovered during 

reception (Error Correction). 
• Messages can be compressed. 
• Messages can hide information. 

Coordination 
• A coordination system is a set of agents interacting within a finite or 

infinite game toward a common objective. 
• Action loop is the foundational element of all coordination protocols. 
• Coordination tasks can be delegated to computational processes. 
• The protocols of coordination systems manage dependencies of flow, 

sharing, and fit among activities. 
• It is impossible to select one of several simultaneous or equally attractive 

alternatives within a preset deadline (Choice Uncertainty Principle). 



• All coordination systems depend on solutions to the concurrency control 
problems of arbitration, synchronization, serialization, determinacy, and 
deadlock. 

Recollection 
• All computations take place in storage systems. 
• Storage systems comprise hierarchies with volatile (fast) storage at the top 

and persistent (slower) storage at the bottom. 
• The principle of locality dynamically identifies the most useful data, 

which can be cached at the top of the hierarchy. 
• Thrashing is a severe performance degradation caused when parallel 

computations overload the storage system. 
• Access to stored objects is controlled by dynamic bindings among names, 

handles, addresses, and locations. 
• Hierarchical naming systems allow local authorities to assign names that 

are globally unique in very large name spaces. 
• Handles enable sharing by providing unique-for-all-time object identifiers 

that are independent of all address spaces. 
• Data can be retrieved by name or by content. 

Automation 
• Physical automation maps hard computational tasks to physical systems 

that perform them acceptably well. 
• Artificial intelligence maps human cognitive tasks to physical systems that 

perform them acceptably well. 
• Artificial intelligence maps tasks to systems through models, search, 

deduction, induction, and collective intelligence. 
• Models represent processes by which intelligent beings generate their 

behavior. 
• Search finds the subsets of states of a complex system that must 

participate in the final outcome of a task. 
• Deduction locates the outcome of a task by applying rules of logic to move 

from axioms to provable statements. 
• Induction builds models by generalizing from data about a complex task's 

behavior. 
• Collective intelligence exploits large-scale aggregation and coordination in 

networks to produce new knowledge. 



Evaluation 
• The principal tools of evaluation are modeling, simulation, experiment, 

and statistical analysis of data. 
• Computing systems can be represented as sets of equations balancing 

transition flows among states. 
• Network of servers is a common, efficient representation of computing 

systems. 
• Network-of-server systems obey fundamental laws on their utilizations, 

throughputs, queueing, response times, and bottlenecks. 
• Resource sharing, when feasible, is always more efficient than 

partitioning. 

Design 
• Design principles are conventions for planning and building correct, fast, 

fault-tolerant, and fit computing systems. 
• Error confinement and recovery are much harder in the virtual worlds of 

computing than in the real world of physical objects. 
• The four base principles of computer system design are hierarchical 

aggregation, levels, virtual machines, and objects. 
• Abstraction, information hiding, and decomposition are complementary 

aspects of modularity. 
• Levels organize the functions of a system into hierarchies that allow 

downward invocations and upward replies. 
• Virtual machines organize software as simulations of computing 

machines. 
• Objects organize software into networks of shared entities that activate 

operations in each other by exchanging signals. 
• In a distributed system, it is more efficient to implement a function in the 

communicating applications than in the network itself (end-to-end 
principle). 

Principle-Stories 
The list above is a set of statements.  Simple statements, however, do not capture 
the richness or the surprising implications of a principle.  For this reason many 
fields express their principles with stories.  In physics, for example, the main 
terms -- such as photons, electrons, quarks, quantum wave function, relativity, 
and energy conservation -- are actually the titles of stories.  So it is in astronomy 
for planets, stars, galaxies, quasars, black holes, and Hubble shift; in 
thermodynamics for entropy, first law, second law, and Carnot cycle; in biology 
for phylogeny, ontogeny, DNA, and enzymes; and in electrical engineering for 
vacuum tube amplification, oscillator feedback, AM-FM radio, and transistors.  



