Shared Page Model

Peter J. Denning

© