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to today’s memory-mapped peripher-
als). These different kinds of storage 
were needed to optimize the different 
storage-access tasks the CPU had to do. 
The Atlas Processor (CPU) consisted of 
the Accumulator (called A-register) and 
its associated floating-point arithmetic 
unit, the index registers (called B-regis-
ters), and the Control section.

Originally called one-level storage,2 
the Atlas virtual memory system gave 
each user the illusion of having a very 
large main memory by automating the 
transfer of code and data between a 
small fast main core store and a large, 
much slower, magnetic drum. Prior to 
this, on earlier Manchester machines, 
programmers spent vast amounts of 
time augmenting basic algorithms 
with “overlay sequences”—calls on 
the secondary memory to transfer 

V
I R T UA L  M E M O R Y  I S  a tech-
nology of computer sys-
tems architecture that is 
as old as academic com-
puter science and has af-

fected the careers of many computing 
professionals. We take this oppor-
tunity celebrate it as a milestone of 
computing, recognized by the recent 
IEEE Milestone award to the Univer-
sity of Manchester, where it was in-
vented in 1958.

First, some background. The IEEE 
is the world’s largest technical so-
ciety with over 430,000 members in 
160 countries. The IEEE Milestones 
program was established in 1983 to 
recognize the achievements of giants 
who advanced the electrical and elec-
tronics profession around the world. 
Each IEEE Milestone is recognized by 
a bronze plaque mounted at the loca-
tion of the achievement. The IEEE web-
site lists 224 milestones awarded since 
1977, of which 35 milestones are asso-
ciated with computing.a

In June 2022 two Milestone plaques 
were dedicated, one for the “Manches-
ter University ‘Baby’ computer and its 
Derivatives 1948–1951” and one for the 
“Atlas Computer and the Invention of 
Virtual Memory 1957–1962.” An image 
of the latter plaque appears here.

The Atlas Computer
The Atlas architecture (see Figure 1) 
incorporated a multitude of what were 
then novel features: asynchronous 
pipelined operation, parallel arithme-

a	 See https://bit.ly/3RFg35c

tic, 128 index registers, double address 
modification by index registers, extra-
codes (software sequences simulating 
additional hardware instructions), 
interrupts, an interleaved main core 
store, multiprogramming, and, most 
importantly, a one-level storage sys-
tem2 that later became known as vir-
tual memory. Virtual memory required 
novel software and hardware, leading 
to the creation of an operating system 
known as the Atlas Supervisor.3 The su-
pervisor also included a compiler for 
Atlas Autocode, a high-level language 
similar to Algol 60.

Atlas incorporated multiple kinds 
of store, including main memory 
(magnetic core), secondary memory 
(rotating drum), Fixed Store (precur-
sor to today’s firmware holding extra 
instructions), and V-Store (precursor 
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V the presented address. The outputs of 
the PARs were then encoded to form 
a 5-bit page-frame address which was 
concatenated with the 9-bit line ad-
dress to form the real address to be 
sent to the core store. All this address 
mapping was done in a small fraction 
of a memory cycle and was invisible to 
programmers.

If there was no PAR match, a page-
fault interrupt was generated. The 
page-fault handler of the operating 
system intervened, found the miss-
ing page on the drum, moved it into 
a blank page-frame of the main store, 
and updated that frame’s PAR with 
the page number it now contained. 
When all this was done, the operating 

pages (standard size data blocks) into 
the limited main memory. Kilburn 
believed the one-level storage mecha-
nism would eliminate manual over-
lays and estimated that programmer 
productivity would be improved by a 
factor of up to 3.

