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Computing is integral to science—not just as a tool for analyzing data but also as an agent of thought 
and discovery.

It has not always been this way. Computing is a relatively young discipline. It started as an academic 
field of study in the 1930s with a cluster of remarkable papers by Kurt Gödel, Alonzo Church, Emil Post, 
and Alan Turing. The papers laid the mathematical foundations that would answer the question, “what 
is computation?” and discussed schemes for its implementation. These men saw the importance of auto-
matic computation and sought its precise mathematical foundation. The various schemes they each pro-
posed for implementing computation were quickly found to be equivalent, as a computation in any one 
could be realized in any other. It is all the more remarkable that their models all led to the same conclu-
sion that certain functions of practical interest—such as whether a computational algorithm (a method 
of evaluating a function) will ever come to completion instead of being stuck in an infinite loop—cannot 
be answered computationally.

In the time that these men wrote, the terms “computation” and “computers” were already in com-
mon use but with different connotations from today. Computation was taken to be the mechanical steps 
followed to evaluate mathematical functions. Computers were people who did computations. In recog-
nition of the social changes they were ushering in, the designers of the first digital computer projects 
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1-2 Overview of Computer Science

all named their systems with acronyms ending in “-AC,” meaning automatic computer or something 
similar—resulting in names such as ENIAC, UNIVAC, and EDSAC.

At the start of World War II, the militaries of the United States and the United Kingdom became 
interested in applying computation to the calculation of ballistic and navigation tables and the cracking 
of ciphers. They commissioned projects to design and build electronic digital computers. Only one of the 
projects completed before the war was over. That was the top-secret project at Bletchley Park in England, 
which cracked the German Enigma cipher using methods designed by Alan Turing.

Many people involved in those projects went on to start computer companies in the early 1950s. 
The universities began offering programs of study in the new field in the late 1950s. The field and the 
industry have grown steadily into a modern behemoth whose Internet data centers are said to consume 
almost 3% of the world’s electricity.

During its youth, computing was an enigma to the established fields of science and engineering. 
At first, it looked like only the technology applications of math, electrical engineering, or science, 
depending on the observer. However, over the years, computing seemed to provide an unending 
stream of new insights, and it defied many early predictions by resisting absorption back into the 
fields of its roots. By 1980, computing had mastered algorithms, data structures, numerical methods, 
programming languages, operating systems, networks, databases, graphics, artificial intelligence, and 
software engineering. Its great technology achievements—the chip, the personal computer, and the 
Internet—brought it into many lives. These advances stimulated more new subfields, including net-
work science, web science, mobile computing, enterprise computing, cooperative work, cyberspace 
protection, user-interface design, and information visualization. The resulting commercial appli-
cations have spawned new research challenges in social networks, endlessly evolving computation, 
music, video, digital photography, vision, massive multiplayer online games, user-generated content, 
and much more.

The name of the field changed several times to keep up with the flux. In the 1940s, it was called 
automatic computation, and in the 1950s, information processing. In the 1960s, as it moved into aca-
demia, it acquired the name computer science in the United States and informatics in Europe. By the 
1980s, the computing field comprised a complex of related fields including computer science, infor-
matics, computational science, computer engineering, software engineering, information systems, 
and information technology. By 1990, the term computing became the standard for referring to this 
core group.

1.1 Computing Paradigm

Traditional scientists frequently questioned the name computer science. They could easily see an engi-
neering paradigm (design and implementation of systems) and a mathematics paradigm (proofs of 
theorems) but they could not see much of a science paradigm (experimental verification of hypotheses). 
Moreover, they understood science as a way of dealing with the natural world, and computers looked 
suspiciously artificial.

The word “paradigm” for our purposes means a belief system and its associated practices, defining 
how a field sees the world and approaches the solutions of problems. This is the sense that Thomas Kuhn 
used in his famous book, The Structure of Scientific Revolutions (1962). Paradigms can contain subpara-
digms: thus, engineering divides into electrical, mechanical, chemical, civil, etc., and science divides 
into physical, life, and social sciences, which further divide into separate fields of science. Table  1.1 
outlines the three paradigms that combined to make the early computing field.

