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Abstract:  This article examines the development of the computing field.  
Our account considers the computing field in four stages: infancy (1935-
1950), childhood (1950-1970), adolescence (1970-1990), and young 
adulthood (1990-2010).   The computing profession is a product of the 
fourth stage.   The relationships between computing and other fields are 
vitally important. 
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The computing field has grown enormously since its inception in the 1930s.  It 
began with the marriage of mathematical logic and digital electronics.  It has 
matured into a complex of fields gathered under the large umbrella called 
computing (in the United States), informatics, and sometimes information 
technology (IT).  As the field has grown, various individuals and groups have 
offered snapshots, which give their perceptions of its structure at their times.  
Considered in a sequence, these snapshots become a fascinating, animated story 
of how the field organized to accommodate its growth and its challenges.   Some 
of the contributors to the sequence are ACM (1968), National Academy of Science 
(1968), Hamming (1969), Wegner (1970), Forsythe (1970), Amarel (1971), Arden 
(1976), Denning (1989), Hartmanis (1992), Tucker (1996), and ACM (2001, 2005).  
(See Refs. 1-11.) 

This article examines the development of the computing field.  Our account 
considers the computing field in four stages of development: 
 

Infancy 1935-1950 
Childhood 1950-1970 
Adolescence 1970-1990 
Young Adulthood 1990-2010 
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We will conclude with a discussion of the importance of the relationships 
between computing and other fields. 

Although many consider the computing field to be mature, we have avoided 
that term because we do not want to give the impression that the next stages are 
decline and death.  James Burke (12) points out how all major scientific 
revolutions took a century or more before their full impacts were felt.  The 
computing revolution still has another half century before its maturity. 

Our focus is on the structure of the field.  Details about subareas will be found 
in separate articles. 

The Infancy of Computing (1935-1950) 
Machine-aided calculation of mathematical functions can be traced back many 
centuries.  Algorithms devised by Pascal, Leibniz, and Gauss were used 
extensively to create tables of trigonometric, logarithmic, and exponential 
functions used by astronomers, navigators, and engineers.  In the 1830s, Charles 
Babbage offered an escape from the tedium and errors of hand-calculated tables.  
He built a Difference Engine that calculated these tables automatically using 
difference equations.  In a few hours, the Engine could produce without error 
entire tables that used to take years to develop.  Spurred by the Engine’s success, 
he undertook the design of an Analytic Engine that would calculate general 
mathematical functions, not just ones that satisfied difference equations.  His 
design, never completed, lay dormant for nearly seventy years. 

In the 1920s, Vannevar Bush of the Massachusetts Institute of Technology 
(MIT) built a large mechanical Differential Analyzer that solved partial 
differential equations of the kind frequently encountered in engineering.  Unlike 
Babbage’s discrete Difference Engine, Bush’s Analyzer was analog. 

In 1939, John Atanasoff built the first digital electronic computer at the Iowa 
State University.  In the late 1930s, Konrad Zuse in Germany built calculating 
machines, which culminated with an all digital computer (“Z4”) in 1941; but the 
German government did not take it seriously.  Also in the 1930s, Alan Turing of 
the United Kingdom became interested in what such calculating machines could 
actually do.  In his famous 1936 paper, he introduced an abstract computing 
device (now called a Turing machine), showed how to build a universal machine 
that could simulate any other, and showed that a centuries-old decision problem 
about the halting of computations could not be solved by any computing 
machine.  Turing dashed the hopes of mathematicians that there might be some 
“by-inspection” method of determining whether a computation halts. He did this 
by demonstrating that the very process of “inspection” is inherently 
computational.  Computation, said Turing, is fundamentally unavoidable (13). 

Soon thereafter, Turing joined the team at Bletchley Park to design a computer 
to crack the German Enigma code.  Because the British government classified 
that project for 25 years after the war, we did not know until around 1970 that 
Turing had helped build one of the first electronic computers. 

At the start of World War II, the US and UK governments took a keen interest 
in electronic computing machines.  The first of these machines were used to 
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calculate ballistic firing tables for the many new munitions that were being 
designed for the war.  These governments commissioned electronic computer 
projects at many universities including Pennsylvania, Princeton Institute for 
Advanced Studies, MIT, Harvard, Cambridge, and Manchester.  Those projects 
all had tremendous impact on the design of computing machines.  Those 
universities also established courses of study in the new field. 

