
Virtual Machine Basics

P. J. Denning

© 2022, P. J. Denning

© 2022 P. J. Denning 2

• User types command at
command line interface

• OS starts process running
the command code

• Provides input and output
pointers

A B

virtual
machine

“sort”

EXAMPLE:

sort A into B

create virtual machine
running “sort” code,
with file A as input and B
as output

© 2022 P. J. Denning 3

• Virtual machine is the standard structure that runs
a process
– “process is a program running on a virtual machine”

• Every command maps into one or more virtual
machines

© 2022 P. J. Denning 4

• Be aware that “virtual machine” has multiple
meanings in the OS world:
– Exact replica of hardware within a partition of memory

(IBM VMS)
– Simulation of one machine on another (Virtual PC)
– Abstract machines (level structured OS)
– Standard form for program-in-execution (Unix)

• For the kernel, we focus on the fourth meaning.

© 2022 P. J. Denning 5

What is a virtual machine?

• A simulated computational environment for a
program, consisting of
– An IN and OUT port
– A thread running a program
– A list of arguments (args)
– An address space holding code, data, stack
– A capability list
– Parent, children, and sibling pointers
– A current directory pointer
– A current set of search pathnames
– A count of undone children

© 2022 P. J. Denning 6

IN OUT

args

thread

P, C, S

addrsp

CD

PATH

vmc

undone

A virtual machine is a digital
object named by a virtual
machine capability, vmc

The VM itself is represented by a
VM control block formatted
according to this template

CL

© 2022 P. J. Denning 7

Virtual Machine Manager (VMM)
• A subsystem that manages all VMs

• Gives each VM a capability on creation
– (V, access, handle)

• Users present VM capabilities with requests to
perform operations on the VMs named by the
handles in those capabilities

© 2022 P. J. Denning 8

VMM

vmc1
vmc2
vmc3

vmc4
vmc5

User 1

User 2

?

Users hold capabilities to
the VM control blocks in
their C-lists (part of VM)

vmc5 is a dead capability
left over from prior delete

© 2022 P. J. Denning 9

Interface
• vmc = CREATE_VM(initial values)

– initial values list specifies value for each slot in template
– thread in the vm is initially suspended

• DELETE(vmc)
– delete VM and all its components

• COMPUTE(vmc)
– move the VM thread to the ready list for execution

• EXIT
final instruction of VM thread, “VM has finished its job”

© 2022 P. J. Denning 10

Execution Model

• Parent creates one or more children VMs, all initially in a
suspended state

• Parent interconnects VMs with pipes, attaches source object to
pipeline’s IN port and sink object to OUT port

• Parent issues COMPUTE(vmc) command, where vmc is the
capability for the first child linked to a list of siblings. This
command starts all children, sets UNDONE = children count,
and puts parent to sleep

• Each child completes with EXIT, which deducts 1 from UNDONE
count of parent and awakens parent when UNDONE = 0

© 2022 P. J. Denning 11

• This model ensures that parent and
children (as group) are mutually excluded
in their executions

• Therefore, no race conditions between
children and parent for use of parent’s
standard IN and OUT

© 2022 P. J. Denning 12

Command Interpreter (Shell)

• Listen for user to type line of text
• Using parser, decompose text into substrings, each

corresponding to four-part command component
• Create the VMs to carry out the pipe-connected commands
• With COMPUTE command set the VMs in motion; wait for all

its children to EXIT
• Clean up (DELETE the VMs)
• Generate command prompt and repeat

© 2022 P. J. Denning 13

date

keyboard display
“date”

vmc3

Each arrow represents a
capability. Thus the IN
port of vmc3 contains a
capability (dev, r, handle)
and OUT port contains
(dev, w, handle)

© 2022 P. J. Denning 14

date

keyboard display
“date”

vm3

By default, a new VM
inherits the standard IN
and OUT of its parent.

Typically IN = keyboard
and OUT = display.

If different IN or OUT is
needed, shell tells the
VMM what sources or
sinks to use.

© 2022 P. J. Denning 15

cat < testfile | sort -d

keyboard display

“cat”

vmc3

testfile

pc1 vmc4

“sort”
“-d”

© 2022 P. J. Denning 16

cat < testfile | sort -d

keyboard display

“cat”

vmc3

testfile

pc1 vmc4

vmc1

“sort”
“-d”

“shell”

© 2022 P. J. Denning 17

cat < testfile | sort -d

keyboard display

“cat”

vmc3

testfile

pc1 vmc4

vmc1

“sort”
“-d”

child

sibling

“shell”

© 2022 P. J. Denning 18

cat < testfile | sort -d

keyboard display

“cat”

vmc3

testfile

pc1 vmc4

vmc2

“sort”
“-d”

parent
parent

child

sibling

“shell”

© 2022 P. J. Denning 19

keyboard display

“cat”

vmc3

testfile

pc1 vmc4

vmc2

“sort”
“-d”

“shell”

“login”

parent

child

vmc1

© 2022 P. J. Denning 20

Recursive Shell

• “shell” is an allowable command --- creates a
new shell VM as child to the issuer

• “login” is an allowable command; logs out old
session (entire subtree from the login) and starts
over

© 2022 P. J. Denning 21

keyboard display

vmc2

“shell”

“login”

vmc1

vmc3

“shell”

Summary

• Virtual machine is a simulation of a
standard execution environment of any
process

• Parent virtual machine creates a group of
children to execute a command and waits
for all to finish before resuming

• All the components of a virtual machine are
implemented at lower levels of the OS

© 2022 P. J. Denning 22

