
Access Controls

Peter J. Denning

1© 2022, Peter J Denning

Access Rights

• Object owners specify who has what access
to their objects

• No access allowed without authorization

© 2022, Peter J Denning 2

Reference Monitor Principle
• Every reference to an object is validated
• To attempt access

– process calls a function in the API of an object manager
– parameter is pointer to object

• Each attempted access checked for authorization
• Authorization checks performed by object managers

– Virtual memory system checks accesses to frames
– File system checks access to files
– Directory system checks access to directories

© 2022, Peter J Denning 3

Example: Page Access

• Virtual memory system is reference monitor
• 3-bit access code specifies which of rwe are

allowed for each page
• Page access codes stored in page table,

enforced by MMU

© 2022, Peter J Denning 4

Example: File Access

• File system is reference monitor
• Operations: open, close, read, write
• 4-bit access code specifies which of

ocrw are allowed

© 2022, Peter J Denning 5

Access Matrix

A conceptual model to represent
what access rights each user has
for each object in the system

© 2022, Peter J Denning 6

r o, c, r start
exit

r, w r suspend
resume

e

w

o, c, r, w

w start
exit

U1

U2

U3

U4

O1
page

O2
file

O3
pipe

O5
VM

© 2022, Peter J Denning 7

search

search
insert

search

search
rename

O4
dir

Representing Access Matrix

Storage by columns
– ACL -- Access Control List for particular object
– ACL entries of form (U,R) declaring that user U

has rights R for the object
– ACL does not store blank access matrix entries

ACL linked to object
– Easy verification of requested access to object
– Edits take effect immediately

© 2022, Peter J Denning 8

© 2022, Peter J Denning

Virtual Machine

user=U3
O2 (file) ACL[O2]

U1: o,c,r

U3: w

U4: o,c,r,w

U3 says “READ(O2)”
READ searches ACL[O2] for U3
(U3:w) does not allow read
FAILURE

U3 says “WRITE(O2)”
WRITE searches ACL[O2] for U3
(U3:w) allows write
SUCCESS

WRITE(O2)

READ(O2)

9

X

ACL Implementation Expensive

• Each attempted access requires a search of
ACL to validate

• ACL can contain thousands of entries
• Need low overhead implementation

10© 2022, Peter J Denning

UNIX Method

• Classify users into three groups
– Owner
– Group selected by owner (by special commands)
– Everyone else (the world)

• Specify 3-bit code (rwe) for each group
• The resulting 9-bit code is an ACL
• Store the 9-bit ACL in the directory entry

11© 2022, Peter J Denning

UNIX Method Critique

• Very fast … BUT
• No granularity

– Typically owner v. world
– Few use “groups”, not easy to update

• Cannot confine untrusted software
– External objects must be enabled for “world”
– Makes web-page based malware attacks easy

12© 2022, Peter J Denning

Capabilities: efficient alternative

• File system a running example
• Virtual machine of user U asks to read a file

with handle h
• File system verifies that U has read access to h
• Encode this verification as c=(file, r, h)
• This bundle c is called a capability

13© 2022, Peter J Denning

Capability is Access Ticket

• Now VM[U] uses c as pointer, READ_FILE(c)
– Verify that c.type = file
– Verify that c.access allows read
– Map c.handle to file

• Very efficient, like UNIX, and allows for very
fine-grained access controls, unlike UNIX

• Capability must be unforgeable --
protected from alteration after creation

14© 2022, Peter J Denning

Protecting Capabilities

• Keep them in protected tables in kernel space … give
processes indirect address via the tables
– Just like page tables

• The protected table of a process is called its C-list
(capability list) and is stored in kernel memory

• Process can access only the objects listed in its C-list
• Pointer to C-list is in the process’s Virtual Machine

15© 2022, Peter J Denning

© 2022, Peter J Denning

Virtual Machine

user=U3

O2 (file)

CL[U3]

F,w,O2-handle

P,w,O3-handle
VM[U3] calls “READ(1)”
READ retrieves entry 1 of CL[U3]
(F,w,O2-handle) disallows read
FAILURE

VM[U3] calls “WRITE(1)”
WRITE retrieves entry 1 of CL[U3]
(F,w,O2-handle) allows write
SUCCESS

1

2

16

X

D,s,O4-handle3

These capabilities encode
the access matrix row for U3

V,se,O5-handle4

Storage by rows

Capability lists can be viewed as
encodings of the rows of access matrix

17© 2022, Peter J Denning

Summary

• Access control essential but difficult
• ACL

– Natural and intuitive
– Modified permissions immediately effective

• Capabilities
– Pre-validated capabilities efficient
– Easy to share but not easy to revoke

© 2022, Peter J Denning 18