The founders of the field came from all three paradigms. Some thought computing was a branch of 
applied mathematics, some a branch of electrical engineering, and some a branch of computational-
oriented science. During its first four decades, the field focused primarily on engineering: The chal-
lenges of building reliable computers, networks, and complex software were daunting and occupied 
almost everyone’s attention. By the 1980s, these challenges largely had been met and computing was 
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1-3Structure and Organization of Computing

spreading rapidly into all fields, with the help of networks, supercomputers, and personal computers. 
During the 1980s, computers had become powerful enough that science visionaries could see how to 
use them to tackle the hardest, “grand challenge” problems in science and engineering. The resulting 
“computational science” movement involved scientists from all countries and culminated in the US 
Congress’s adopting the High Performance Computing and Communications (HPCC) act of 1991 to 
support research on a host of large computational problems.

Today, there is agreement that computing exemplifies science and engineering and that neither sci-
ence nor engineering characterizes computing. Then what does? What is computing’s paradigm?

The leaders of the field struggled with the paradigm question ever since the beginning. Along the 
way, there were three waves of attempts to unify views. Newell et al. (1967) led the first one. They argued 
that computing was unique among all the sciences in its study of information processes. Simon (1996), 
a Nobel laureate in Economics, went so far as to call computing a science of the artificial. Amarel (1971) 
endorsed this basic idea and added an emphasis on interactions with other fields. A catchphrase of this 
wave was that “computing is the study of phenomena surrounding computers.”

The second wave focused on programming, the art of designing algorithms that produced information 
processes. In the early 1970s, computing pioneers Edsger Dijkstra and Donald Knuth took strong stands 
favoring algorithm analysis as the unifying theme. A catchphrase of this wave was “computer science 
equals programming.” In recent times, this view has foundered because the field has expanded well beyond 
programming, whereas public understanding of a programmer has narrowed to just those who write code.

The third wave came as a result of the NSF-funded Computer Science and Engineering Research 
Study (COSERS), led by Bruce Arden in the late 1970s. Its catchphrase was “computing is the automation 
of information processes.” Although its final report successfully exposed the science of computing and 
explained many esoteric aspects to the layperson, its central view did not catch on.

An important aspect of all three definitions was the positioning of the computer as the object of atten-
tion. The computational science movement of the 1980s began to step away from that notion, adopting 
the view that computing is not only a tool for science but also a new method of thought and discovery in 
science. The process of dissociating from the computer as the focal center came to completion in the late 
1990s when leaders of the field of biology—epitomized by Nobel laureate David Baltimore (2001) and 
echoing cognitive scientist Douglas Hofstadter (1985)—said that biology had become an information 
science and DNA translation is a natural information process. Many computer scientists have joined 
biologists in research to understand the nature of DNA information processes and to discover what 
algorithms might govern them.

Take a moment to savor this distinction that biology makes. First, some information processes are 
natural. Second, we do not know whether all natural information processes are produced by algorithms. 

TABLE 1.1 Subparadigms Embedded in Computing

Math Science Engineering

1. Initiation Characterize objects 
of study (definition).

Observe a possible 
recurrence or pattern of 
phenomena 
(hypothesis).

Create statements about 
desired system actions 
and responses 
(requirements).

2. Conceptualization Hypothesize possible 
relationships among 
objects (theorem).

Construct a model that 
explains the 
observation and enables 
predictions (model).

Create formal statements 
of system functions and 
interactions 
(specifications).

3. Realization Deduce which 
relationships are 
true (proof).

Perform experiments 
and collect data 
(validate).

Design and implement 
prototypes (design).

4. Evaluation Interpret results. Interpret results. Test the prototypes.
5. Action Act on results (apply). Act on results (predict). Act on results (build).

D
ow

nl
oa

de
d 

by
 [

Pe
te

r 
D

en
ni

ng
] 

at
 1

0:
45

 1
3 

O
ct

ob
er

 2
01

4 



1-4 Overview of Computer Science

The second statement challenges the traditional view that algorithms (and programming) are at the 
heart of computing. Information processes may be more fundamental than algorithms.

