
Shell	
Peter	J.	Denning	
5/20/19	
	
	
	

	

In	the	commercial	operating	systems	of	the	1950s	and	1960s,	programmers	had	
to	work	with	two	languages:	their	programming	language	(such	as	FORTRAN	or	
ALGOL)	for	their	applications	and	the	operating	system’s	command	language.		The	
command	language	was	a	set	of	statements	to	the	operating	system	instructing	it	on	
how	to	set	up	for	the	execution	of	a	program	–	for	example,	how	much	memory,	
which	tapes	needed	to	be	mounted	on	tape	drives,	and	which	external	files	needed	
to	be	opened.		These	command	languages	were	extremely	hard	to	use.		Many	users	
spent	as	much	time	debugging	their	commands	as	they	did	debugging	their	
programs.		It	was	a	mess.	

The	designers	of	Multics	in	the	mid	1960s	set	out	to	put	an	end	to	this	for	time-
sharing	systems.		Those	systems	accommodated	a	user	community	centered	around	
a	shared	file	system.		In	those	systems,	users	cycled	between	two	states:	thinking	
about	what	command	to	issue	next,	and	waiting	for	a	current	command	to	complete.		
The	file	system	contained	command	libraries	–	programs	that	perform	simple	
commands,	such	as	“list	all	the	files	in	a	directory”.		The	designers	saw	no	difference	
between	a	system-programmed	command	and	a	user-programmed	command:	both	
were	executable	files	that	could	be	called	into	action	by	typing	their	names.		They	
called	the	command	interpreter	program	the	shell	because	it	was	like	a	eggshell	
separating	the	innards	of	the	system	from	the	outside	world.		The	shell	contained	no	
commands	of	its	own.		It	simply	interpreted	what	the	user	typed	as	a	command	
name,	and	invoked	an	executable	program	of	that	name	from	the	library.	

The	first	Unix	system	simplified	the	shell	program	to	just	a	few	pages	of	C	code.		
(You	can	find	it	with	a	Web	search	for	“sh.c”.)		The	user	interface	was	not	at	all	
complex.		It	was	a	dramatic	change	from	the	command	language	interpreters	of	
early	operating	systems.	

The	simplicity	of	the	shell	rested	on	the	simplicity	of	the	execution	model.		The	
simplest	possible	shell	only	allowed	you	to	type	a	single	command	name	followed	by	
a	list	of	arguments:	

cmd args

It	is	easy	to	build	a	parser	that	picks	out	the	command	name	and	calls	a	library	
program	of	that	name	with	the	given	arguments.		In	our	terminology,	you	type	the	
name	of	a	command	and	the	shell	asks	the	operating	system	to	construct	a	virtual	
machine	(process)	running	that	program.		The	shell	cycled	between	two	states:	
listening	for	a	command	and	executing	the	command.		These	two	shell	states	
directly	mirror	the	user’s	think	state	(issuing	a	new	command)	and	waiting	state	
(waiting	for	a	response).		Thus	when	the	process	was	running,	its	parent	shell	was	

waiting,	and	when	the	process	was	finished,	its	parent	shell	was	awake	and	listening	
to	the	user.	

Shell	designers	soon	saw	that	a	simple	extension	to	the	above	idea	would	make	it	
more	powerful.		The	extension	was	the	pipeline.		A	series	of	processes	could	be	
executed	simultaneously	with	the	output	of	one	feeding	into	the	input	of	the	next:	

cmd args | cmd args | ... | cmd args

The	vertical	bar	is	a	“pipe”	symbol	and	represents	a	channel	that	conveys	the	output	
of	one	process	to	the	input	of	the	next.		Pipelines	allow	programmers	to	rapidly	
construct	more	complex	functions	from	building-blocks	in	the	library.	

To	accommodate	this,	the	virtual	machines	implementing	processes	use	a	
standard	input	and	output	that	could	be	connected	to	any	file	or	pipe.		Internally,	the	
virtual	machine	reads	from	its	standard	input	and	writes	into	its	standard	output,	
leaving	the	decision	of	what	to	plug	into	standard	input	or	output	to	run	time.		
Designers	noticed	that	files	and	pipes	are	instances	of	bit-streams;	they	said	that	any	
bit-stream	object	can	be	connected	to	a	virtual	machine’s	input	or	output.		With	
these	generalizations,	a	pipeline	consists	of	a	sequence	of	processes	connected	by	
pipes;	the	initial	process	may	have	either	its	parent’s	input	or	a	file	connected;	the	
final	process	may	have	either	its	parent’s	output	or	a	file	connected.			

cmd [args][< file] [| cmd [args]]* [> file]

As	an	example,	let’s	consider	the	Unix	cat	command.		This	command	takes	a	
series	of	files	as	arguments	and	generates	an	output	stream	consisting	of	the	listed	
files	run	together	one	after	the	next.		When	supplied	with	a	standard	input,	this	
command	ignores	its	arguments	and	instead	passes	the	input	stream	directly	to	the	
output	stream.		Thus	

cat A B

generates	the	concatenation	of	files	A	and B,	
cat A B > C

places	that	stream	into	file C and	
cat A B < D > C

copies	the	contents	of	D	into C	.		The	command	
cat A B | sort -d | print

concatenates	the	files A	and B,	sorts	the	result	by	lines	in	descending	order	of	the	
first	words,	and	streams	that	result	to	the	printer.	

Even	with	all	these	embellishments	the	original	shell	program	(sh.c)	was	small.		
Modern	shells	are	bigger	because	they	incorporate	a	few	commands	as	built-in	
commands	to	speed	them	up	(instead	of	loading	them	from	the	library)	and	because	
they	include	a	scripting	language	to	build	multi-line	shell	commands.	

