
Name Mappings

Peter J. Denning

© 2022, Peter J Denning

Purpose

• Enable a process to perform an operation on an
object given its name

• Two questions:
1. How to find the object in the (vast) memory space?
2. How to tell if requesting process is authorized?

• This chapter focuses on question 1
• Next chapter focuses on question 2

© 2022, Peter J Denning 2

Name Space

• Set of all names satisfying a given syntax format
and mappable to objects
– All possible addresses in a virtual memory
– All possible pathnames in a directory hierarchy
– All possible hostnames in Internet
– All possible IP addresses
– All possible URLs

• Can be bounded or unbounded in size

© 2022, Peter J Denning 3

Name Map

• A table (or tables) associating names with
pointers to their locations in memory or network
– Examples: page table, interrupt vector, kernel entry

vector, process control block list, semaphore control
block list, file index table, file directory, + more

• Translation: process of using the table to map a
name to its location pointer

© 2022, Peter J Denning 4

Mapping Tables

• A table whose entries associate names of
objects with with object locations
– Names have fixed maximum length k bits
– Name space is 2k names

• Two table types:
– If 2k small enough, use index table
– Otherwise, use associative or hash table

© 2022, Peter J Denning 5

Index Table

• k-bit names: name n is one of 0,1,2,…,2k-1
• Table of size 2k, one row for each possible name

© 2022, Peter J Denning

n x

pointers

object

If names are
integers 0,1,…,2k-1
use name n as
offset index

Example: page
table: n is page
number, x is
frame address,
object is page
frame

6

Associative Table
• Used when 2k too large but number of names is not
• Associative table with one row for each known name
• No duplicate names allowed
• How to efficiently search key column for a match on n?

© 2022, Peter J Denning

n x

keys pointers

object

For small tables,
such as directories,
linear search is fine

7

Associative Table
• Used when 2k too large but number of names is not
• Associative table with one row for each known name
• No duplicate names allowed
• How to efficiently search key column for a match on N?

© 2022, Peter J Denning

n x

keys pointers

object

For large tables
such as all file
handles, linear
search would take
average of 2k-1

comparisons to
complete the
translation – way
too slow

8

Hash Table
• Use hash function H to reduce bits of name to an m-bit hash r
• Choose m so that 2m is manageable
• Hash table is index table with indices 0,1,…,2m-1
• Each entry a linked list of all items that hash there

© 2022, Peter J Denning

block1 (n,x)

HT

object

r block3 blockN

HT[r] entry is start of chain of blocks.
Each contains a (name, object) pair and a
pointer to the next block (if any). Search
chain for n’s block.

Hn . . .

9

Hash Table - 2
• Set m approx log2(number of names actually used)
• Then most chains will be 1 or 2 long – search finds the

block for n with just 1 or 2 comparisons
• Very good standard hash functions available

© 2022, Peter J Denning 10

Mapping Accelerators

• A cache can accelerate the mapping process
• A cache is a stored copy of an object (or pointer

to) in local fast memory
• Some mapping methods follow long chains

– Pathnames in directory trees
– Multiple levels of tables (to be discussed)

• After first access (following the full chain) store
the begin and end points in a cache, bypass the
chain on future references

© 2022, Peter J Denning 11

Mapping Accelerators - 2

• Examples
– TLB in virtual memory: bypass PT lookup and increase

average speed by nearly 2x
– Alias on your desktop
– Recent file lists in apps
– Web browser cache of recent web pages

© 2022, Peter J Denning 12

Three kinds of map

• Front end: convert name to handle
– Intelligibility

• Middle: convert handle to descriptor
– Location independence
– Sharing

• Back end: convert descriptor to memory address
– Memory access

© 2022, Peter J Denning

Reminder: handle is
OS generated bit
string unique for all
time (never reused)

13

Used Together as Building Blocks

front middle back

symbolic
name

handle descriptor memory
address

directories object
manager

hash table

object
control
block

Example:
Map symbolic file name to file handle

then to file control block
then to disk address of the file

© 2022, Peter J Denning 14

Front End Mappings

• OS example: directories
• Each entry pairs a symbolic name n with a capability

c=(t,a,h)=(type,access,handle) pointing to an object
• No duplicate names in a directory

© 2022, Peter J Denning

n c object

d d = directory capability

c = SEARCH(d,n)

c.h points to object, via middle
and back end mappings

pathname equivalent to series
of directory handles

15

Front End Mappings - 2

• Internet example: Domain Name Service (DNS)
• Converts symbolic string hostname to an IP

address
– IP address a handle
– E.g., nps.edu maps to 205.155.65.226

• DNS lookup part of http protocol

© 2022, Peter J Denning 16

Front End Mappings - 3

• Web example: URL = hostname/pathname
• http maps hostname to IP with DNS

– http sends pathname as string to IP
– That machine resolves the pathname by a series of

directory searches in its local directory tree, yielding
the handle of the named object

– Contents of object transmitted back to sender

© 2022, Peter J Denning 17

Middle Maps

• Convert handle to descriptor
• Object managers

– Generate unique handles for objects at their creation
– Maintain internal table mapping handles to descriptors
– Embed handles inside capabilities before returning them

• User processes (e.g., shell) place new capabilities in
directories where they cannot be altered

© 2022, Peter J Denning 18

Back End Maps

• Extract location information from descriptor
• Descriptor is an “object control block” that

contains all information needed to locate object in
memory or network

• Single descriptor for each object
• Relocate object? Update descriptor – immediately

effective for all processes using object

© 2022, Peter J Denning 19

Example: virtual memory

• Page numbers are handles
• Page table entries are capabilities with

access=access bits, handle=frame-number
• MMU gets frame address from page table

entry

© 2022, Peter J Denning 20

Example: file system

• File identifiers are handles
• File system maps handles to file descriptors
• Extracts file location on disk from descriptor

© 2022, Peter J Denning 21

Example: directory system

• Directory stores pairs (name, capability)
• Names are keys to directory search
• Search finds entry, returns associated

capability
• Capability can then be presented to the

object manager for its kind of object

© 2022, Peter J Denning 22

Enabling sharing

• Sharing accomplished by giving capabilities containing the
same handle to all processes using the digital object

• Each capability can have its own access code
• All map to the same, single descriptor
• Change the object location or length: update descriptor, then

all those sharing see the change immediately
• What goes wrong if you allow multiple copies of a descriptor?

© 2022, Peter J Denning 23

f

object

PT (process 1)

f

PT (process 1)

5

72

Two processes
using different page
numbers point to
the same object.

The descriptor
(here, frame
number) is stored
in each page table.

f

© 2022, Peter J Denning

If the object is
moved, OS has to
find all page tables
and update their
descriptors – and
suspend all the
participating
processes until the
update is done.

24

h

object

PT (process 1)

h

PT (process 1)

5

72 One descriptor
Many copies of handle
Hash table
Update effective instantly
Delete DT entry = delete object

© 2022, Peter J Denning

Descriptor Table

h f

Each process caches its
recent mapping paths,
such as (5,f) or (72,f)

25

Summary
• Names and name spaces
• Maps as tables
• Caching mapping paths
• Three levels of maps

– Front map: string to handle
– Middle map: handle to descriptor
– Back map: descriptor to memory

• Handles embedded in capabilities
• Sharing enabled by sharing of capabilities

© 2022, Peter J Denning 26

