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have probability distributions over their 
possible values. It typically predicts the 
future values of the variable by com-
puting a mean of the distribution and 
a confidence interval based on its stan-
dard deviation. For example, in 1962 
Everett Rogers studied the adoption 
times of the members of a community 
in response to a proposed innovation.5 
He found they follow a Normal (Bell) 
curve that has a mean and a standard 
deviation. A prediction of adoption time 
is the mean time bracketed by a confi-
dence interval: for example, 68% of the 
adoption times are within one standard 
deviation of the mean and 95% are with-
in two standard deviations.

In 1987, researchers Per Bak, Chao 
Tang, and Kurt Wiesenfeld published 
the results of a simple experiment that 

I
N A FAMOUS episode in the “I 
Love Lucy” television series—
“Job Switching,” better known 
as the chocolate factory epi-
sode—Lucy and her best-friend 

coworker Ethel are tasked to wrap choc-
olates flowing by on a conveyor belt in 
front of them. Each time they get better 
at the task, the conveyor belt speeds up. 
Eventually they cannot keep up and the 
whole scene collapses into chaos.

The threshold between order and 
chaos seems thin. A small perturba-
tion—such as a slight increase in the 
speed of Lucy’s conveyor belt—can ei-
ther do nothing or it can trigger an ava-
lanche of disorder. The speed of events 
within an avalanche overwhelms us, 
sweeps away structures that preserve 
order, and robs our ability to function. 
Quite a number of disasters, natural or 
human-made, have an avalanche char-
acter—earthquakes, snow cascades, 
infrastructure collapse during a hurri-
cane, or building collapse in a terror at-
tack. Disaster-recovery planners would 
dearly love to predict the onset of these 
events so that people can safely flee and 
first responders can restore order with 
recovery resources standing in reserve.

Disruptive innovation is also a form 
of avalanche. Businesses hope their 
new products will “go viral” and sweep 
away competitors. Competitors want to 
anticipate market avalanches and side-
step them. Leaders and planners would 
love to predict when an avalanche might 
occur and how extensive it might be.

In recent years complexity theory 
has given us a mathematics to deal 
with systems where avalanches are pos-
sible. Can this theory make the needed 
predictions where classical statistics 

cannot? Sadly, complexity theory can-
not do this. The theory is very good at 
explaining avalanches after they have 
happened, but generally useless for 
predicting when they will occur.

Complexity Theory
In 1984, a group of scientists founded 
the Santa Fe Institute to see if they could 
apply their knowledge of physics and 
mathematics to give a theory of chaotic 
behavior that would enable profession-
als and managers to move productively 
amid uncertainty. Over the years the best 
mathematical minds developed a beau-
tiful, rich theory of complex systems.

Traditional probability theory pro-
vides mathematical tools for dealing 
with uncertainty. It assumes the uncer-
tainty arises from random variables that 
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moment of collapse. In the sand pile, for 
example, most new grains lodge firmly 
into a place on the pile but occasionally 
one sets off an avalanche that changes 
the structure. In the Internet, malware 
can quickly travel via a hub to many 
nodes and cause a large-scale avalanche 
of disruption. In an economy, a new tech-
nology can suddenly trigger an avalanche 
that sweeps away an old structure of jobs 
and professions and establishes a new 
order, leaving many people stranded. 
Complexity theory tells us we frequently 
encounter systems that transition be-
tween stability and randomness.

Punctuated equilibrium appears dif-
ferently in different systems because 
self-organization manifests in differ-
ent ways. In the Internet, it may be the 
vulnerability to the failure of highly 
connected hubs. In a national highway 
system, it may be the collapse of mainte-
nance as more roads are added, bringing 
new traffic that deteriorates old roads 
faster. In geology, it may be the sudden 
earthquake that shatters a stable fault 
and produces a cascade of aftershocks. 
In a social system, it may be the outbreak 
of protests when people get “fed up.”