John Mauchly and Presper Eckert, who were the builders of the Pennsylvania 
machine ENIAC, founded the Univac company to build computers for business.  
Univac delivered the first commercial electronic computer to the US Census 
Bureau for analysis of the 1950 census data.  IBM soon expanded from its 
business machines market into the electronic computing market as well.  These 
first machines were delivered with great fanfare.  The newspapers called them 
“electronic brains”.  The nascent computing industry developed rapidly in the 
1950s.  Many universities offered courses in computing, mostly in electrical 
engineering or mathematics departments, and a few in business schools.  These 
courses focused on the design of digital circuits, programming machines, 
processing data, and the theoretical limits of computation. 

Many of the people involved in the first projects came together in 1947 to 
found the Association for Computing Machinery (ACM), which was the first 
professional society in the new field. 

The digital electronic computer married three historical lines: mathematical 
logic, engineering, and science.  The original teams included experts in all three 
fields.  Mathematical logic brought notations for algorithms, universal machines, 
and mapping from logic formulas to physical switching circuits.  Engineering 
brought passionate know-how for mechanical calculation and much expertise in 
electronics and electro-mechanical systems.  Science brought a wealth of 
applications and methods for predicting the behavior of physical systems from 
their computational models.  The imprint of these lines is still felt today.  We will 
discuss them again later. 

Computing’s Childhood (1950-1970) 
By 1950, the first computer building projects had succeeded and had stimulated a 
widening interest in the new technology.  Over the next 20 years, the computing 
industry invented many technologies in programming languages, computer 
architecture, storage systems, time sharing, virtual memory, remote access, 
database, graphics, and robotics. 

The academic world plunged in as well by creating courses in computers and 
computation, first as limited offerings, then as specializations within existing 
degree programs, and finally as separate departments with their own degree 
programs.  The first computing degree was offered in the Moore School at 
University of Pennsylvania in the late 1950s.  The first two computer science 
academic departments were founded at Purdue and Stanford in 1962.  After that, 
academic departments in computer science (CS), computer engineering (CE), and 
information science (IS) sprung up like weeds in schools of science, engineering, 
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and business respectively.  The number of CS and CE departments grew steadily, 
passing 160 in the early 1980s, 180 in the early 1990s, and 200 in the early 2000s. 

In the mid 1960s, the ACM undertook the task to define curriculum 
recommendations for schools that wished to offer degrees in computer science.  
They wanted to establish a solid intellectual core for the new field and some 
minimum standards for all computer science degrees.  Their report, titled ACM 
Curriculum 1968, said that the field consisted of three main parts: 

Information structures and processes, 
Information processing systems, and 
Methodologies. 

The methodologies included design approaches for software and applications.  
The core material was mostly the mathematical underpinnings for the parts 
listed above: 

Algorithms 
Programming 
Data Structures 
Discrete Math 
Logic Circuits 
Sequential Machines 
Parsing 
Numerical Methods 

Many computer science departments adopted these recommendations (1). 
During this time, the different orientations of the key players -- science, 

engineering, and business -- led to some interesting terminological confusion that 
was not resolved until the late 1980s.  They argued over the definition of 
computer science and whether computer science was the appropriate title.  Is the 
emphasis on the construction and analysis of algorithms (CS), the construction of 
fast and reliable machines (CE), or on information processes (IS)?  Some leaders 
tried to find definitions that would encompass all three perspectives.  The most 
famous was the definition by Alan Perlis with help from Gordon Newell and 
Herb Simon: “Computer science is the study of phenomena surrounding 
computers.”  (5) 

The title “computer science” seems to have originated with the writings of 
John von Neumann, who recognized extensive ways computing could advance 
science, for example computational methods for hydrodynamics and Monte 
Carlo simulations of physical phenomena.  He advocated for a science-based 
approach to the architecture of computers.  Not surprisingly, the computer 
science title did not sit well with computer engineers or information systems 
people; and it also did not sit well with physical scientists, who felt that science is 
about natural phenomena, not man-made phenomena. 

The Europeans avoided much of this wrangling by naming the field 
“Informatics”; this title can accommodate all three branches.  They thought the 
field was about information processes; computers are tools for implementing and 
studying information processes.  However, “informatics” never took hold in the 
US.  The wrangling over title and scope lasted well into the 1980s. 
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The Adolescence of Computing (1970-1990) 
This period was a time of great technological advances in computing.  The 
computer chip was invented and became the mainstay of ever-advancing 
computing power.  Intel’s Gordon Moore observed that the number of transistors 
on a chip doubled every two years; this trend became known as Moore’s Law.  
Computing power per chip increased by about 1 million over that time.  The 
relentlessly advancing chip gave us the personal computer revolution and made 
computers ubiquitous. 

The Internet was another major advance during that time.  Its first nodes came 
online at the beginning of 1970.  It grew very slowly at first, reaching about 200 
nodes by 1980.  Then it started to take off, reaching about 200,000 nodes by 1990.  
The Internet and the personal computer advanced together, accelerating each 
other’s progress. 

The major computer makers of the 1950s and 1960s mostly disappeared, 
except for IBM, and they were replaced by new generations that excelled with 
networked personal computers --- Apple, Microsoft, and Sun are conspicuous 
examples.  All the major technologies advanced -- new programming languages, 
machine architectures, networks, operating systems, databases, robots, and 
graphics.  Online services appeared, such as bulletin boards, software 
distribution servers, reprint distribution servers, X windows, authentication 
services, and more. 

The disciplines CS, CE, and IS also flourished during this time.  Many 
students were attracted to these fields so that they could make their careers out 
of helping advance the technologies. 

In the mid-1970s the National Science Foundation (NSF) commissioned 
COSERS, which was the Computer Science and Engineering Research Study 
(7,14).  Their objective was to take stock of all the research in the computer 
science and engineering (CS&E) fields and make its key ideas accessible to a 
wide audience.  They defined CS&E as the field that studied algorithms and 
representations, always looking toward efficient implementations, and driven by 
the question, “What can be automated?”  They reported ten subject areas for 
CS&E research: 

Artificial intelligence 
Data management 
Hardware systems 
Numerical computation 
Operating systems 
Programming languages 
Software methodology 
Theory of computation 
Special topics 
Applications 

By the mid-1980s, the advancing computing technologies fostered a 
transformation in science.  In 1982, Ken Wilson won the Nobel Prize in Physics 
by discovering a computational method that explained the way materials 
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changed their magnetic states.  He became a strong advocate for using 
computation to advance science and coined the phrase “computational science”.  
By the late 1980s, scientists from many fields had joined the refrain: Computation 
had become the third paradigm of science, joining the traditional theory and 
experiment.  Many leading scientists articulated “grand challenge problems” in 
science, which they believed were very hard but would yield to advanced 
supercomputing power.  These problems included the design of materials from 
first principles, artificial intelligence, full simulation of aircraft in flight, and 
design of new drugs.  The US government created an interagency effort called 
High Performance Computing and Communication (HPCC) initiative to provide 
funds to build supercomputers and apply them to the grand challenge problems.  
Many computer scientists collaborated in these projects.  The US Congress 
passed an HPCC act in 1991. 

As the opportunities for computer science to engage with grand challenge 
problems enlarged, leaders of the computing field became painfully aware that 
their field had an external image “CS=programming” (computer science equals 
programming).  They found that computer scientists and engineers were 
welcomed to the grand challenge projects mainly because of their expertise at 
programming, but not for their prowess in the scientific research. 

The way this image developed is interesting.  Ever since the early computer 
projects, computer scientists and engineers realized that a major part of their 
lives would be finding and correcting mistakes in their programs.  The bigger the 
software system, the less reliable it was.  In 1968, a group of software leaders 
came together at a NATO conference to consider how to address the growing 
“software crisis”.  They concluded that software could be made reliable only if 
software systems were put together with the same rigor as other engineering 
systems.  They called for the creation of a new field, which they called software 
engineering.  Software engineering has made some enormous advances in tools 
and methods, but it has always lagged behind the size and complexity of systems 
that we reach for.  Thus, the software crisis has been an enduring crisis. 

