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Purpose

• Enable a process to perform an operation on an 
object given its name

• Two questions:
1. How to find the object in the (vast) memory space?
2. How to tell if requesting process is authorized?

• This chapter focuses on question 1
• Next chapter focuses on question 2
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Name Space

• Set of all names satisfying a given syntax format 
and mappable to objects
– All possible addresses in a virtual memory
– All possible pathnames in a directory hierarchy
– All possible hostnames in Internet
– All possible IP addresses
– All possible URLs

• Can be bounded or unbounded in size
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Name Map

• A table (or tables) associating names with 
pointers to their locations in memory or network
– Examples: page table, interrupt vector, kernel entry 

vector, process control block list, semaphore control 
block list, file index table, file directory, + more

• Translation: process of using the table to map a 
name to its location pointer
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Mapping Tables

• A table whose entries associate names of 
objects with with object locations
– Names have fixed maximum length k bits
– Name space is 2k names

• Two table types:
– If 2k small enough, use index table
– Otherwise, use associative or hash table
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Index Table

• k-bit names: name n is one of 0,1,2,…,2k-1
• Table of size 2k, one row for each possible name
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n x

pointers

object

If names are 
integers 0,1,…,2k-1 
use name n as 
offset index

Example: page 
table: n is page 
number, x is 
frame address, 
object is page 
frame
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Associative Table
• Used when 2k too large but number of names is not
• Associative table with one row for each known name 
• No duplicate names allowed
• How to efficiently search key column for a match on n?
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n x

keys pointers

object

For small tables, 
such as directories, 
linear search is fine
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Associative Table
• Used when 2k too large but number of names is not
• Associative table with one row for each known name 
• No duplicate names allowed
• How to efficiently search key column for a match on N?
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n x

keys pointers

object

For large tables 
such as all file 
handles, linear 
search would take 
average of 2k-1

comparisons to 
complete the 
translation – way 
too slow
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Hash Table
• Use hash function H to reduce bits of name to an m-bit hash r
• Choose m so that 2m is manageable
• Hash table is index table with indices 0,1,…,2m-1
• Each entry a linked list of all items that hash there
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block1 (n,x)

HT

object

r block3 blockN

HT[r] entry is start of chain of blocks.  
Each contains a (name, object) pair and a 
pointer to the next block (if any).  Search 
chain for n’s block.

Hn . . .
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Hash Table - 2
• Set m approx log2(number of names actually used)
• Then most chains will be 1 or 2 long – search finds the 

block for n with just 1 or 2 comparisons
• Very good standard hash functions available
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Mapping Accelerators

• A cache can accelerate the mapping process
• A cache is a stored copy of an object (or pointer 

to) in local fast memory
• Some mapping methods follow long chains

– Pathnames in directory trees
– Multiple levels of tables (to be discussed)

• After first access (following the full chain) store 
the begin and end points in a cache, bypass the 
chain on future references
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Mapping Accelerators - 2

• Examples
– TLB in virtual memory: bypass PT lookup and increase 

average speed by nearly 2x
– Alias on your desktop
– Recent file lists in apps
– Web browser cache of recent web pages

© 2022, Peter J Denning 12



Three kinds of map

• Front end: convert name to handle
– Intelligibility

• Middle: convert handle to descriptor
– Location independence
– Sharing

• Back end: convert descriptor to memory address
– Memory access
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Reminder: handle is 
OS generated bit 
string unique for all 
time (never reused)
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Used Together as Building Blocks

front middle back

symbolic 
name

handle descriptor memory 
address

directories object 
manager 

hash table

object 
control 
block

Example:
Map symbolic file name to file handle

then to file control block
then to disk address of the file
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Front End Mappings

• OS example: directories
• Each entry pairs a symbolic name n with a capability 

c=(t,a,h)=(type,access,handle) pointing to an object
• No duplicate names in a directory
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n            c object

d d = directory capability

c = SEARCH(d,n)

c.h points to object, via middle 
and back end mappings

pathname equivalent to series 
of directory handles
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Front End Mappings - 2

• Internet example: Domain Name Service (DNS)
• Converts symbolic string hostname to an IP 

address
– IP address a handle
– E.g., nps.edu maps to 205.155.65.226

• DNS lookup part of http protocol
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Front End Mappings - 3

• Web example: URL = hostname/pathname
• http maps hostname to IP with DNS

– http sends pathname as string to IP
– That machine resolves the pathname by a series of 

directory searches in its local directory tree, yielding 
the handle of the named object

– Contents of object transmitted back to sender 
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Middle Maps

• Convert handle to descriptor
• Object managers

– Generate unique handles for objects at their creation
– Maintain internal table mapping handles to descriptors
– Embed handles inside capabilities before returning them

• User processes (e.g., shell) place new capabilities in 
directories where they cannot be altered
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Back End Maps

• Extract location information from descriptor
• Descriptor is an “object control block” that 

contains all information needed to locate object in 
memory or network

• Single descriptor for each object
• Relocate object?  Update descriptor – immediately 

effective for all processes using object 
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Example: virtual memory

• Page numbers are handles
• Page table entries are capabilities with 

access=access bits, handle=frame-number
• MMU gets frame address from page table 

entry
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Example: file system

• File identifiers are handles
• File system maps handles to file descriptors
• Extracts file location on disk from descriptor

© 2022, Peter J Denning 21



Example: directory system

• Directory stores pairs (name, capability)
• Names are keys to directory search
• Search finds entry, returns associated 

capability
• Capability can then be presented to the 

object manager for its kind of object
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Enabling sharing

• Sharing accomplished by giving capabilities containing the 
same handle to all processes using the digital object

• Each capability can have its own access code
• All map to the same, single descriptor
• Change the object location or length: update descriptor, then 

all those sharing see the change immediately
• What goes wrong if you allow multiple copies of a descriptor?
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PT (process 1)

f

PT (process 1)

5

72

Two processes 
using different page 
numbers point to 
the same object.

The descriptor 
(here, frame 
number) is stored 
in each page table.

f
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If the object is 
moved, OS has to 
find all page tables 
and update their 
descriptors – and 
suspend all the 
participating 
processes until the 
update is done.
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object

PT (process 1)

h

PT (process 1)

5

72 One descriptor
Many copies of handle
Hash table
Update effective instantly
Delete DT entry = delete object
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Descriptor Table

h             f

Each process caches its 
recent mapping paths, 
such as (5,f) or (72,f)
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Summary
• Names and name spaces
• Maps as tables
• Caching mapping paths
• Three levels of maps

– Front map: string to handle
– Middle map: handle to descriptor
– Back map: descriptor to memory

• Handles embedded in capabilities
• Sharing enabled by sharing of capabilities
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