
Shell

P. J. Denning

© 2022, P. J. Denning

© 2022, Peter J. Denning 2

Disclaimer:
– The examples following are illustrative and

may not match exactly the command
interpreters of real systems

– The parsing diagram and actions may contain
small errors

© 2022, Peter J. Denning 3

Purpose of Shell

• Listen for user to type command line.

• Parse command line to execution script.

• Construct a pipeline of virtual machines that implement
the execution script.

• Execute the virtual machine pipeline.

• Clean up and return to the listening state.

© 2022, Peter J. Denning 4

Shell Invokes Virtual Machines

• A common template for
the structure of all
processes.

• Created and deleted by
the virtual machines
level just below shell

• We use this simplified
version of VM template
in the examples to
follow

thr

IN OUT

args

par, sib, chi

AS

undone counter of
incomplete children

pointer to address
space image on disk

parent, sibling,
child pointers

arguments list

name of executing
thread

input, output info
object pointers

© 2022, Peter J. Denning 5

Example

1 VM1 = CREATE_VM(IN=VM17.IN, OUT=VM17.OUT, thr=”date.exe", par=VM17, sib=“”, …)
2 VM17.chi=VM1
2 COMPUTE
3 EXIT

[self=17]: the shell is process 17

date

SCRIPT:

© 2022, Peter J. Denning 6

Example

1 VM1 = CREATE_VM(IN=VM17.IN, OUT=VM17.OUT, thr=”cat.exe", par=VM17, sib=“”, …)
2 VM17.chi = VM1
3 VM1.args = ”A B C"
4 COMPUTE
5 EXIT

[self=17]

cat A B C

SCRIPT:

“cat” is a shorthand for
concatenate. This command
takes a list of files and
streams them one after the
next to the standard OUT.

© 2022, Peter J. Denning 7

Example

1 VM1 = CREATE_VM(IN=VM17.IN, OUT=VM17.OUT, thr=”cat.exe", par=VM17, sib=“”, …)

2 VM17.chi = VM1
3 VM1.IN = OPEN_FILE(“A”)
4 COMPUTE
5 EXIT

[self=17]

cat < A

SCRIPT:

When cat has no arguments,
it reads its standard IN and
passes it through to standard
OUT.

What is a Valid Command?

© 2022, Peter J. Denning 8

Standard format for a command line:

[cmd][<file][| cmd]*[> file]

cmd = name [args]

© 2022, Peter J. Denning 9

Command Language Grammar

line ::= cmd [<fn] [|cmd]* [>fn] EOL

cmd ::= cn [ar]*

cn ::= <any alpha string>

fn ::= <any alpha string>

ar ::= <any alpha string>

© 2022, Peter J. Denning 10

Parser -- “Heart of Shell”

• Analyze an expression, given as a string of characters, into syntactic
elements according to a given grammar.

• Build a script of actions that instruct virtual machine manager to
implement the meaning of the expression analyzed.

• If parser yields a complete script, then command line syntax is valid.

• If all files mentioned in script exist, then script ready for execution.

Implementation of Parser

• The following slides show the design of a parser
as a finite state machine.

• Each transition is labelled with a symbol read
from the input line.

• Each transition also generates a line or two of the
output script.

• You can skip these slides, if you are not interested
in all the detail.

© 2022, Peter J. Denning 11

© 2022, Peter J. Denning 12

This grammar can be represented as a
finite state accepter. It does not need a
push-down accepter because its grammar
is not self-embedding.

© 2022, Peter J. Denning 13

1 2

7

3 54

ar

cn
<

EOL

EOL

|

fn

EOL

6
> fn

8

ar

cn

|

>

|

EOL

EOL

>

© 2022, Peter J. Denning 14

Associate action code with each state. Action code examines
allowable symbols, specifies next state, and gives next entry in
output script. Script tells what OS calls are needed to
implement the command. Action code for state 0 initializes
counts (v,p) of virtual machines and pipes created.

Subroutine GET scans the input for tokens -- substrings
terminated by white space, operators, or EOL. GET returns the
next token.

Subroutine OUT outputs the given string after prefixing a line
number. Double quotes in OUT string mean: insert single
quote.

The name “self” refers to the VM in which the parser is
embedded. $x means a string obtained by substituting the
current value of x.