Scientists in other fields have come to similar conclusions. They include physicists working with quan-
tum computation and quantum cryptography, chemists working with materials, economists working 
with economic systems, cognitive scientists working with brain processes, and social scientists work-
ing with networks. All have said that they discovered information processes in their disciplines’ deep 
structures. Stephen Wolfram (2002), a physicist and creator of the software program Mathematica, went 
further, arguing that information processes underlie every natural process in the universe.

All this leads us to the modern catchphrase: “Computing is the study of information processes, natu-
ral and artificial.” The computer is a tool in these studies but is not the object of study. Dijkstra once said: 
“Computing is no more about computers than astronomy is about telescopes.”

The term computational thinking has become popular to refer to the mode of thought that accompa-
nies design and discovery done with computation (Wing 2006). This term was originally called algo-
rithmic thinking in the Newell et al. (1960) and was widely used in the 1980s as part of the rationale for 
computational science. To think computationally is to interpret a problem as an information process 
and then seek to discover an algorithmic solution. It is a very powerful paradigm that has led to several 
Nobel Prizes.

All this suggests that computing has developed a paradigm all its own (Denning and Freeman 2009). 
Computing is no longer just about algorithms, data structures, numerical methods, programming 
languages, operating systems, networks, databases, graphics, artificial intelligence, and software engi-
neering, as it was prior to 1990. It now also includes exciting new subjects including Internet, web sci-
ence, mobile computing, cyberspace protection, user-interface design, and information visualization. 
The resulting commercial applications have spawned new research challenges in social networking, 
endlessly evolving computation, music, video, digital photography, vision, massive multiplayer online 
games, user-generated content, and much more.

The computing paradigm places a strong emphasis on the scientific (experimental) method to under-
stand computations. Heuristic algorithms, distributed data, fused data, digital forensics, distributed 
networks, social networks, and automated robotic systems, to name a few, are often too complex for 
mathematical analysis but yield to the scientific method. These scientific approaches reveal that dis-
covery is as important as construction or design. Discovery and design are closely linked: the behavior 
of many large designed systems (such as the web) is discovered by observation; we design simulations 
to imitate discovered information processes. Moreover, computing has developed search tools that are 
helping make scientific discoveries in many fields.

The central focus of the computing paradigm can be summarized as information processes—natural 
or constructed processes that transform information. They can be discrete or continuous.

Table 1.2 summarizes the computing paradigm with this focus. While it contains echoes of engineer-
ing, science, and mathematics, it is distinctively different because of its central focus on information 
processes (Denning and Freeman 2009). It allows engineering and science to be present together with-
out having to choose.

There is an interesting distinction between computational expressions and the normal language of 
engineering, science, and mathematics. Engineers, scientists, and mathematicians endeavor to posi-
tion themselves as outside observers of the objects or systems they build or study. Outside observers 
are purely representational. Thus, traditional blueprints, scientific models, and mathematical mod-
els are not executable. (However, when combined with computational systems, they give automatic 
fabricators, simulators of models, and mathematical software libraries.) Computational expres-
sions are not constrained to be outside the systems they represent. The possibility of self-reference 
makes for very powerful computational schemes based on recursive designs and executions and 
also for very powerful limitations on computing, such as the noncomputability of halting problems. 
Self-reference is common in natural information processes; the cell, for example, contains its own 
blueprint.
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1-5Structure and Organization of Computing

1.2 Two Views of Computing

Part of a scientific paradigm is a description of the knowledge of the field, often referred to as the 
“body of knowledge.” Within the computing paradigm, two descriptions of the computing body 
of knowledge have grown up. They might be called a technology interpretation and a principles 
interpretation.

Before 1990, most computing scientists would have given a technological interpretation, describing 
the field in terms of its component technologies. After 1990, the increasingly important science aspect 
began to emphasize the fundamental principles that empower and constrain the technologies.

In reality, these two interpretations are complementary. They both see the same body of knowledge, 
but in different ways. The technological view reflects the way the field has evolved around categories 
of technology; many of these categories reflect technical specialties and career paths. The science view 
reflects a deeper look at timeless principles and an experimental outlook on modeling and validation 
in computing.

These two views are discussed in Sections 1.3 and 1.4.

