
26 COMMUNICATIONS OF THE ACM | SEPTEMBER 2022 | VOL. 65 | NO. 9

V
viewpoints

I
M

A
G

E
 C

O
U

R
T

E
S

Y
 O

F
 W

W
W

.I
E

E
E

-U
K

A
N

D
I

R
E

L
A

N
D

.O
R

G

to today’s memory-mapped peripher-
als). These different kinds of storage
were needed to optimize the different
storage-access tasks the CPU had to do.
The Atlas Processor (CPU) consisted of
the Accumulator (called A-register) and
its associated floating-point arithmetic
unit, the index registers (called B-regis-
ters), and the Control section.

Originally called one-level storage,2
the Atlas virtual memory system gave
each user the illusion of having a very
large main memory by automating the
transfer of code and data between a
small fast main core store and a large,
much slower, magnetic drum. Prior to
this, on earlier Manchester machines,
programmers spent vast amounts of
time augmenting basic algorithms
with “overlay sequences”—calls on
the secondary memory to transfer

V
I R T UA L M E M O R Y I S a tech-
nology of computer sys-
tems architecture that is
as old as academic com-
puter science and has af-

fected the careers of many computing
professionals. We take this oppor-
tunity celebrate it as a milestone of
computing, recognized by the recent
IEEE Milestone award to the Univer-
sity of Manchester, where it was in-
vented in 1958.

First, some background. The IEEE
is the world’s largest technical so-
ciety with over 430,000 members in
160 countries. The IEEE Milestones
program was established in 1983 to
recognize the achievements of giants
who advanced the electrical and elec-
tronics profession around the world.
Each IEEE Milestone is recognized by
a bronze plaque mounted at the loca-
tion of the achievement. The IEEE web-
site lists 224 milestones awarded since
1977, of which 35 milestones are asso-
ciated with computing.a

In June 2022 two Milestone plaques
were dedicated, one for the “Manches-
ter University ‘Baby’ computer and its
Derivatives 1948–1951” and one for the
“Atlas Computer and the Invention of
Virtual Memory 1957–1962.” An image
of the latter plaque appears here.

The Atlas Computer
The Atlas architecture (see Figure 1)
incorporated a multitude of what were
then novel features: asynchronous
pipelined operation, parallel arithme-

a	 See https://bit.ly/3RFg35c

tic, 128 index registers, double address
modification by index registers, extra-
codes (software sequences simulating
additional hardware instructions),
interrupts, an interleaved main core
store, multiprogramming, and, most
importantly, a one-level storage sys-
tem2 that later became known as vir-
tual memory. Virtual memory required
novel software and hardware, leading
to the creation of an operating system
known as the Atlas Supervisor.3 The su-
pervisor also included a compiler for
Atlas Autocode, a high-level language
similar to Algol 60.

Atlas incorporated multiple kinds
of store, including main memory
(magnetic core), secondary memory
(rotating drum), Fixed Store (precur-
sor to today’s firmware holding extra
instructions), and V-Store (precursor

The Profession of IT
The Atlas Milestone
Celebrating virtual memory, which has made such a difference
in how we approach programming, memory management,
and secure computing.

DOI:10.1145/3548781	 Peter Denning and Roland Ibbett

https://dx.doi.org/10.1145/3548781

SEPTEMBER 2022 | VOL. 65 | NO. 9 | COMMUNICATIONS OF THE ACM 27

viewpoints

V the presented address. The outputs of
the PARs were then encoded to form
a 5-bit page-frame address which was
concatenated with the 9-bit line ad-
dress to form the real address to be
sent to the core store. All this address
mapping was done in a small fraction
of a memory cycle and was invisible to
programmers.

If there was no PAR match, a page-
fault interrupt was generated. The
page-fault handler of the operating
system intervened, found the miss-
ing page on the drum, moved it into
a blank page-frame of the main store,
and updated that frame’s PAR with
the page number it now contained.
When all this was done, the operating

pages (standard size data blocks) into
the limited main memory. Kilburn
believed the one-level storage mecha-
nism would eliminate manual over-
lays and estimated that programmer
productivity would be improved by a
factor of up to 3.

The Atlas allowed every program
to address up to 1M words via a 20-bit
virtual address. However, this created
a problem. Kilburn wrote2 “In a uni-
versal high-speed digital computer it
is necessary to have a large-capacity
fast-access main store. While more
efficient operation of the computer
can be achieved by making this store
all of one type, this step is scarcely
practical for the storage capacities
now being considered. For example,
on Atlas it is possible to address 106
words in the main store. In practice
on the first installation at Manches-
ter University a total of 105 words are
provided, but though it is just techni-
cally feasible to make this in one level
it is much more economical to pro-
vide a core store (16,000 words) and
drum (96,000 words) combination.”