Curriculum 68 recognized that programming is a major activity of computer 
scientists and put it at the center of their curriculum recommendations.  Just a 
few years later, Donald Knuth and Edsger Dijkstra both proclaimed they were 
programmers and made algorithms design and analysis into a high art.  They 
made it intellectually respectable to be programmers. 

Unfortunately, the trend in the outside world was heading in the reverse 
direction.  Programming was seen as tedious work.  Mildly derogatory words 
like “code jock” and “hacker” became synonyms for “programmer”.  The US 
Bureau of Labor Statistics defined programmers narrowly, essentially as coders.  
By the late 1980s, insiders saw programming as a noble calling and outsiders saw 
it as low-level drudgework.  This conflict threatened future jobs of computer 
science and engineering graduates as well as scientific collaborations. 

In 1987, ACM and Institute for Electrical and Electronics Engineers (IEEE) 
joined together to create a task force to defeat the narrow notion that 
“CS=programming”.  In early 1989, they published an influential report, 
“Computing as a discipline” that made three major contributions (8): 
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1. It recognized that computer science and computer engineering had a 
common core of knowledge and used the term “computing” to encompass 
both.  Thus “computing discipline” was shorthand for “the discipline of 
computer science and engineering.”  The term computing has since 
become widely accepted and is on par with the European Informatics. 

2. It recognized that the three paradigms of mathematics, science, and 
engineering played major roles in the field.  Mathematics brings the rigor 
of clear notation and the power of logic and deduction.  Science brings 
experimental methods, modeling, validation of hypotheses, and induction.  
Design brings order and reliability to the processes of constructing large 
systems.  The unique flavor of computing comes from the constant 
interplay among these ways of thinking. 

3. It recognized nine core areas of computing.  The nine topic areas all had 
their own identities, which included technical expertise, literature, and 
professional organizations. 

Table 1 depicts the 9x3 matrix model of the computing field offered by the 
report.  Theory, abstraction, and design were used in the report for the 
mathematics, science, and engineering paradigms respectively.  The report gave 
details about what ideas and technologies fit into each of the 27 boxes in the 
matrix.  It became the basis for a major ACM/IEEE curriculum revision in 1991. 

Although this effort had a strong internal influence on the curriculum, it had 
little external influence on the perception that “CS=programming”.  In fact, that 
perception was alive and well in 2004 and was causing considerable difficulty in 
recruiting majors (15). 

 
Table 1: Matrix Model of Computing Discipline, 1989. 

Topic Area Theory Abstraction Design 

1   Algorithms & Data Structures    

2   Programming Languages    

3   Architecture    

4   Operating Systems and Networks    

5   Software Engineering    

6   Databases & Information Retrieval    

7   Artificial Intelligence & Robotics    

8   Graphics    

9   Human Computer Interaction    
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Computing’s Young Adulthood (1990-2010) 
The World Wide Web was launched in 1989.  It became visible widely in the 
computing research community by 1991 and among all Internet users by 1994 
with the first portable and free browser (Mosaic).  It completely transformed the 
Internet and the way we thought about computing.  It expanded our perceptions 
of the size of an information system.  It enabled electronic commerce and Web-
based businesses and services.  It brought the problem of search into 
prominence.  It created controversies over free distribution and copyrights.  It 
enabled computing on massive scales (grids).  It enabled massive multiplayer 
games.  It stimulated new courses of study at universities. 

In 1998, the ACM launched an “IT profession” initiative, in which it 
recognized that the field had evolved from a discipline to a profession (16).  The 
initiative responded to the growing interest in the industry for professional 
standards (especially in safety critical systems), organized professional bodies 
representing various specialties, and the university movement to establish 
degree programs in information technology.  The ACM concluded that the 
computing met the following four criteria for a profession: 

1. A durable domain of human concerns. 
2. A codified body of principles (conceptual knowledge). 
3. A codified body of practices (embodied knowledge including competence). 
4. Standards for competence, ethics, and practice. 

The ACM concluded that these criteria were met for the computing field and that 
it was time for the ACM to configure itself to support the field as a profession. 