1.3 View 1: Technologies of Computing

Over the years, the ACM and Institute of Electrical and Electronics Engineers Computer Society 
(IEEECS) collaborated on a computing body of knowledge and curriculum recommendations for com-
puter science departments. The milestones of this process give a nice picture of the technological devel-
opment of the field.

1.3.1 First Milestone: Curriculum 68

In the mid-1960s, the ACM (with help from people in IEEECS) undertook the task to define curriculum 
recommendations for schools that wished to offer degrees in the new field of computer science (ACM 
1968). Their report said that the field consisted of three main parts:

Information structures and processes
Information processing systems
Methodologies

TABLE 1.2 The Computing Paradigm

Computing

1. Initiation Determine if the system to be built (or observed) can be 
represented by information processes, either finite 
(terminating) or infinite (continuing interactive).

2. Conceptualization Design (or discover) a computational model (e.g., an 
algorithm or a set of computational agents) that generates 
the system’s behaviors.

3. Realization Implement designed processes in a medium capable of 
executing its instructions. Design simulations and models 
of discovered processes. Observe behaviors of information 
processes.

4. Evaluation Test the implementation for logical correctness, consistency 
with hypotheses, performance constraints, and meeting 
original goals. Evolve the realization as needed.

5. Action Put the results to action in the world. Monitor for 
continued evaluation.

D
ow

nl
oa

de
d 

by
 [

Pe
te

r 
D

en
ni

ng
] 

at
 1

0:
45

 1
3 

O
ct

ob
er

 2
01

4 



1-6 Overview of Computer Science

The methodologies included design approaches for software and applications. The core material was 
mostly the mathematical underpinnings for the parts listed earlier:

Algorithms
Programming
Data structures
Discrete math
Logic circuits
Sequential machines
Parsing
Numerical methods

Many computer science departments adopted these recommendations.

1.3.2 Second Milestone: Computing as a Discipline

The ACM and IEEECS formally joined forces in 1987 to defend computing curricula from a bastard-
ized view that “CS = programming.” Around Donald Knuth and Edsger Dijkstra (1970) started making 
strong and eloquent cases for formal methods of software design, analysis, and construction. They said 
“we are all programmers” trying to employ powerful intellectual tools to tame complexity and enable 
correct and dependable software. Although computer scientists understood a programmer as highly 
skilled expert at these things, the public view of programmers was narrowing to low-level coders, who 
occasionally caused trouble by hacking into other people’s systems.

The committee laid out a model of the computing field that emphasized its breadth, showing that it is 
much richer than simply programming (Denning et al. 1989). Table 1.3 depicts the 9 × 3 matrix model 
of the computing field offered by the committee. Theory, abstraction, and design were used in the report 
for the mathematics, science, and engineering paradigms, respectively. The report gave details about 
what ideas and technologies fit into each of the 27 boxes in the matrix. It became the basis for a major 
ACM/IEEE curriculum revision in 1991.

Although this effort had a strong internal influence on the curriculum, it had little external influence 
on the perception that “CS=programming.” In fact, that perception was alive and well in the early 2000s 
when enrollments declined by over 50%.

1.3.3 Third Milestone: Information Technology Profession

In 1998, the ACM launched an “IT profession” initiative, based on a widely held perception that the 
field had evolved from a discipline to a profession (Denning 1998, Denning 2001, Holmes 2000). The 
initiative responded to three trends: the growing interest in the industry for professional standards 
(especially in safety-critical systems), organized professional bodies representing various specialties, 

TABLE 1.3 Matrix Model of Computing Discipline, 1989

Topic Area Theory Abstraction Design

1. Algorithms and data structures
2. Programming languages
3. Architecture
4. Operating systems and networks
5. Software engineering
6. Databases and information retrieval
7. Artificial intelligence and robotics
8. Graphics
9. Human–computer interaction
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1-7Structure and Organization of Computing

and a university movement to establish degree programs in information technology. The ACM leader-
ship concluded that the computing field met the basic criteria for a profession and that it was time for 
ACM to configure itself accordingly.