There was more to it than just this,
however. In previous machines, page
transfers took place under direct pro-
gram control as directed by the pro-
grammer. In Atlas the ratio of drum
to processor access time would be
approximately 2,700:1,b so to avoid
having the processor idle for long pe-
riods during page transfers, multiple
programs were co-resident in the core
store at locations hidden from users.
When one program stopped for a page
transfer, the processor was switched
to another resident program. Kil-
burn’s solution to these problems
was to make user program addresses
virtual addresses and to have the com-
puter itself determine the mapping
between virtual and real addresses.
The system for implementing this
concept was a combination of oper-
ating system software and hardware
known as paging.

It was clear that translating from
virtual to real addresses would have to
be done in hardware, otherwise there
would be a huge time penalty. Also, it
would only be feasible to move blocks
or pages of information, rather than

b	 In today’s virtual memories, this ratio is much
worse, closer to 106:1

individual words, between the drum
and core stores. So a set of associative
(content addressable) registers, the
Page Address Registers, was used (see
Figure 2). A PAR held the page number
of the page loaded in the associated
page-frame of memory. The lock-out
bit was set for PARs containing pages
of suspended jobs. With the chosen
page size of 512 words, the 16K words
of core store spanned 32 pages, so 32
PARs were needed. The 20-bit virtual
address was therefore split into 11 bits
of page address and 9 bits of line ad-
dress. The page address was present-
ed to all the Page Address Registers
simultaneously and in most cases one
of them would indicate a match with

Figure 1. The ATLAS architecture.

16K words

PARs

B-Arithmetic
Unit

B-Store
120 Words

Fixed Store

Subsidiary
Store

4K words

2 × 4K words

B127: Main Control
B126: Extracode Control
B125: Interrupt Control

Control

Accumulator

Floating-point
Unit

Drum Store

4 × 24K words

Peripherals

Operating
Controls

V-Store

Tape Store

8 Decks

Main

Core

Store

Figure 2. Page address registers.

32

=

Virtual Address from Processor

Real Address to Core Store

ENCODE
PAGE

ADDRESS

Interrupt

REGISTERS

1 PAGE/BLOCK = 512 words

=

ASSOCIATIVE

LINE (9)BLOCK (5)

PAGE (11) LINE (9)

U
S

E
 B

IT
S

LO
C

K
-O

U
T

28 COMMUNICATIONS OF THE ACM | SEPTEMBER 2022 | VOL. 65 | NO. 9

viewpoints

quickly taken up by engineers build-
ing other systems. These systems
soon encountered two significant
performance problems. One was that
the best replacement algorithms
tended to require heavy overhead—
the Atlas “learning algorithm” was
of this kind—and the low overhead
ones caused too much paging. The
other problem was thrashing, an un-
expected collapse of throughout in a
multiprogrammed system when the
number of loaded jobs exceeded an
unpredictable threshold. These is-
sues put the entire project for virtual
memory under a cloud. What good
was a multimillion-dollar computer
that was bogged down with paging
and whose performance is likely to
collapse unpredictably?

In a classic study (1966), Les Belady
of IBM put a large number of possible
replacement algorithms to the test
under a variety of workloads. He con-
cluded the near-zero-overhead FIFO
(first in first out) policy generated
more paging than most of the others,
and that the high-overhead LRU (least
recently used) generally outperformed
most of the others. He also tested an
optimal algorithm, MIN, which gave
the least possible amount of paging
but was not real-time implementable
because it required knowledge of the
future. He was disappointed that most
of the policies including LRU were
significantly poorer performers than
MIN. There seemed to be no hope that
a paging policy with near optimal per-
formance was feasible.

When these basic algorithms were
extended to multiprogramming, the
operating system needed to assign a
memory region to each job—for ex-
ample, N jobs would each get 1/N of
the memory. If N got too high, all the
jobs would be pushed into a state of
high paging, which meant every job
was unable to use the CPU very much
and overall throughput collapsed as
the jobs “paged to death.” There was
no way to determine where the thresh-
old N was because it depended on the
details of each job.

A breakthrough came in 1966 with
the concept of working set.1 A working
set is the intrinsic memory demand
of a program—the set of pages that
if resident would generate a very low
level of paging. The working set was

system later resumed the interrupted
program, which could now continue
because its last memory access would
now map to main memory. In later
virtual memories, not enough PARs
could be provided to cover the whole
of main memory; the PAR array was
replaced with a translation lookaside
buffer and a page table.

Now there is one other problem to
deal with: maintaining a blank page-
frame in memory so that the next page
fault had a frame available to receive
the missing page. This was done by a
replacement policy called the “learn-
ing algorithm.” As part of processing
a page fault, the operating system
would use the learning algorithm to
select one of the other 31 pages for re-
placement and initiate a swap to copy
that page back to the drum. The learn-
ing algorithm was the world’s first re-
placement policy.

The learning algorithm assumed all
pages of a program were involved in
loops. By monitoring use bits, it mea-
sured intervals of use and non-use and
calculated a period for each page’s loop.
It then selected for replacement the
page that would not be reused for the
longest time into the future. This prin-
ciple, known today as the “MIN prin-
ciple,” is optimal if indeed all pages are
in fixed loops. This assumption is not
always met and caused performance
problems in virtual memories built af-
ter 1962. We will discuss this next.