© 2022, Peter J. Denning 15

1 2

cn

1: item=GET
v++
if item.type=word then

{OUT "VM$v = CREATE_VM
(IN=VM$self.IN,
OUT=VM$self.OUT,
thr=""$item"",
par=VM$self,
sib=“”, …)"

OUT “VM$self.chi = VM$v”
goto 2}

else ERROR 1

ar

EOL

2: item=GET
args=""
while item.type=word do

{args=concat(args,item); item=GET}
OUT "VM$v.args=""$args"""
if item=EOL then

{OUT ”COMPUTE; EXIT"; goto 1}
else if item="<" then goto 3
else if item=">" then goto 5
else if item="|" then

{p++;
OUT "P$p = CREATE_PIPE()";
OUT "VM$v.OUT = OPEN_PIPE(P$p,w)"
goto 7}

else ERROR 2

<

|

>

5

3

7

0: v = 0
p = 0
goto 1

© 2022, Peter J. Denning 16

3 4
< fn

EOL

|

3: item=GET

if item.type=word then
{OUT "VM$v.IN = OPEN_FILE(""$fn"",r)"
goto 4}

else ERROR 3

4: item=GET
if item=EOL then

{OUT ”COMPUTE; EXIT"; goto 1}
else if item=">" then goto 5
else if item="|" then

{p++;
OUT "P$p = CREATE_PIPE()";
OUT "VM$v.OUT = OPEN_PIPE(P$p,w)"
goto 7}

else ERROR 4

>

7

5

1

© 2022, Peter J. Denning 17

5

EOL

6
fn

5: item=GET

if item.type=word then
{OUT "VM$v.OUT = OPEN_FILE(""$fn"",w)"
goto 6}

else ERROR 5

6: item=GET
if item=EOL then

{OUT ”COMPUTE; EXIT"; goto 1}
else ERROR 6

1

© 2022, Peter J. Denning 18

7 8

ar

cn

|

>

EOL

1

5

7: item=GET
prev=v
v++

if item.type=word then
{OUT "VM$v = CREATE_VM

(IN=OPEN_PIPE(P$p,r)
OUT=VM$self.OUT,
thr=""$item"",

par=VM$self,
sib=VM$prev, …)"

OUT “VM$self.chi = VM$v”
goto 8}

else ERROR 7

8: item=GET

args=""
while item.type=word do

{args=concat(args,item); item=GET}
OUT "VM$v.args=""$args"""
if item=EOL then

{OUT ”COMPUTE: EXIT"; goto 1}
else if item=">" then goto 5
else if item="|" then

{p++;
OUT "P$p = CREATE_PIPE()";

OUT "VM$v.OUT = OPEN_PIPE(P$p,w)"
goto 7}

else ERROR 8

© 2022, Peter J. Denning 19

Example

1 VM1 = CREATE_VM(IN=VM17.IN, OUT=VM17.OUT, thr="file", par=VM17, sib=“”, …)
2 VM1.args = "-v -u"
3 VM17.chi = VM1

4 VM1.IN = OPEN_FILE("cat")
5 P1 = CREATE_PIPE()
6 VM1.OUT = OPEN_PIPE(P1,w)
7 VM2 = CREATE_VM(IN=open_pipe(P1,r), OUT=VM17.OUT, thr="sort", par=VM17, sib=“VM1”, …)
8 VM17.chi=VM2

9 P2 = CREATE_PIPE()
10 VM2.OUT = OPEN_PIPE(P2,w)
11 VM3 = CREATE_VM(IN=open_pipe(P2,r), OUT=VM17.OUT, thr="fill", par=VM17, sib=“VM2”, …)
12 VM17.chi=VM3
13 VM3.OUT = OPEN_FILE("file")

14 COMPUTE
15 EXIT

[self=17]
file -v -u < cat | sort | fill > file

SCRIPT:

© 2022, Peter J. Denning 20

Example

Semantic interpretations would say “outfile” is an output file, “infile” an input file, and “cat” an
executable program.

Parser does not know this. Parser knows only that a token in the first position is interpreted as a
command name and a token following > or < is interpreted as a file name.

Thus, parser will seek to specify this structure for the example:

outfile < cat | sort > infile

DO NOT CONFUSE SYNTAX AND SEMATICS! --

outfile sortcat infile

pipe

Summary

• Shells invokes user-typed commands that are programs in
executable library

• Allows command pipelines and file redirection for the first
and last commands

• Syntax follows simple grammar
• Parser is finite state machine that generates scripts for the

virtual machine manager
• Shell does not “understand” meaning of any command or

file name

© 2022, Peter J. Denning 21

