
Virtual	Machines	and	Processes	
Peter	J.	Denning	
5/20/19	
	
	
	

	

In	the	early	1960s,	a	debate	raged	among	operating	systems	designers	about	
how	to	characterize	the	activities	of	different	users	on	a	time-sharing	system.		The	
term	“process”	was	used	to	distinguish	the	evolving	sequence	of	actions	of	an	
executing	program	from	its	static	statements.		A	program	was	a	set	of	instructions	to	
control	a	machine;	a	process	was	the	dynamic	behavior	of	a	program	executing.		
Each	time	a	user	issued	a	command	to	the	operating	system,	the	operating	system	
would	initiate	a	process	to	execute	the	code	of	the	command.	

With	this	idea	in	mind,	it	became	clear	how	to	implement	processes	and	the	
mechanisms	for	scheduling	the	CPU	from	one	to	the	next	so	that	all	could	appear	to	
be	progressing	in	parallel.		Around	1965,	Edsger	Dijkstra	had	the	insight	that	an	
operating	system	should	be	designed	of	as	a	“society	of	harmoniously	cooperating	
sequential	processes.”		He	used	the	term	“harmonious”	to	recognize	that	
interactions	are	required	for	proper	coordination	of	action	and	interactions	must	be	
designed	properly	to	avoid	unwanted	behaviors	such	as	races	or	deadlocks.		By	
1970,	the	society-of-processes	principle	was	widely	accepted	by	designers	of	
operating	systems.	

For	a	while,	there	was	some	confusion	over	terminology.		Some	designers	said	
that	a	process	is	“a	program	in	execution	on	a	virtual	machine”;	a	virtual	machine	
was	a	simulation	of	the	CPU,	memory,	and	input-output	of	the	real	machine.		Others	
used	the	term	thread	to	mean	“the	sequence	of	instructions	executed	by	a	CPU	in	a	
program”.		Eventually	it	was	decided	that	a	thread	is	a	component	of	a	process,	and	
that	a	process	could	house	multiple	threads.		Today	the	term	process	is	synonymous	
with	virtual	machine	and	thread	with	the	execution	sequences	within	a	process.	

The	virtual	machines	level	of	the	OS	kernel	is	charged	with	the	responsibility	of	
creating	and	deleting	virtual	machines	and	connecting	them	together	as	needed	for	
for	proper	synchronization.		The	thread	component	of	a	virtual	machine	is	realized	
by	the	concurrency	level	of	the	OS;	that	level	creates	and	deletes	threads,	schedules	
them	for	time-slices	on	a	CPU,	and	synchronizes	them	with	semaphores.		Virtual	
machines	are	higher	up	in	the	OS	levels	because	they	also	contain	an	address	space	
component	in	which	the	threads	execute,	and	an	input-output	component	that	
connects	otherwise	independent	processes	together.		We	situated	the	virtual	
machine	manager	level	of	the	OS	above	information	objects	because	all	the	levels	
below	a	virtual	machine	provide	components	of	a	virtual	machine.	

The	virtual	machine	is	a	useful	way	to	isolate	processes	so	that	by	default	they	
cannot	interfere	with	one	another	or	see	each	other’s	memory.		The	input-output	



capabilities	of	virtual	machines	allow	processes	to	exchange	data	over	controlled	
channels	without	directly	accessing	their	address	spaces.	

The	term	virtual	machine	has	acquired	several	meanings	in	computer	science.		
One	is	the	simulation	of	one	machine	on	another;	this	allows	one	operating	system	
to	simulate	another	and	it	supports	portability	platforms	such	as	Java	Virtual	
Machine..		A	second	is	the	creation	of	replicas	of	the	CPU,	which	are	identical	to	the	
real	CPU	but	with	smaller	main	memory.		A	third	is	any	abstract	machine;	each	level	
of	the	OS	is	an	abstract	machine	that	manages	all	objects	of	a	given	kind.		A	fourth	is	
a	template	for	a	standard	form	of	implementing	a	process;	this	meaning	is	used	in	
Unix	and	is	the	basis	of	our	treatment	here.	