Table 1.4 is an inventory ACM made of the organized groups in the field. They saw IT professionals 
as a much larger and more diverse group than computer scientists and engineers, with at least 42 orga-
nized affinity groups in three categories. The first category comprises the major technical areas of IT and 
spans the intellectual core of the field. The second category comprises other well-established fields that 
are intensive users of IT; they draw heavily on IT and often make novel contributions to computing. The 
third category comprises areas of skill and practice necessary to keep and support the IT infrastructures 
that everyone uses. Allen Tucker and Peter Wegner (1996) also noted the dramatic growth and profes-
sionalization of the field and its growing influence on many other fields.

Unfortunately, the talk about “profession” led to a new round of terminological confusion. A profes-
sion is a social structure that includes many disciplines, but it is not a discipline in its own right. IT is 
not a field of research; the core disciplines (left column) and partner disciplines (middle column) attend 
to the research. To what does the term “computing field” refer in this context?

A decade later, it was clear that this interpretation of the field did not match what had actually evolved 
(Denning and Freeman 2009). The popular label IT did not reconcile the three parts of the computing 
field under a single umbrella unique to computing. IT now connotes technological infrastructure and its 
financial and commercial applications, but not the core technical aspects of computing.

1.3.4 Fourth Milestone: Computing Curriculum 2001

The ACM and IEEECS Education Boards were more cautious than ACM leadership in embracing an IT 
profession when they undertook a curriculum review and revision in 1999. They focused on the core special-
ties (first column in Table 1.2) and identified the computing discipline with these six academic specialties:

EE—Electrical engineering
CE—Computer engineering
CS—Computer science

TABLE 1.4 The Profession of Information Technology

IT-Core Disciplines IT-Intensive Disciplines IT-Supportive Occupations

Artificial intelligence Aerospace engineering Computer technician
Computer science Bioinformatics Help desk technician
Computer engineering Cognitive science Network engineer
Computational science Cryptography Professional IT trainer
Database engineering Digital library science Security specialist
Graphics E-commerce System administrator
Human–computer interaction Economics Web services designer
Network engineering Genetic engineering Web identity designer
Operating systems Information science Database administrator
Performance engineering Information systems
Robotics Public policy and privacy
Scientific computing Quantum computing
Software architecture Instructional design
Software engineering Knowledge engineering
System security Management information systems

Material science
Multimedia design
Telecommunications
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1-8 Overview of Computer Science

SWE—Software engineering
IS—Information systems
IT—Information technology

It was understood that students interested in hardware would enroll in an EE or CE program; students 
interested in software in a CE, CS, or SWE program; and students interested in organizational and 
enterprise aspects would enroll in IS or IT programs. Here, the term “IT” is far from what the IT pro-
fession initiative envisioned—it refers simply to a set of degree programs that focus on organizational 
applications of computing technology.

The CC2001 committee organized the body of knowledge into 14 main categories, as follows:

Algorithms and complexity
Architecture and organization
Computational science
Discrete structures
Graphics and visual computing
Human–computer interaction
Information management
Intelligent systems
Net-centric computing
Operating systems
Programming fundamentals
Programming languages
Social and professional issues
Software engineering

There were a total of 130 subcategories. The body of knowledge had 50% more categories than a decade 
before!

1.3.5 Fifth Milestone: Computing Curriculum 2013

The ACM and IEEECS again collaborated on a ten-year review of the computing curriculum. They 
learned that the field had grown from 14 to 18 knowledge areas since the 2001 review:

Algorithms and complexity
Architecture and organization
Computational science
Discrete structure
Graphics and visual computing
Human–computer interaction
Information assurance and security
Information management
Intelligent systems
Networking and communications
Operating systems
Platform-based development
Parallel and distributed computing
Programming languages
Software development fundamentals
Software engineering
Systems fundamentals
Social and professional issues
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1-9Structure and Organization of Computing

The committee was concerned about the pressure to increase the size of the computer science core. They 
calculated that the 2001 curriculum recommended 280 core hours and an update in 2008 increased 
that to 290. The core hours to cover the list earlier would be 305. They divided the core into two parts. 
Tier 1, the “must have” knowledge, and Tier 2, the “good to have” knowledge. They recommended that 
individual departments choose at least 80% of the Tier 2 courses, for a total of 276 hours, leaving plenty 
of time for electives in a student’s specialization area.

