
Shared Page Model

Peter J. Denning

© Copyright 2022, Peter J Denning

Address space overlap

• Default isolation: processes have their own
private address spaces
– Impossible for one to access pages of another

• Easy channel between address spaces:
share a page frame

• More clumsy and difficult than it sounds

© 2022, Peter J. Denning 2

Specifications

• Process group (2 or more)
– Typically set up by a parent of the processes in

the group

• One shared page (frame) associated with
the group

• Each process assigns a page to point to
shared frame; need not be the same page
in each process

© 2022, Peter J. Denning 3

parent

P1 P2 P3 Pn

page
tables of
group g

shared
page

f

g = CREATE_GROUP(P1,P2,P3,…,Pn)

© 2019, Peter J. Denning 4

parent

P1 P2 P3 Pn

page
tables of
group g

shared
page

f Each Pi assigns
own page number.
All the pages point
to same frame f.
All VM addressing
unchanged

g = CREATE_GROUP(P1,P2,P3,…,Pn)

s = JOIN_GROUP(i,g)i

© 2019, Peter J. Denning 5

parent

P1 P2 P3 Pn

page
tables of
group g

shared
page

f

g = CREATE_GROUP(P1,P2,P3,…,Pn)

s = JOIN_GROUP(i,g)i

© 2019, Peter J. Denning 6

Code in each Pi locks
access to shared page:

WAIT(s)
use page
SIGNAL(s)

Undoing

• EXIT_GROUP(i,g)
– By a process
– Removes PT entry I
– If last to exit, delete semaphore

• DISSOLVE_GROUP(g)
– By creator
– Only if all members have exited

© 2022, Peter J. Denning 7

Undoing

• EXIT_GROUP(i,g)
– By a process
– Removes PT entry I
– If last to exit, delete semaphore

• DISSOLVE_GROUP(g)
– By creator
– Only if all members have exited

© 2022, Peter J. Denning

Lots of questions if
events are not “clean”,
for example, a process
quits without exiting
the group.

8

Relocation problem

• What if OS decides to use a different frame for shared page?
– Page not in use by any member of group: paged out. Reclaimed into

different frame by a page fault from process in the group.
– Entire group is suspended by the parent, resumed later.

• Relocation slow and expensive
– Must maintain list of page numbers used by processes for their

shared pages, so that their frame fields can be updated when the
shared frame changes

– Must suspend all processes in the group during relocation update

© 2022, Peter J. Denning 9

Relocation problem - 2

• Could theoretically be solved by a level of indirection
– Replace the shared page with a descriptor pointing to the shared

frame
– Update is fast because only the descriptor is updated
– Must add bit to PT entries indicating that frame field points to

descriptor not frame
– Must modify the MMU hardware for additional level of indirection on

some frame accesses

• Not attractive

© 2022, Peter J. Denning 10

parent

P1 P2 P3 Pn

page
tables of
group g

f

f

© 2019, Peter J. Denning

shared
page

descriptor

11

Overflow problem

• What if process attempts to write (or read) more bytes than
the page size?

– E.g., process requests write 600 bytes to 512-byte shared page
– What happens to the 88 excess bytes?

• Virtual address (i,x) – page i line x
– Next sequential is (i,x+1) if x<511 or (i+1,0) if x=511
– Overflow bytes written into (or read from) next address space page,

which is not shared

© 2022, Peter J. Denning 12

Overflow problem - 2

• In some systems, the entire transfer is handed to DMA
hardware, which then overflows into next sequential frame,
which is not shared (a memory leak)

• No good solution

© 2022, Peter J. Denning 13

What then?

• Conclusion: Shared page model not a good
solution for interprocess communication

• Instead: Use simple message system to send
messages between processes
– Internet or RPC or both

• Messages can contain pointers to shared digital
objects
– Needs capability addressing – next OS level

© 2022, Peter J. Denning 14