The principles of a field are actually a set of interwoven stories about the 
structure and behavior of field elements.  They are the names of chapters in 
books about the field. 

Principle-stories seek to make simple the complex history of a complex area.  
They tell how the principle evolved and grew in acceptance over time.  They 
name the main contributors.  They chronicle feats of heroes and failures of 
knaves.  They lay out obstructions and how they were overcome.  They explain 
how the principle works and how it affects everything else.  The game is to 
define many terms in terms of a few terms and to derive many statements 
logically from a few statements. 

Principle stories for computing are still relatively uncommon.  We have 
many stories tracing inventions and innovations but not very many tracing the 
discovery of a principle and its effects on practice.  Such stories will become 
more common in the future. 

Using a Principles Oriented Body of Knowledge 
A body of knowledge (BOK) is an organized description of the knowledge of a 
field.  There are two basic, useful strategies for representing a field’s BOK: 
enumerate its technologies, and enumerate its principles.  They are different 
interpretations of the same knowledge space.  The different kinds of users -- 
particularly the philosopher, the interested outsider, the technology designer, 
and the educator -- can act in new, useful ways with a principles representation. 

Curriculum developers often work with a BOK so that they can be sure that 
they cover the essential knowledge of their field.  The ACM includes a 
computing BOK in its Curriculum 2001 recommendation (11).  That BOK is a list 
of core technologies of the computing field, the ones every computing 
professional should know.  The main headings of the ACM BOK are core 
technologies, methods, devices, processes, or key concepts. 

A principles framework is orthogonal to a technology-oriented framework.  
The same principle may appear in several technologies, and any technology 
relies on several principles.  The set of active principles (those used in at least one 
technology) evolves much more slowly than the technologies. 

Although the two styles of framework are different, they are strongly 
connected.  To see the connection, imagine a two-dimension matrix.  The rows 
are the topics from a technology-oriented framework, and the columns are the 
categories of principles.  (We sometimes refer to the categories as windows 
because each category represents a distinctive way of viewing technologies.)  The 
interior of the matrix is the knowledge space of the field (Fig. 2). 



 
Figure 2. Computing knowledge space as a 2-D structure of technology topics and 
principles categories. 

 
Under topics, we can list the technologies from the ACM BOK.  Under 

categories, we can list the seven windows of the GP framework.  A box in the 
matrix can be inscribed with the principles from the category (column) expressed 
through the technology (row).  Figure 3 illustrates a matrix and a few of the 
many technology names; security technology shows two principles in the 
coordination category. 



 
Figure 3. A portion of knowledge space covering six technology topics.  Two 
coordination principles for security technology are shown (key distribution protocols 
and zero knowledge proofs). 

 
Thus, the technology-oriented BOK enumerates the knowledge by rows of 

the matrix, whereas the principles-oriented BOK enumerates by columns.  The 
important point is that they see the same knowledge -- from different 
perspectives and interpretations. 

To illustrate this further, imagine someone who wants to enumerate all the 
principles involved with a technology.  The answer is obtained simply by 
analyzing the technology for its principles in each of the seven categories.  In Fig. 
4, the security topic draws principles from all seven categories. 
 



 
Figure 4. Security technology draws principles from all seven categories. 

 
The Great Principles framework opens new kinds of questions.  For example, 

someone can enumerate all the technologies that employ a particular principle, 
or category of principles, as indicated in Figure 5, which shows an enumeration 
of security coordination principles.  We see that the coordination category 
contributes principles to all the technologies listed. 



 
Figure 5. Coordination principles are key parts of the six technologies. 