The Atlas allowed every program 
to address up to 1M words via a 20-bit 
virtual address. However, this created 
a problem. Kilburn wrote2 “In a uni-
versal high-speed digital computer it 
is necessary to have a large-capacity 
fast-access main store. While more 
efficient operation of the computer 
can be achieved by making this store 
all of one type, this step is scarcely 
practical for the storage capacities 
now being considered. For example, 
on Atlas it is possible to address 106 
words in the main store. In practice 
on the first installation at Manches-
ter University a total of 105 words are 
provided, but though it is just techni-
cally feasible to make this in one level 
it is much more economical to pro-
vide a core store (16,000 words) and 
drum (96,000 words) combination.”

There was more to it than just this, 
however. In previous machines, page 
transfers took place under direct pro-
gram control as directed by the pro-
grammer. In Atlas the ratio of drum 
to processor access time would be 
approximately 2,700:1,b so to avoid 
having the processor idle for long pe-
riods during page transfers, multiple 
programs were co-resident in the core 
store at locations hidden from users. 
When one program stopped for a page 
transfer, the processor was switched 
to another resident program. Kil-
burn’s solution to these problems 
was to make user program addresses 
virtual addresses and to have the com-
puter itself determine the mapping 
between virtual and real addresses. 
The system for implementing this 
concept was a combination of oper-
ating system software and hardware 
known as paging.

It was clear that translating from 
virtual to real addresses would have to 
be done in hardware, otherwise there 
would be a huge time penalty. Also, it 
would only be feasible to move blocks 
or pages of information, rather than 

b	 In today’s virtual memories, this ratio is much 
worse, closer to 106:1

individual words, between the drum 
and core stores. So a set of associative 
(content addressable) registers, the 
Page Address Registers, was used (see 
Figure 2). A PAR held the page number 
of the page loaded in the associated 
page-frame of memory. The lock-out 
bit was set for PARs containing pages 
of suspended jobs. With the chosen 
page size of 512 words, the 16K words 
of core store spanned 32 pages, so 32 
PARs were needed. The 20-bit virtual 
address was therefore split into 11 bits 
of page address and 9 bits of line ad-
dress. The page address was present-
ed to all the Page Address Registers 
simultaneously and in most cases one 
of them would indicate a match with 

Figure 1. The ATLAS architecture.
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quickly taken up by engineers build-
ing other systems. These systems 
soon encountered two significant 
performance problems. One was that 
the best replacement algorithms 
tended to require heavy overhead—
the Atlas “learning algorithm” was 
of this kind—and the low overhead 
ones caused too much paging. The 
other problem was thrashing, an un-
expected collapse of throughout in a 
multiprogrammed system when the 
number of loaded jobs exceeded an 
unpredictable threshold. These is-
sues put the entire project for virtual 
memory under a cloud. What good 
was a multimillion-dollar computer 
that was bogged down with paging 
and whose performance is likely to 
collapse unpredictably?

In a classic study (1966), Les Belady 
of IBM put a large number of possible 
replacement algorithms to the test 
under a variety of workloads. He con-
cluded the near-zero-overhead FIFO 
(first in first out) policy generated 
more paging than most of the others, 
and that the high-overhead LRU (least 
recently used) generally outperformed 
most of the others. He also tested an 
optimal algorithm, MIN, which gave 
the least possible amount of paging 
but was not real-time implementable 
because it required knowledge of the 
future. He was disappointed that most 
of the policies including LRU were 
significantly poorer performers than 
MIN. There seemed to be no hope that 
a paging policy with near optimal per-
formance was feasible.

When these basic algorithms were 
extended to multiprogramming, the 
operating system needed to assign a 
memory region to each job—for ex-
ample, N jobs would each get 1/N of 
the memory. If N got too high, all the 
jobs would be pushed into a state of 
high paging, which meant every job 
was unable to use the CPU very much 
and overall throughput collapsed as 
the jobs “paged to death.” There was 
no way to determine where the thresh-
old N was because it depended on the 
details of each job.