The ACM made an inventory of the organized groups that participated in the 
field (Table 2) (17).  IT professionals are a much larger and more diverse group 
than computer scientists and engineers.  They have organized affinity groups in 
at least 42 specialties of three categories.  The first category comprises the major 
technical areas of IT and spans the intellectual core of the field.  The second 
category comprises other well-established fields that are intensive users of IT; 
they draw heavily on IT and often make novel contributions to computing.  The 
third category comprises areas of skill and practice necessary to keep support the 
IT infrastructures that everyone uses. 

Several important conclusions can be drawn as follows: (1) The IT profession 
has broad scope, which includes subfields from science, engineering, and 
business; (2) the players share a common base of science and technology but 
have distinctive professional practices; (3) many players are willing to identify 
with the IT field but not with the computer science discipline; and (4) strong 
leadership from the professional societies is needed to keep these players united 
under the common IT identity.  The ability of the IT field to resolve broad, 
systemic problems such as software quality, basic research, and professional 
lifelong education requires extensive cooperation among the players.  Several 
universities established IT departments and schools to address the needs of the 
profession directly (18,19). 
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Table 2: The Profession of Information Technology 

IT-Core 
Disciplines 

IT-Intensive 
Disciplines 

IT-Supportive 
Occupations 

Artificial intelligence Aerospace engineering Computer technician 
Computer science Bioinformatics Help desk technician 
Computer engineering Cognitive science Network engineer 
Computational science Cryptography Professional IT trainer 
Database engineering Digital library science Security specialist 
Graphics E-commerce System administrator 
Human computer interaction Economics Web services designer 
Network engineering Genetic engineering Web identity designer 
Operating systems Information science Database administrator 
Performance engineering Information systems  
Robotics Public Policy and Privacy  
Scientific computing Quantum Computing  
Software architecture Instructional design  
Software engineering Knowledge engineering  
System security Management information systems  
 Materials Science  
 Multimedia design  
 Telecommunications  
 

The talk about “profession” led to a new round of terminological confusion.  
The IT profession is a social structure that includes many disciplines; but it is not 
a discipline in its own right.  IT is not a field of research; the core disciplines (left 
column) and partner disciplines (middle column) attend to the research.  To what 
does the term “computing field” refer in this context? 

This was one question on the minds of ACM and IEEE when in 1999 they 
undertook a major review of curriculum recommendations.  In their report, 
Computing Curriculum 2001 (CC2001), they focused on the core specialties (Left 
column of Table 2) (11).  They identified the “computing discipline” 
(“informatics” outside the US) with these six academic specialties: 

EE -- Electrical Engineering 
CE -- Computer Engineering 
CS -- Computer Science 
SWE --  Software Engineering 
IS -- Information Systems 
IT -- Information Technology 

Here the term “IT” can be confusing.  It refers to a set of degree programs that 
focus on organizational applications of computing technology; it does not refer to 
the entire profession.  The ACM/IEEE used the map of Fig. 1 to illustrate how 
the field had changed and to suggest the choices available to students interested 
in hardware, software, or organizational issues. 

They also constructed a “body of knowledge” representing the common core 
of the six disciplines in the family.  The body of knowledge listed 14 core areas of 
the computing field (Table 3), up from the 9 areas listed by ACM just a dozen 
years before.  Under the 14 major headings, they listed 131 subareas, of which 63 
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were designated as core.  This reorganization was a major expansion over 
previous summaries of the field.  Theory, Abstraction, and Design were still 
present, but less prominent (11). 

 
Figure 1.  Student’s view of academic offerings in computing (ACM 2005). 

 
 
Thus we recognize in the maps of the field from around 2001 a two-

dimensional structure: One dimension maps a social structure of professional 
subfields, the other maps a technical structure represented by the body of 
knowledge. 

All this left the term “IT” referring to both the profession and to a degree 
program, and the term “computing field” with no precise definition.  Perhaps 
that is just as well: Fuzzy terms are more easily reinterpreted as the field 
matures. 