 
 

Among the many likely users for a Great Principles framework, four groups 
stand out: 

Philosophers of Science.  These people inquire into the deep structures and 
truths of the field.  They seek to understand what is true before science and 
engineering “facts” are established.  They raise the bar for reflection and 
interpretation in the field. 
Interested outside observers.  These are people in other fields, or newcomers 
to the computing field, who seek a conceptual road map for the field.  With a 
principles framework, they can explore the breadth and scope of the field, 
learn about the powers and limitations of all computing technologies, and 
find out how various aspects of computation work. 
Technology designers.  These are people who design or refine technologies, 
including innovators who seek new technologies.  With a principles 
framework, they can 

1. See the guiding principles of a technology; 
2. See the limitations of a technology (imposed by principles); 
3. See ways to simplify and reduce the perceived complexity of a 

technology; and 
4. Find connections with other technologies that share the same 

principles. 



Educators.  These are people who teach computing and design curricula.  
With a principles framework, they can 

1. Check the completeness of a BOK; 
2. Given a topic for a course, determine the principles that must be 

brought out in the course; 
3. Given a principle, find examples of technologies that exemplify it; 
4. Design a course or series of lectures around a principle and the 

technologies that exploit it; and 
5. Design a science map of the field. 

Science and Art in Computing 
To help define the boundaries of a field, we distinguish science from art.  Art 
refers to the useful practices of a field (not to drawings or sculptures).  Table 1 
lists some terms that are often associated with science and with art.  
Programming, design, software and hardware engineering, building and 
validating models, and building user interfaces are all examples of “computing 
arts”.  If aesthetics is added, the computing arts extend to graphics, layout, 
drawings, photography, animation, music, games, and entertainment.  All this 
computing art complements and enriches the science.  Don Knuth once said that 
everything in the field begins at art and becomes science only when we 
understand it really well (15) . 

 
 

Science versus Art 
Science Art 
principles practice 

fundamental recurrences skilled performance 

theory engineering 

explanation action 

discovery invention 

analysis synthesis 

dissection construction 

 
 
 
To be complete, therefore, the framework needs to provide an account of 

computing practice as well as computing principles.  Our competence is judged 
not by our ability to explain principles but by the quality of our performance.  
There are four main categories of computing practice: 



• Programming -- Using programming languages to build software systems 
that meet specifications created in cooperation with the users of those 
systems.  Computing professionals must be multilingual and facile with the 
numerous programming languages (each attuned to a set of problem-solving 
strategies). 

• Engineering Systems -- Designing and constructing systems of software and 
hardware components running on servers connected by networks.  These 
practices include an architectural design component concerned with 
organizing a system to produce valuable and tangible benefits for the users; 
an engineering component concerned with the modules, abstractions, 
revisions, design decisions, and risks in the system; and an operations 
component concerned with configuration, management, and maintenance of 
the system.  High levels of skill are needed for large programmed systems 
encompassing thousands of modules and millions of lines of code. 

• Modeling and Validation -- Building models of natural and artificial systems 
to make predictions about their behavior under various conditions; and 
designing experiments to validate algorithms and systems. 

• Innovating -- Exercising leadership to design and bring about lasting changes 
to the ways groups and communities operate.  Innovators watch for and 
analyze opportunities, listen to customers, formulate offers customers see as 
valuable, manage commitments to deliver the promised results, and inspire 
adoption.  Innovators have strong historical sensibilities. 

Summary 
The Great Principles framework articulates the principles of the science and 
engineering of computing.  We can view the field through seven themes -- 
computation, communication, coordination, recollection, automation, evaluation, 
and design -- that are interwoven into a single tapestry called computing.  The 
principles listed here are a “proof of concept” that a compelling principles 
framework can be built.  However, it will take some years of community 
discussion before everyone accepts a “final” framework. 

The framework offers an integrated view of the field.  Mathematics, 
engineering, and science appear in every category and often within the same 
principle.  It is no longer necessary to ask is CS mathematics, engineering, or 
science.  Computing stands on its own. 

A Great Principles framework complements, but does not replace, 
technology frameworks for the field.  It deals with the reality that computing is a 
natural science as well as a field of engineering.  The framework gives a common 
language for computing that facilitates collaboration between computing people 
and other fields. 

We hope that this framework invites the reader to think “out-of-the-box” and 
to understand computing in a broader context that serves many fields. 
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