Explanations but Not Predictions
What can we learn from all this? Many 
systems have a strong social compo-
nent, which leads to forms of preferen-
tial attachment and power-laws govern-
ing the degrees of connectivity in the 

demonstrated the essence of complex-
ity theory.4 They observed a sand pile 
as it formed by dropping grains of sand 
on a flat surface. Most of the time, each 
new grain would settle into a stable posi-
tion on the growing cone of sand. But at 
unpredictable moments a grain would 
set off an avalanche of unpredictable 
size that cascaded down the side of the 
sand pile. The researchers measured the 
time intervals between avalanche starts 
and the sizes of avalanches. To their sur-
prise, these two random variables did 
not fit any classical probability distribu-
tion such as the Normal or Poisson dis-
tributions. Instead, their distributions 
followed a “power law,” meaning the 
probability of a sample of length x is pro-
portional to x–k, where k a fixed param-
eter of the random process. Power law 
distributions have a finite mean only if 
k>2 and variance only if k>3. This means 
a power law with k≤2 has no mean or 
variance. Its future is unpredictable. 
When 2<k≤3, the mean is finite but not 
the confidence interval. Bak et al. had 
discovered something different—a ran-
dom process whose future could not be 
predicted with any confidence.

This was not an isolated finding. Most 
of the random processes tied to chaotic 
situations obey a power law with k<3. For 
example, the appearance of new connec-
tions among Web pages is chaotic. The 
number of Web pages with x connec-
tions to other pages is proportional to 1/
x2—the random process of accumulating 
links produces 1/4 as many pages with 2x 
connections as with x connections. This 
was taken as both bad and good news 
for the Internet. The bad news is that be-
cause there are a very few “hubs”—serv-
ers hosting a very large number of con-
nections—an attacker could shatter the 
network into isolated pieces by bringing 
down the hubs. The good news is the 
vast majority of servers host few connec-
tions and thus random server failures 
are unlikely to shatter the network. What 
makes this happen is “preferential at-
tachment”—when a new Web page joins 
the network, it tends to connect with the 
most highly connected nodes already in 
the network. Startup company found-
ers try to plot strategies to bring about 
rapid adoption of their technologies and 
transform their new services into hubs.

Hundreds of processes in science and 
engineering follow power laws and their 
key variables are unpredictable. Innova-

tion experts believe innovations follow a 
power law—the number of innovations 
adopted by communities of size x is pro-
portional to x–2—not good news for start-
up companies hoping to predict their in-
novations will take over the market.

Later Bak1 developed a theory of un-
predictability that has subsequently been 
copied by popular writers like Nassim 
Nicholas Taleb and others.6 Bak called 
it punctuated equilibrium, a concept 
first proposed by Stephen Jay Gould and 
Niles Eldredge in 1972.3 The idea is that 
new members can join a complex system 
by fitting in to the existing structure; but 
occasionally, the structure passes a criti-
cal point and collapses and the process 
starts over. The community order that 
has worked for a long time can become 
brittle. Avalanche is an apt term for the 

Hundreds of 
processes in science 
and engineering 
follow power laws  
and their key 
variables  
are unpredictable.

Log-log plot of the exceedance versus intervals between terror attacks follows a straight line. 
Exceedance is the probability that an interval is greater than x (a tail of the distribution).  
A straight line on log-log plot is the signature of a power law; here the slope is –1.4, telling us 
the tails of the distribution are a power law y=x–1.4. Because 1.4 is less than 2, this distribution 
has no finite mean or standard deviation: the time to next terror attack is unpredictable.
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social network. These systems are sus-
ceptible to sudden changes of structure 
of unpredictable onset and extent. The 
best we can say is the conditions for av-
alanche are present but we cannot say 
with any certainty the avalanche will ac-
tually happen or, if it does, what its ex-
tent will be. In other words, we are able 
to explain an avalanche after it happens 
but we are profoundly unable to predict 
anything about it before it happens.

