
Internet	Address	Space	
Peter	J.	Denning	
3/9/19	
	
	
	
The	OS	manages	a	large	number	of	users	and	their	digital	objects	(files,	images,	
music,	videos,	memory	regions,	etc).		Every	digital	object	has	a	name	--	a	string	of	
bits	or	symbols	that	designates	it	and	allows	users	to	access	it.		Names	come	in	
many	forms.			The	most	common	are:	

1. Addresses	--	bit	strings	that	designate	locations	in	storage	media	and	are	
processed	by	the	hardware.	

2. Handles	(pointers)	--	strings	that	point	to	names.		A	handle	points	to	a	name,	
not	a	location.	

3. Symbolic	strings	--	strings	of	ASCII	symbols	chosen	by	users	to	name	their	
objects.	

4. Pathnames	--	sequences	of	symbolic	strings	tracing	a	path	through	the	
directory	structure	(for	example,	/usr/dev/printer	in	UNIX	or	LINUX).	

5. Descriptors	–	strings	of	the	form	(base,	length)	that	designate	a	memory	
region.	

6. Internet	host	names		--		strings	of	the	form	host.domain	that	identify	a	unique	
host	within	the	given	domain	(for	example,	nps.edu).	

7. Internet	URLs	--	strings	of	the	form	hostname/pathname	that	identify	a	file	
on	the	host	by	giving	its	pathname	in	the	host’s	directory	structure	(for	
example,	jay.nps.edu/usr/dev/printer).	

8. Capabilities	--	unforgeable	certificates	that	name	an	object	and	grant	a	
particular	access	to	the	object.		Objects	stored	in	directory	systems	have	
access	control	lists	(ACL)	specifying	which	users	have	access	and	what	each	
of	their	permissions	is.		Permissions	must	be	checked	on	each	requested	
access;	verifying	them	with	an	ACL	is	expensive	because	of	searching	the	
ACL.		A	capability	can	be	derived	from	an	ACL	and	is	like	a	ticket	granting	
immediate	access.		Processing	a	capability	is	very	fast	because	the	ACL	check	
has	already	been	done	and	is	embedded	in	the	capability.	

We	have	already	encountered	the	first	five	kinds	of	addresses	in	the	
microkernel.		In	this	module,	we	examine	two	schemes	for	naming	objects	in	a	
distributed	network	such	as	the	Internet:	the	URL	and	the	capability.		In	all	cases,	
the	OS	is	engaged	in	mapping	names	to	the	locations	of	objects.	

The	term	binding	means	that	the	OS	has	recorded	an	association	of	name-to-
object	in	its	data	structures.		Static	binding	means	that	the	association	does	not	



change	during	execution.		Dynamic	binding	means	that	the	OS	can	change	the	
association	during	execution.		Dynamic	binding	allows	great	flexibility	in	moving	
things	around	without	changing	their	names	--	thereby	achieving	some	degree	of	
location	independence	--	and	is	used	throughout	the	OS.	

Location	independence	is	important	when	a	user	is	part	of	a	large	network.		The	
user	wants	access	to	files	and	services	from	anywhere	in	the	network,	with	names	
that	do	not	change	if	the	file,	service,	or	user’s	location	moves.		Cloud	computing	
relies	heavily	on	this	principle.			For	example,	the	binding	of	an	Internet	hostname	to	
a	physical	host	is	recorded	in	the	Domain	Name	Service	(DNS);	the	host	owner	can	
move	the	host	to	a	new	location	with	a	new	Internet	Protocol	(IP)	address	and	
simply	update	the	registration	in	the	DNS.		The	binding	of	a	pathname	to	a	physical	
file	is	composed	of	two	smaller	bindings:	the	pathname	points	to	an	entry	in	a	
directory,	which	contains	a	handle	pointing	to	the	actual	file.			The	two-level	binding	
enables	sharing	the	file	because	many	users	can	have	a	copy	of	the	same	handle	in	
their	directories,	but	with	different	pathnames.	