The CC2001 report was still fresh when another challenge appeared.  The 
computing field faced another paradigm shift, just as it had done in the mid-
1980s with computational science.  Now many fields of science claimed 
information processes in their deepest structures.  Because some information 
processes occur in nature, computing was recognized as a natural science.  That 
claim killed the Perlis notion that computing is about phenomena that surround 
computers.  It forced a resurrection of the older notion that computing is the 
work of information processes.  The computer is a tool, not an object of study.  In 
reality, it had always been this way: Computing always had natural and artificial 
flavors (20, 21). 
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Table 3: Model of Computing Discipline, 2001. 

Topic Area T A D 
1   Discrete Structures    
2   Programming Fundamentals    
3   Algorithms and Complexity    
4   Architecture and Organization    
5   Operating Systems    
6   Net-Centric Computing    
7   Programming Languages    
8   Human Computer Interaction    
9   Graphics and Visual Computing    
10  Intelligent Systems    
11  Information Management    
12  Social and Professional Issues    
13  Software Engineering    
14 Computational science    

 
 
Even the two-dimension structures of the curriculum 2001 were not flexible 

enough to deal with this shift.  A movement to understand computing in terms 
of great scientific principles was launched and gained momentum (22).  The 
great principles framework complements but does not replace the other ways of 
looking at the field.  It organizes the principles of computing into the seven 
categories: 

Computation 
Communication 
Coordination 
Recollection 
Automation 
Evaluation 
Design 

See the article in this encyclopedia on Great Principles of Computing for details 
on this framework. 

It is an irony that computer science, the discipline that gave birth to the IT 
profession and computing field, is not the driving force.  The field is being driven 
by the large numbers of user pragmatists, which include many powerful 
business, civic, government, and industry leaders.  Computer scientists no longer 
“control” the field.  Their main role is to advance the scientific, engineering, and 
mathematical knowledge of computing. 
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Relations with Other Fields 
A hallmark of the computing field has been its close relations with numerous 
other fields.  The reason is not hard to understand: Information processes are 
part of most fields.  All the taxonomies of the field from the 1960s to the present 
day contain some sort of entry for “applications”, which expressly acknowledges 
these many links. 

Computer science has always had close bonds with mathematics.  
Mathematical logic, the theorems of Turing and Gödel, Boolean algebra for 
circuit design, and algorithms for solving equations and other classes of 
problems in mathematics played strong roles in the early development of the 
field.  Conversely, computer science has strongly influenced mathematics; for 
example, proofs of existence are often formulated as algorithms that construct or 
select a mathematical object.  In some cases, computers have been essential to 
mathematics; for example, the solution of the four-color theorem relied on a 
program that searched a large finite number of cases for counterexamples.  
Within computer science the powerful and far-reaching theory of complexity is a 
mathematical tour-de-force, and “Is P=NP?” is one of the hard questions of 
mathematics.  For these reasons, some observers like to say that computing is a 
mathematical science. 

The bond between engineering and computer science has been much stronger 
than between many natural science disciplines and their engineering 
counterparts -- for example, chemical engineering and chemistry, aircraft design 
and fluid dynamics, pharmacy and biology, and materials engineering and 
physics.  This bond exists because computer science has a strong heritage in 
electrical engineering and because many algorithmic methods were designed 
originally to solve engineering problems.  Examples include electronic circuits, 
telecommunications, engineering graphics, engineering design, systems 
engineering, fabrication, and manufacturing.  Conversely, computers have 
become indispensable in many engineering disciplines -- for example, circuit 
simulators, finite-element simulators, flow-field simulators, graphics, computer-
assisted design (CAD) and computer-assisted manufacturing (CAM) systems, 
computer-controlled tools, and flexible manufacturing systems.  For these 
reasons, some observers like to say that computing is an engineering field. 

There has always been a bond between the physical sciences and computer 
science.  Computers were always envisioned as tools for scientific and 
engineering calculations.  In the late 1980s, leaders of physics, chemistry, biology, 
geology, seismology, astronomy, oceanography, and meteorology brought to 
prominence certain very hard, “grand challenge” problems that demand massive 
high-speed computations, which are performed on new generations of massively 
parallel computers with massively parallel algorithms.  These problems include 
crystalline structure, quantum electrodynamics, calculation of chemical 
properties of materials from the Schrödinger equation, simulation of aircraft in 
flight, exploration of space, global climate modeling, oil exploration, models of 
the universe (cosmology), long range weather forecasting, earthquake prediction, 
turbulent fluid flow, and human genome sequencing.  Those leaders proclaimed 
that computation had become a third paradigm of science, joining theory and 
experimentation.  After 2000, this bond deepened as those fields recognized 
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information processes in their deep structures and entered into many 
collaborative relationships with computing people (20).  For these reasons, some 
observers like to say computing is a science. 