When ACM issued Curriculum 68, most of us believed that every computer scientist should know the 
entire core. Today, that is very difficult, even for seasoned computer scientists, since the field has grown 
so much since 1968.

1.4 View 2: Great Principles of Computing

The idea of organizing the computing body of knowledge around the field’s fundamental principles is not 
new. Many of the field’s pioneers were deeply concerned about why computing seemed like a new field, not 
a subset of other fields like mathematics, engineering, or science. They spent considerable effort to explain 
what they were doing in terms of the fundamental principles they worked with. Prominent examples 
are Turing’s paper (1937); the essays of Newell et al. (1967); Simon’s book (1996); and Arden’s COSERS 
report (1971, 1983). In subsets of the field, thinkers ferreted out the fundamental principles. Examples are 
Coffman and Denning (1973) on operating systems, Kleinrock (1975) on queueing systems, Hillis (1999) 
on the nature of computing machines, and Harel (2003) on algorithms and limits of computing.

This viewpoint, however, stayed in the background. I think the reason was simply that for many 
years, we were concerned with the engineering problems of constructing computers and networks that 
worked reliably. Most computer scientists were occupied solving engineering problems. The ones most 
interested in fundamental principles were the ones interested in theory. By 1990, we had succeeded 
beyond our wildest dreams with the engineering. However, our descriptions of the field looked like 
combinations of engineering and mathematics. Many outsiders wondered what the word “science” was 
doing in our title.

When the computational science movement began in the 1980s, many computer scientists felt like 
they were being excluded. Computational scientists, for their part, did not realize that computer scien-
tists were interested in science. A growing number of us became interested in articulating the science 
side of computing. It was not easy, because many scientists agreed with Herb Simon (1996), that we are at 
best a science of the artificial, but not a real science. Real sciences, in their opinions, dealt with naturally 
occurring processes.

But by 1990, prominent scientists were claiming to have discovered natural information processes, 
such as in biology, quantum physics, economics, and chemistry. This gave new momentum to our efforts 
to articulate a science-oriented view of computing (Denning 2005, Denning 2007).

Inspired by the great principles work of James Trefil and Robert Hazen (1996) for science, my col-
leagues and I have developed the Great Principles of Computing framework to accomplish this goal 
(Denning 2003, Denning and Martell 2004). Computing principles fall into seven categories: computa-
tion, communication, coordination, recollection, automation, evaluation, and design (Table 1.5).

Each category is a perspective on computing: a window into the computing knowledge space. The 
categories are not mutually exclusive. For example, the Internet can be seen as a communication system, 
a coordination system, or a storage system. We have found that most computing technologies use prin-
ciples from all seven categories. Each category has its own weight in the mixture, but they are all there.

In addition to the principles, which are relatively static, we need to take account of the dynamics of 
interactions between computing and other fields. Scientific phenomena can affect each other in one of 
two ways: implementation and influence. A combination of existing things implements a phenomenon 
by generating its behaviors. Thus, digital hardware physically implements computation, artificial intelli-
gence implements aspects of human thought, a compiler implements a high-level language with machine 
code, hydrogen and oxygen implement water, and complex combinations of amino acids implement life.
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1-10 Overview of Computer Science

Influence occurs when two phenomena interact with each other. Atoms arise from the interactions 
among the forces generated by protons, neutrons, and electrons. Galaxies interact via gravitational 
waves. Humans interact with speech, touch, and computers. Interactions exist across domains as well 
as within domains. For example, computation influences physical action (electronic controls), life pro-
cesses (DNA translation), and social processes (games with outputs). Table 1.6 illustrates interactions 
between computing and each of the physical, life, and social sciences as well as within computing itself. 
There can be no question about the pervasiveness of computing in all fields of science.

1.5 Relation between the Views

The technology and the principles views discussed earlier are two different interpretations of the same 
knowledge space. They are alternatives for expressing the computing body of knowledge.

The same principle may appear in several technologies, and a particular technology likely relies on 
several principles. The set of active principles (those used in at least one technology) evolves much more 
slowly than the technologies.