A breakthrough came in 1966 with 
the concept of working set.1 A working 
set is the intrinsic memory demand 
of a program—the set of pages that 
if resident would generate a very low 
level of paging. The working set was 

system later resumed the interrupted 
program, which could now continue 
because its last memory access would 
now map to main memory. In later 
virtual memories, not enough PARs 
could be provided to cover the whole 
of main memory; the PAR array was 
replaced with a translation lookaside 
buffer and a page table.

Now there is one other problem to 
deal with: maintaining a blank page-
frame in memory so that the next page 
fault had a frame available to receive 
the missing page. This was done by a 
replacement policy called the “learn-
ing algorithm.” As part of processing 
a page fault, the operating system 
would use the learning algorithm to 
select one of the other 31 pages for re-
placement and initiate a swap to copy 
that page back to the drum. The learn-
ing algorithm was the world’s first re-
placement policy.

The learning algorithm assumed all 
pages of a program were involved in 
loops. By monitoring use bits, it mea-
sured intervals of use and non-use and 
calculated a period for each page’s loop. 
It then selected for replacement the 
page that would not be reused for the 
longest time into the future. This prin-
ciple, known today as the “MIN prin-
ciple,” is optimal if indeed all pages are 
in fixed loops. This assumption is not 
always met and caused performance 
problems in virtual memories built af-
ter 1962. We will discuss this next.

Performance of Virtual Memory
The Atlas one-level store was hailed 
as a major breakthrough in com-
puter systems architecture and was 
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engineers building 
other systems.
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measured by observing which pages 
a job accessed in a backward looking 
window of the last T memory access-
es. The working set policy for multi-
programming gave each job enough 
pages for its working set. This meant a 
small portion of memory, called FREE, 
was unused. At a page fault a working 
set would increase by one page, tak-
ing it from FREE. When a page was no 
longer in a job’s T-window, it would be 
evicted and returned to FREE. In this 
way, no page fault could steal a page 
from another working set and thereby 
interfere with its performance. The 
scheduler would not load a new job if 
its working set was bigger than FREE. 
It was impossible for a working set 
policy to thrash.

The final piece of the performance 
puzzle—optimal throughput—was 
provided by the principle of locality. 
This principle holds that programs 
access small subsets of their address 
spaces over relatively long phases, 
and the entire execution of a pro-
gram can be described as a series of 
phases where in each one a locality 
set of pages was used continuously. 
If the operating system could detect 
locality sets and load them, most jobs 
would generate almost no paging dur-
ing phases. Most of the paging was 
caused by the relatively infrequent 
phase transitions to new locality sets. 
It is not difficult to prove that such a 
policy is near-optimal—no other pol-
icy, including those with lookahead, 
can generate significantly higher 
throughput.1

The working set policy does just 
this because the working set measure-
ment sees exactly the locality set when 
its T-window is contained in a phase. 
The same locality sets and phases are 
observed over a wide range of T-values. 
Programs with locality managed by 
working sets typically operate within 
1%–3% of optimal.

It is now easy to see that virtual 
memory and working-set management 
are a perfect team to attain best possi-
ble, thrashing-free performance from a 
virtual memory.

The Secure Kernel Problem
Some people believe virtual memory 
has become obsolete because memory 
has become so cheap we can allocate 
all the real memory a job needs. There 

is then no paging and the mechanism 
becomes superfluous.

While it may be true that most jobs 
can be fully loaded into main memory, 
that hardly spells the demise of virtual 
memory. There are always jobs that are 
just too big for the available memory. 
Virtual memory makes it possible to 
run such jobs.

Even more important, however, is 
that the address mapping of virtual 
memory guarantees complete isolation 
of jobs. A job can access only the page 
frames linked to its page table, and no 
frame can be shared between two jobs. 
Therefore, no job can access the memo-
ry held by another job. This default iso-
lation is the basis for security kernels in 
operating systems. Even if there is no 
need for an automatic solution to the 
overlay problem, virtual address map-
ping provides the logical partitioning 
that is the basis for secure computing.

What a legacy for Kilburn’s inven-
tion.	
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