Who’s right?  They all are.  The computing field is rich and deep, with a strong 
heritage in mathematics, engineering, and sciences.  In addition to the influences 
of these heritages, interactions with other fields are woven into the discipline 
itself.  Here a few examples: 

• The computer science problem “Is P=NP?” has been listed as one of the 
most difficult unsolved problems in modern mathematics.  The computer 
science collaboration in discrete mathematics has placed modern discrete 
mathematics on a par with the older continuous mathematics. 

• Computer science has contributed advanced methods in computing over 
adaptive grids that have enabled advances in the design of buildings, 
aircraft, automobiles, and mechanical parts. 

• Computer science has worked closely with computer engineering on 
architectures for parallel computation, neural computation, functional 
computation, and dataflow computation. 

• Library science is concerned with archiving texts and organizing storage 
and retrieval systems to give efficient access to texts.  Digital library 
systems have changed libraries from book repositories to electronic data 
centers, which are accessible throughout the world via the Internet.  
Libraries are concerned with advanced search technologies to locate 
information in the Internet.  They have a special concern with data 
migration from older storage media onto newer ones. 

• Medicine uses computer models and algorithms in ingenious ways to 
diagnose and treat diseases.  Modern imaging methods such as magnetic 
resonance scans, coronary scans, and tomography have drawn heavily on 
computer science.  Medical researchers use computer models to assist them 
in tracking mutations of viruses and in narrowing the search for new 
molecules that may be effective drugs.  The Human Genome Project used 
large distributed databases and new kinds of string-matching algorithms 
to aggregate the tens of thousands of DNA-sequencing experiments. 

• Biology is deeply concerned with the meaning of DNA and the mechanics 
of DNA transcription.  In collaboration with computer scientists, biologists 
have developed new algorithms for classifying and searching genome 
databases (which are enormous).  They have been studying DNA 
transcription as a form of computation.  They have demonstrated how 
problem statements can be encoded into DNA molecules and solutions 
generated in their chemical interactions. 

• Physicists regard quantum functions as information waves whose 
interactions generate physical particles and forces.  These ideas have led to 
quantum computation, a new form of computation in which information is 
represented with quantum waves, and to quantum cryptography. 
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• Materials chemists regard molecules as manifestations of forces described 
by the Schrödinger equation.  They can design new materials by 
computing and testing molecular structures. 

• Management science uses computer models to plan and forecast economic 
conditions for business.  They store business records in databases from 
which they manage complex customer relations and enact complex 
commitments. 

• Economics views markets as information flow and exchange media.  They 
use computer models to forecast economic conditions and to evaluate the 
possible effects of macroeconomic policies. 

• Forensics uses computer models and large databases to identify evidence 
and make inferences about the criminal intents of users. 

• Psychology, xognitive, and behavioral sciences are concerned with 
understanding human thought and emotions.  They use computer models 
to gain insight into the operation of human brains and nervous systems 
and to design effective interventions for human problems. 

• Linguistics is concerned with using computers to recognize speech, 
translate between languages, and to understand the role of language in 
human affairs. 

• Social scientists use graph and clustering algorithms for social network 
mapping, which aids in understanding trust, influence, power, and 
information flow in social systems. 

• Philosophy studies the way people acquire knowledge, create social 
realities, and act morally and ethically.  Philosophers have contributed 
much to the debates on whether machines can think or whether formal 
models are sufficient for dependable software systems.  The subdiscipline 
of language action has contributed much to our understanding of how 
people carry out work in organizations and has helped give birth to the 
workflow industry.  The technologies of “virtual realities” have rekindled 
debates on the nature of reality and the worlds in which people live. 

• Humanities uses computers extensively to correlate and search through 
historical artifacts that can be represented digitally.  One of the more 
colorful examples is the use of computers to determine authorship of 
historical texts, such as Shakespeare’s plays. 