TABLE 1.5 Great Principles of Computing

Category Focus Examples

Computation What can and cannot be computed Classifying complexity of problems in terms of 
the number of computational steps to achieve 
a solution. Is P=NP? Quantum computation.

Communication Reliably moving information 
between locations

Information measured as entropy. 
Compression of files, error-correcting codes, 
cryptography.

Coordination Achieving unity of operation from 
many autonomous computing 
agents

Protocols that eliminate conditions that cause 
indeterminate results. Choice uncertainty: 
cannot choose between two near 
simultaneous signals within a deadline. 
Protocols that lead the parties to common 
beliefs about each other’s system.

Recollection Representing, storing, and 
retrieving information from 
media

All storage systems are hierarchical, but no 
storage system can offer equal access time to 
all objects. Locality principle: all 
computations favor subsets of their data 
objects in any time interval. Because of 
locality, no storage system can offer equal 
access time to all objects.

Automation Discovering algorithms for 
information processes

Most heuristic algorithms can be formulated 
as searches over enormous data spaces. 
Human memory and inference are statistical 
phenomena described by Bayes Rule. Many 
human cognitive processes can be modeled 
as information processes.

Evaluation Predicting performance of complex 
systems

Most computational systems can be modeled 
as networks of servers whose fast solutions 
yield close approximations of real throughput 
and response time.

Design Structuring software systems for 
reliability and dependability

Complex systems can be decomposed into 
interacting modules and virtual machines 
following the principles of information 
hiding and least privilege. Modules can be 
stratified by layers corresponding to time 
scales of events that manipulate objects.
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1-11Structure and Organization of Computing

While the two styles of framework are different, they are strongly connected. To see the connection, 
imagine a 2D matrix. The rows name technologies, and the columns name categories of principles. The 
interior of the matrix is the knowledge space of the field.

Imagine someone who wants to enumerate all the principles involved with a technology. If the matrix 
is already filled in, the answer is simply to read the principles from the row of the matrix. Otherwise, fill 
it in by analyzing the technology for principles in each of the seven categories. In the figure later, we see 
that the security topic draws principles from all seven categories.

Computation

Security O(.) of encryption
functions

Secrecy
authentication
covert channels

Key distr protocol
zero knowl proof

Confinement
partitioning for MLS

reference monitor

Instrusion detection
biometric id

Protocol perform
under various loads

End-to-end
layered functions
virtual machines

Communication Coordination Recollection Automation Evaluation Design

Within the principles framework, someone can enumerate all the technologies that employ a particu-
lar principle. In the example later, we see that the coordination category contributes principles to all the 
technologies listed.

TABLE 1.6 Examples of Computing Interacting with Other Domains

Physical Social Life Computing

Implemented by Mechanical, optical, 
electronic, 
quantum, and 
chemical 
computing

Wizard of Oz, 
mechanical robots, 
human cognition, 
games with inputs 
and outputs

Genomic, neural, 
immunological, 
DNA transcription, 
evolutionary 
computing

Compilers, OS, 
emulation, reflection, 
abstractions, 
procedures, 
architectures, languages

Implements Modeling, 
simulation, 
databases, data 
systems, quantum 
cryptography

Artificial intelligence, 
cognitive modeling, 
autonomic systems

Artificial life, 
biomimetics, 
systems biology

Influenced by Sensors, scanners, 
computer vision, 
optical character 
recognition, 
localization

Learning, 
programming, user 
modeling, 
authorization, speech 
understanding

Eye, gesture, 
expression, and 
movement 
tracking, 
biosensors

Networking, security, 
parallel computing, 
distributed systems, 
grids

Influences Locomotion, 
fabrication, 
manipulation, 
open-loop control

Screens, printers, 
graphics, speech 
generation, network 
science

Bioeffectors, haptics, 
sensory immersion

Bidirectional 
influence

Robots, closed-loop 
control

Human–computer 
interaction, games

Brain–computer 
interfaces
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1-12 Overview of Computer Science