	

Access	Control	
All	digital	objects	are	subject	to	access	controls	specified	by	their	owners.		

Access	controls	say	who	is	allowed	what	kinds	of	access	to	a	specific	object.		For	
example,	to	allow	user	rlb	to	read	and	write	a	file	named	“temp”,	an	owner	would	
place	the	entry	“rlb:	rw”	in	the	access	control	list	(ACL)	of	file	“temp”.		ACLs	were	
first	used	in	the	file	systems	of	the	1960s.		They	are	convenient	and	any	updates	are	
immediately	effective.		But	they	are	also	not	very	efficient	because	they	have	to	be	
stored	in	separate	files;	opening	a	file	thus	means	to	open	two	files	(the	file	and	its	
ACL).	

UNIX	tried	to	eliminate	the	separate	ACL	by	collapsing	all	file	permissions	into	9	
bits.		UNIX	divides	users	into	three	kinds:	self,	group,	and	world.		“Self”	is	the	owner,	
“group”	is	a	list	of	users	specified	by	the	owner,	and	“world”	is	everyone	else.		Three	
bits	rwx	for	read-write-execute	permission	are	specified	for	each	group.		These	9	
bits	are	stored	in	the	directory	entry	for	the	file,	where	they	can	be	rapidly	checked	
by	the	file	system	when	a	process	wants	to	access	the	file.	

In	1966	Jack	Dennis	and	Earl	Van	Horn	of	MIT	invented	another	way	to	manage	
access:	capabilities.		A	capability	is	an	unforgeable	pointer	that	contains	the	allowed	
access	codes	to	an	object.		Let’s	say	process	P	creates	a	new	file	F	with	open,	read,	
and	write	permissions.		The	OS	makes	a	capability	that	says	(file,	orw,	F)	and	places	
it	in	a	data	structure	attached	to	the	process,	called	C-list	(for	capability	list).		The	C-
list	is	in	kernel	space	and	not	accessible	to	the	process.		The	capability	is	tagged	with	
the	type	of	object	it	points	to,	so	that	it	will	only	work	with	object	manager	of	that	
type.		Let’s	say	the	above	capability	is	at	position	i	in	the	C-list	of	process	P;	P	can	
open	the	file	with	the	kernel	call	OPEN_FILE(i).	The	OPEN_FILE program	gets	
the	capability	(file,	orw,	F)	from	position	i	in	P’s	C-list,	validates	that	its	tag	is	“file”	
and	that	the	open	permission	bit	is	on,	and	then	opens	the	file.		Thus,	you	can	think	



of	capabilities	as	pre-approved	accesses	could	be	in	an	ACL	but	are	now	encoded	
into	a	capability	for	rapid	processing.	

	
Internet	Names	

The	designers	of	the	Internet	created	a	hierarchical	system	for	naming	all	the	
hosts	(individual	computers)	in	the	network.		The	topmost	domains	were	for	
industry	sectors	such	as	.com,	.edu,	and	.org.		Within	each	sector	is	a	registrar	that	
hands	out	host	names	within	the	sector;	for	example,	the	.edu	registrar	gave	the	
Naval	Postgraduate	School	the	name	nps.edu.		In	its	turn	the	internal	NPS	registrar	
can	designate	internal	subdomains	such	as	intranet.nps.edu.		Registrars	are	not	
allowed	to	duplicate	names.		This	scheme	gives	each	host	a	unique	name	and	
spreads	the	workload	of	maintaining	names	across	many	registrars.	

The	designers	also	created	a	system	of	numerical	addresses	for	hosts,	known	as	
IP	addresses.		They	are	expressed	as	four	blocks	of	three	digits,	such	as	
172.20.108.202.		These	addresses	are	used	by	the	Internet	Protocol	(IP)	to	rapidly	
route	messages	to	hosts.		The	Internet	domain	name	service	(DNS)	is	a	distributed	
database	that	maps	host	names	(such	as	python.nps.edu)	to	IP	addresses.	