This list is hardly exhaustive.  The number of contacts between computing 
and other disciplines grows each year.  The people who bridge between 
computer science and other fields are doing some of the most innovative work.  
These interactions are likely to be the hallmark of computing in the future (23-
25). 

Paul Rosenbloom has mapped the structure of the relationships between 
computing -- meaning computer science and engineering -- and other fields (26).  
It is very rich.  The non-CS&E fields are of three kinds: 
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• Physical sciences (P), which focus on nonliving matter, 
• Life sciences (L), which focus on living matter, and 
• Social sciences (S), which focus on humans and their societies. 

The relations between computing and these other fields are of three kinds: 
• Implementation (/), in which technology from one field is used to 

implement a function in another field. 
• Interaction (•), in which two fields collaborate as peers. 

• Embedding [ ], in which a fragment of one field is integrated into 
another. 

He constructed a chart (Table 4) that provides examples of fruitful relationships 
in all the categories above. 

 
 

Table 4: Interactions between computing and other fields 

 
 

 
C+P C+L C+S C+C 

Implementation (/): Technology from the physical sciences (P), life science (L), or social sciences 
(S) is used to implement computation (C) or computation is used to implement (possibly a model 
or function of) an aspect of one of the domains. 

C/* C/P: Silicon and 
quantum computing 

C/L: Biological and 
neural computing C/S: Wizard of Oz 

*/C 
P/C: Modeling and 
simulation, 
data/information 
bases 

L/C: Artificial life, 
bioinformatics, 
systems biology 

S/C: Artificial 
intelligence 

C/C: Languages, 
compilers, 
operating 
systems, 
emulation 

Interaction (•): A symmetric relationship in which two domains interact as peers. 

C•* 
*•C 

C•P and P•C: 
Sensors, effectors, 
robots, peripherals 

C•L and L•C: 
Biosensors 

C•S and S•C: 
Human-computer 
interaction, 
authorization 

C•C: Networking, 
security, parallel 
computing, grids 

Embedding ([ ]): Some fragment of one domain is embedded in another. 

C[*] C[P]: Analog 
computing 

C[L]: Autonomic 
systems C[S]: Immersion 

*[C] P[C]:  Embedded 
computing L[C]: Cyborgs S[C]: Cognitive 

prostheses 

C[C]:  Embedded 
monitoring and 
testing 
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Conclusion 
We have traced the evolution of the structure of the computing field from its 
inception to the early twenty-first century.  In the beginning (1930s), it was an 
amalgam of mathematics, engineering, and science.  By the 1960s, it had an 
emerging identity as “computer science and engineering” and a simple internal 
structure of core technologies.  By the 1980s, it had responded to the explosive 
growth of computing by enlarging the basic structure and had begun to deal 
with the challenge of computational science.  By the 1990s, it had to contend with 
the Internet and the Web, which brought ordinary users and businesses into 
computing, and fostered growth of three other computing-related fields -- 
software engineering, information systems, and information technology.  By the 
2000s, recognizing itself as a profession, it focused on managing the core identify 
and the interactions between the computing-related disciplines and all the other 
users of computing.  It began to meet the new challenge of its acceptance as a 
natural science by developing a great principles framework of its scientific 
fundamentals. 

Our review of the history of computer science reveals an interesting 
progression of definitions for computer science: 

Study of information processing (1940s) 
Study of phenomena surrounding computers (1960s) 
Study of what can be automated (1970s) 
Study of computation (1980s) 
Study of information processes, both natural and artificial (2000s) 

Over time, the definition of computer science has been a moving target.  It has 
cycled back to a definition that resembles our roots because of recent affirmations 
from the physical sciences that they study information processes found in nature. 

Paradoxically, just as it was entering its adulthood in the early 2000s, the 
computing field experienced a sudden decline in student enrollments -- 50% 
drop from 2002 to 2007 -- at a time when industry demand for graduates was 
growing, and prospects for novel collaborations were higher than ever.  The 
decline seemed related to an external identity that most workers in the field were 
programmers, system administrators, and network configuration engineers.  The 
new configurations and relationships outlined here set the stage for a new period 
of innovation and growth of computing. 
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