Computation Communication Coordination

Hardware
handshake

TCP and IP
protocols

Key distr protocol
zero knowl proof

Page fault interrupt

Locking protocol

Semaphores
monitors

Programming
language

Database

Virtual
memory

Security

Internet

Architecture

Recollection Automation Evaluation Design

1.6 What Are Information Processes?

There is a potential difficulty with defining computation in terms of information. Information seems to 
have no settled definition. Claude Shannon the father of information theory, in 1948 defined informa-
tion as the expected number of yes–no questions one must ask to decide which message was sent by a 
source. This definition describes the inherent information of a source before any code is applied; all 
codes for the course contain the same information. Shannon purposely skirted the issue of the meaning 
of bit patterns, which seems to be important to defining information. In sifting through many published 
definitions, Paolo Rocchi (2010) concluded that definitions of information necessarily involve an objec-
tive component, signs and their referents or, in other words, symbols and what they stand for, and a 
subjective component, meanings. How can we base a scientific definition of information on something 
with such an essential subjective component?

Biologists have a similar problem with “life.” Life scientist Robert Hazen (2007) notes that biologists 
have no precise definition of life, but they do have a list of seven criteria for when an entity is living. The 
observable affects of life, such as chemistry, energy, and reproduction, are sufficient to ground the sci-
ence of biology. In the same way, we can ground a science of information on the observable affects (signs 
and referents) without a precise definition of meaning.

A representation is a pattern of symbols that stands for something. The association between a rep-
resentation and what it stands for can be recorded as a link in a table or database or as a memory in 
people’s brains. There are two important aspects of representations: syntax and stuff. Syntax is the 
rules for constructing patterns; it allows us to distinguish patterns that stand for something from 
patterns that do not. Stuff is measurable physical states of the world that hold representations, usually 
in media or signals. Put these two together and we can build machines that can detect when a valid 
pattern is present.

A representation that stands for a method of evaluating a function is called an algorithm. A repre-
sentation that stands for values is called data. When implemented by a machine, an algorithm controls 
the transformation of an input data representation to an output data representation. The distinction 
between the algorithm and the data representations is pretty weak; the executable code output by a 
compiler looks like data to the compiler and algorithm to the person running the code.

Even this simple notion of representation has deep consequences. For example, as Gregory Chaitin 
(2006) has shown, there is no algorithm for finding the shortest possible representation of something.
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1-13Structure and Organization of Computing

Some scientists leave open the question of whether an observed information process is actually con-
trolled by an algorithm. DNA translation can be called an information process; if someone discovers a 
controlling algorithm, it could be also called a computation.

Some mathematicians define computation separate from implementation. They do this by treating 
computations as logical orderings of strings in abstract languages and are able to determine the logical 
limits of computation. However, to answer questions about running time of observable computations, 
they have to introduce costs representing the time or energy of storing, retrieving, or converting repre-
sentations. Many real-world problems require exponential-time computations as a consequence of these 
implementable representations. I still prefer to deal with implementable representations because they 
are the basis of a scientific approach to computation.

These notions of representation are sufficient to give us the definitions we need for computing. An 
information process is a sequence of representations. (In the physical world, it is a continuously evolv-
ing, changing representation.) A computation is an information process in which the transitions from 
one element of the sequence to the next are controlled by a representation. (In the continuous world, we 
would say that each infinitesimal time and space step is controlled by a representation.)

1.7 Where Computing Stands

Computing as a field has come to exemplify good science as well as engineering. The science is essential 
to the advancement of the field because many systems are so complex that experimental methods are the 
only way to make discoveries and understand limits. Computing is now seen as a broad field that studies 
information processes, natural and artificial.

This definition is broad enough to accommodate three issues that have nagged computing scientists 
for many years: Continuous information processes (such as signals in communication systems or analog 
computers), interactive processes (such as ongoing web services), and natural processes (such as DNA 
translation) all seemed like computation but did not fit the traditional algorithmic definitions.

The great principles framework reveals a rich set of rules on which all computation is based. These 
principles interact with the domains of the physical, life, and social sciences, as well as with computing 
technology itself.

Computing is not a subset of other sciences. None of those domains is fundamentally concerned with 
the nature of information processes and their transformations. Yet this knowledge is now essential in all 
the other domains of science. Computer scientist Paul Rosenbloom (2012) of the University of Southern 
California argued that computing is a new great domain of science. He is on to something.
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