Earthquake preparedness is an ex-
ample in nature that does not depend 
on humans. Seismic experts can tell us 
where the fault lines are and compute 
the probabilities of earthquake on dif-
ferent faults. They cannot, however, 
predict when an earthquake will hap-
pen or how large it will be. In effect they 
are trying to predict when an earthy 
avalanche—collapse of structure in a 
section of earth’s crust—will happen. 
Similarly, snow experts know when con-
ditions are “ripe” for an avalanche and 
can call for evacuating the area. But they 
cannot know exactly where a snow ava-
lanche may start, or when, or how much 
snow will sweep down. These experts 
call on people to be prepared but few 
actually heed the advice and lay in nec-
essary supplies or make necessary con-
tingency plans.

Navigating in Uncertainty
Complexity researchers have turned 
to simulations of complex systems to 
see when avalanches happen and how 
large they are. These simulations often 
reveal regularities in the state spaces of 
those systems that can be usefully ex-
ploited to make predictions.

What are more pragmatic things 
we can do to cope with uncertainty? 
We can learn some lessons from those 
who must deal with disasters such as 
fires, earthquakes, floods, or terror at-
tacks. Their data shows the times be-
tween events and sizes of events follow 
power laws and cannot be predicted. 
Their coping strategy boils down to 
preparedness and resiliency. Prepared-
ness means to have recovery resources 
standing by in case of need. Resiliency 
means to rapidly bounce back and re-
store order and function.

They have worked out strategies to 
identify the situations most “ripe” for 
an avalanche. For instance, the power 
law for terror attacks shows that at-
tacks tend to cluster in time at a given 

location Thus, a next attack is more 
likely at the same location as the cur-
rent attack The preparedness strate-
gies include rapid mobilization of law 
enforcement just after an attack to 
counter the tendency for a new attack, 
and to identify optimal geographic 
locations for positioning recovery re-
sources and supplies. Resilience strat-
egies include rapidly mobilizing tech-
nicians and artisans to restore broken 
communications and facilities.

Uncertainty in Professional Work
What can we do when we find ourselves 
in chaotic situations and must still 
navigate through the uncertainty to 
achieve our goals?

One of the most difficult environ-
ments to navigate is the social space in 
which we perform our work. This space 
is dominated by choices that other peo-
ple make beyond our control. When we 
propose innovations, we are likely to en-
counter resistance from some sectors 
of our community that do not want the 
innovation; they can be quite inventive 
in finding ways to block our propos-
als.2 When we start new projects or even 
companies, we do not know whether our 
plans are going to take off or just wither 
away. Even in normal everyday working 
environments, conflicts and contingen-
cies suddenly arise and we must resolve 
them to keep moving forward.

The analogy of a surfer is useful in ap-
proaching these situations. A surfer aims 
to ride the waves to the shore without los-
ing balance and being swept under. The 
waves can be turbulent and unpredict-

able. The surfer must maintain balance, 
ride the crests moving toward the shore, 
and dodge side waves and cross currents. 
The surfer may need to jump to a new 
wave when the time is right, or quickly 
tack to avoid an unfavorable current or 
wind. Thus, the surfer generates a path 
through the turbulent waves.

In the social space, waves manifest 
as groups of people disposed to move 
in certain directions and not in oth-
ers—sometimes the waves appear as 
fads or “memes” and they have a mo-
mentum that is difficult to divert. As a 
professional, we become aware of these 
waves and try to harness them to carry 
us toward our goal. As each surprise 
pops up, we instinctively look for open-
ings into which we can move—and, 
more importantly, we create openings 
by starting conversations that assuage 
the concerns of those whose resistance 
threatens to block us. These little deals 
cut a path through the potential resis-
tance and get us to our goal.

The lesson here is that we listen for 
the waves, ride their momentum to-
ward our goal, and make adjustments 
by creating openings in our conversa-
tions with other people. At its best, the 
complexity theory helps us understand 
when a process is susceptible to unpre-
dictable avalanches. We move beyond 
the limitations of the theory by gener-
ating openings in our conversations 
with other people. 	
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One of the most 
difficult environments 
to navigate is  
the social space in 
which we perform  
our work. This space 
is dominated  
by choices that  
other people make 
beyond our control.