Performance of Virtual Memory
The Atlas one-level store was hailed
as a major breakthrough in com-
puter systems architecture and was

The Atlas one-level
store was hailed as
a major breakthrough
in computer systems
architecture and was
quickly taken up by
engineers building
other systems.

Overcoming the
Inherent Challenges
in Creating
a Revolutionary
Academic Program

Should Young Computer
Scientists Stop
Collaborating with
Their Doctoral Advisors?

Linear Address Spaces

The Dangers of
Participation Bias in
Educational Studies

Assessing the Quantum
Computing Landscape

Storytelling and Science

AuraRing:
Precise Electromagnetic
Finger Tracking

Traffic Classification
in an Increasingly
Encrypted Web

Plus, the latest news about
neuro-symbolic logic,
finding hidden malware,
and how applied AI teaches
writing skills.

�C
om

in
g

N
ex

t
M

on
th

 in
 C

O
M

M
U

N
IC

A
TI

O
N

S

SEPTEMBER 2022 | VOL. 65 | NO. 9 | COMMUNICATIONS OF THE ACM 29

viewpoints

measured by observing which pages
a job accessed in a backward looking
window of the last T memory access-
es. The working set policy for multi-
programming gave each job enough
pages for its working set. This meant a
small portion of memory, called FREE,
was unused. At a page fault a working
set would increase by one page, tak-
ing it from FREE. When a page was no
longer in a job’s T-window, it would be
evicted and returned to FREE. In this
way, no page fault could steal a page
from another working set and thereby
interfere with its performance. The
scheduler would not load a new job if
its working set was bigger than FREE.
It was impossible for a working set
policy to thrash.

The final piece of the performance
puzzle—optimal throughput—was
provided by the principle of locality.
This principle holds that programs
access small subsets of their address
spaces over relatively long phases,
and the entire execution of a pro-
gram can be described as a series of
phases where in each one a locality
set of pages was used continuously.
If the operating system could detect
locality sets and load them, most jobs
would generate almost no paging dur-
ing phases. Most of the paging was
caused by the relatively infrequent
phase transitions to new locality sets.
It is not difficult to prove that such a
policy is near-optimal—no other pol-
icy, including those with lookahead,
can generate significantly higher
throughput.1

The working set policy does just
this because the working set measure-
ment sees exactly the locality set when
its T-window is contained in a phase.
The same locality sets and phases are
observed over a wide range of T-values.
Programs with locality managed by
working sets typically operate within
1%–3% of optimal.

It is now easy to see that virtual
memory and working-set management
are a perfect team to attain best possi-
ble, thrashing-free performance from a
virtual memory.

The Secure Kernel Problem
Some people believe virtual memory
has become obsolete because memory
has become so cheap we can allocate
all the real memory a job needs. There

is then no paging and the mechanism
becomes superfluous.

While it may be true that most jobs
can be fully loaded into main memory,
that hardly spells the demise of virtual
memory. There are always jobs that are
just too big for the available memory.
Virtual memory makes it possible to
run such jobs.

Even more important, however, is
that the address mapping of virtual
memory guarantees complete isolation
of jobs. A job can access only the page
frames linked to its page table, and no
frame can be shared between two jobs.
Therefore, no job can access the memo-
ry held by another job. This default iso-
lation is the basis for security kernels in
operating systems. Even if there is no
need for an automatic solution to the
overlay problem, virtual address map-
ping provides the logical partitioning
that is the basis for secure computing.

What a legacy for Kilburn’s inven-
tion.	

References
1.	 Denning, P.J. Working set analytics. ACM Computing

Surveys (Jan. 2021).
2.	 Kilburn, T. et al. One-level storage system. IRE Trans.

EC-11 (Apr. 1962).
3.	 Kilburn, T. et al. The Atlas Supervisor. AFIPS Proc.

European Joint Computer Conference (EJCC) (Dec.
1961).

Peter J. Denning (pjd@nps.edu) is Distinguished
Professor of Computer Science at the Naval
Postgraduate School in Monterey, CA, is Editor of ACM
Ubiquity, and is a past president of ACM. His most recent
book is Computational Thinking (with Matti Tedre, MIT
Press, 2019).

Roland Ibbett (roland.ibbett@bcs.org.uk) is Emeritus
Professor of Computer Science at the University of
Edinburgh; he was previously Reader in Computer Science
at the University of Manchester, where he was a major
contributor to the MU5 project.

Copyright held by authors.

Some people believe
virtual memory
has become obsolete
because memory
has become so
cheap we can
allocate all the real
memory a job needs.

Advertise with ACM!

Reach the innovators
and thought leaders

working at the
cutting edge
of computing

and information
technology through

ACM’s magazines,
websites

and newsletters.

Request a media kit

and pricing:

Ilia Rodriguez
+1 212-626-0686

acmmediasales@acm.org

◊◆◊◆◊

