
Stream Objects

Peter J. Denning

© 2022, Peter J. Denning

Two kinds of information object

• Streams
• Directories

• (Directories considered in next module.)

© 2022, Peter J. Denning 2

Streams

• Contents of file
• Flow on a channel
• Flow produced by input device
• Flow consumed by output device

© 2022, Peter J. Denning 3

file

bits flowing through are a stream

pipe (or other channel)

input
device

bits produced
are a stream

output
device

bits consumed
are a stream

bits of content
are a stream

write read

4© 2022, Peter J. Denning

virtual
machine

transforms
a stream

Streams allow great
flexibility in constructing
pipelines of virtual machines

IN OUT

file

pipe

input
device

file

pipe

output
device

5© 2022, Peter J. Denning

Files

• Named object containing a stream of bits of
definite length

• Complex structure when stored on disk
– File divided into equal size “records”
– Index table points to all the records
– File disk address = address of index table

• Need OPEN command to create file image in main
memory buffer for reading and writing.

© 2022, Peter J. Denning 6

• Problem: performance of direct read or
write would be unacceptable
– One disk access for each record
– Modified file may require overwriting of existing

records

• Solution: copy the records into a contiguous
file image in a main memory buffer
– Reads and writes access the buffer
– Disk accesses only when file opened or closed

© 2022, Peter J. Denning 7

i r

r

r

r

file
Fuser

read & write

OPEN

user asks to
open file F

OS translates file name
to address of index table

8© 2022, Peter J. Denning

user reads &
writes buffer

1

2

3

OPEN gathers
records into
contiguous

buffer4

CLOSE stores
buffer into new

records

5CLOSE

File system interface

• fc = CREATE_FILE()
– create index record with empty tree; create file

capability fc pointing to it

• DELETE_FILE(fc)
– remove index record fc and other records

• These commands can be done by any process

© 2022, Peter J. Denning 9

File system interface - 2

• bc = OPEN_FILE(fc)
– create buffer capability bc pointing to buffer; tag

buffer with fc; copy records in order into buffer; return
bc to user

• CLOSE_FILE(bc)
– copy contents of buffer as set of records to disk with

index table fc, replacing old records; delete buffer

• Most often used by shell when providing IN and
OUT pointers to virtual machines

© 2022, Peter J. Denning 10

File system interface - 3

• (A,L) = READ_FILE(bc)
– Copy buffer contents as stream of length L to

address space beginning at address A

• WRITE_FILE(bc,(A,L))
– copy stream (A,L) from address space to

buffer, reset buffer size to L

• Parent of virtual machines puts the bc
capabilities in the IN or OUT ports

© 2022, Peter J. Denning 11

Pipes

• Flow of bits from sender to receiver
• Indefinite length

– sender must append EOS (end of stream)
special symbol to mark the end

• Channel synchronized so that sender must
wait when channel full and receiver when it
is empty (the producer-consumer
relationship)

© 2022, Peter J. Denning 12

Pipes Interface

• pc = CREATE_PIPE()
– create a new pipe named by pipe capability pc
– set up the finite buffer to hold its contents

• DELETE_PIPE(pc)
– delete the pipe and buffer named by pc

© 2022, Peter J. Denning 13

Pipes Interface - 2

• pcr = OPEN_PIPE(pc,read)
pcw = OPEN_PIPE(pc,write)
– open the producer end for writing and return

pipe write capability pcw (has its w bit on), or
open the consumer end for reading and return
pipe read capability pcr (has its r bit on)

• CLOSE_PIPE (pc)
– close the pipe and its buffer

© 2022, Peter J. Denning 14

Pipes Interface - 3

• L = READ_PIPE(pcr,A,m)
– read L ≤ m bytes from the pipe (P-C

synchronization), leaving stream (A,L) in
caller’s address space; L may be <m if EOS
encountered

• WRITE_PIPE(pcw,(A,L))
– copy stream (A,L) from caller’s address space

to the pipe (P-C synchronization)

© 2022, Peter J. Denning 15

Devices

• Separate pieces of hardware that generate
streams (input) or consume streams (output)

• Devices generally deal with fixed-size chunks of
streams, leaving assembly into full stream to a
higher-level process

• Drivers are a major source of bugs. Therefore, OS
associates devices as private objects of certain
service processes, where proper use of the
interface can be assured.

© 2022, Peter J. Denning 16

Device interface

• dc = CREATE_DEVICE(device-driver-file)
– Install the given file and return a device

capability pointing to it

• DELETE_DEVICE(dc)
– Uninstall the driver named by dc

© 2022, Peter J. Denning 17

Device interface - 2

• dbc = OPEN_DEVICE(dc)
– Create a buffer to hold device stream chunks,

return capability pointing to it

• CLOSE_DEVICE(dbc)
– Delete the open buffer dbc

• READ_DEVICE(dbc) and WRITE_DEVICE(dbc)
– move one chunk between service process and

device; service process gathers chunks into streams
© 2022, Peter J. Denning 18

Common Interface

• Generic interface for CREATE, DELETE,
OPEN, CLOSE, READ, WRITE permits virtual
machines to read IN and write OUT
regardless of the type of stream object IN
and OUT are connected to

© 2022, Peter J. Denning 19

Common Interface - 2

• Generic CREATE and DELETE
• c=CREATE(X)

– X is the type of stream object (file, pipe, device)
– create an empty version of the object and

capability c pointing to it

• DELETE(c)
– delete the object pointed to by c

© 2022, Peter J. Denning 20

Common Interface - 3
• Generic OPEN and CLOSE
• b=OPEN(c)

– X = c.type (file, pipe, device)
– route call to OPEN_X(c)
– return b, capability pointing to the buffer

• CLOSE(b)
– X = type of object in buffer b
– route call to CLOSE_X(b)

© 2022, Peter J. Denning 21

Common Interface - 4

• Generic READ and WRITE
• (A,L) = READ(bc)

– X = type of object in buffer bc
– route call to READ_X(bc)

• WRITE(bc,(A,L))
– X = type of object in buffer bc
– route call to WRITE_X(bc,(A,L))

© 2022, Peter J. Denning 22

virtual
machine

bc pcw

IN OUT

In the IN port, the parent of this VM provided a buffer capability bc for an opened
file. The READ(IN) command within the virtual machine calls READ_FILE(bc) on
seeing that the type of the IN capability is for an open file buffer.

In the OUT port, the parent of this VM provided an open pipe write capability
pcw. The WRITE(OUT) command calls WRITE_PIPE(pcw,(A,L)) on seeing that the
type of the OUT capability is for the producer end of a pipe.

23© 2022, Peter J. Denning

Summary

• Streams: the abstraction used by files,
pipes, and devices

• Allows for a generic interface within VMs
that reads (writes) from (to) any stream

• The parent of the VM simply inserts
appropriate stream capabilities into the
VM’s IN and OUT ports

© 2022, Peter J. Denning 24