The	designers	of	the	Internet	also	invented	the	URL	(uniform	resource	locator),	
which	is	a	string	of	the	form	hostname/pathname.		The	hostname	is	the	name	of	a	
host	as	described	above.		The	pathname	is	the	path	of	a	digital	object	in	the	host’s	
directory	system.		The	URL	gives	a	unique	name	for	every	object	in	the	Internet.		To	
read	the	file	hostname/pathname,	the	user	employs	a	protocol	http	by	typing	
http://hostname/pathname	to	a	browser;	the	protocol	sends	messages	to	the	target	
host,	which	looks	up	the	file	in	its	local	system,	checks	that	read	access	is	permitted	
by	the	access	code,	and	then	transmits	the	contents	of	the	file	back	to	the	calling	
browser.	

	
Capabilities	

A	capability	contains	an	object	type	tag,	an	access	code,	and	a	handle	(unique	
pointer)	to	an	object.		The	tag	tells	what	type	of	object	is	designated	by	the	
capability	–	for	example,	file	or	process.		Thus,	a	capability	c	=	(file,	orw,	handle)	
says	that	the	user	holding	it	has	open,	read,	and	write	access	to	the	file	designated	
by	the	handle	pointer.		A	capability	c	=	(process,	suspend,	handle)	says	that	the	user	
holding	it	has	the	authority	to	suspend	the	process	designated	by	the	handle.	

As	discussed	above,	a	capability	is	an	unforgeable	pointer	to	an	object	that	
contains	a	validated	access	code	for	the	capability’s	owner.		Unforgeable	means	that	
no	one	can	alter	the	capability.			Capabilities	are	stored	in	a	process’s	C-list	which	is	
in	protected	kernel	space,	guaranteeing	their	unforgeability.	

Capabilities	can	be	shared	across	the	network.		To	guarantee	that	a	capability	
remains	unforgeable	when	outside	the	protection	of	its	operating	system,	we	add	
an	identifier	of	the	object’s	home	machine	and	a	cryptographic	checksum		



(tag,	access,	host,	handle,	check)	
where	

tag	indicates	the	type	of	object	(such	as	file),	
access	the	permitted	operations	(such	as	read),	

host	the	unique	identifier	of	a	host	(e.g.,	its	IP	address)	

handle	is	a	unique-for-all-time	name	(such	as	a	timestamp	combined	with	
MAC	address)	composed	at	the	time	the	capability	was	created	,	and	

check	is	a	cryptographic	checksum	to	verify	that	the	capability	has	not	been	
modified	since	its	creation.	

With	this	encoding,	a	process	wanting	access	to	a	file	calls	OPEN_FILE	its	local	
file	system,	which	then	makes	remote	procedure	call	to	OPEN_FILE on	the	file’s	
host	machine.		The	host	can	verify	that	the	capability	it	receives	in	from	the	remote	
procedure	call	has	not	been	altered	since	its	creation.	

The	C-list	is	a	powerful	tool	for	confinement.		Confinement	means	that	an	
untrusted	process	can	be	confined	to	a	minimal	memory	space	and	set	of	objects	to	
do	its	advertised	job.		If	the	untrusted	process	tries	to	use	more	memory	than	it	was	
allocated	or	access	objects	not	in	its	C-list,	the	OS	will	stop	it	before	it	can	do	
damage.		Modern	operating	systems	approximate	the	C-list	method	of	confinement	
with	sandboxes,	which	restrict	application	programs	to	limited	memory	and	an	
authorized	set	of	objects.		

In	the	reference	model	of	os99.pdf,	all	objects	above	the	IPC	level	are	named	by	
capabilities.		This	allows	for	fast	processing	and	for	sharing	objects	by	sharing	
capabilities.		Capabilities	are	a	model	for	how	the	OS	keeps	track	of	all	the	objects	in	
the	system	and	allows	users	to	invoke	only	authorized	actions	on	those	objects.	
	

	


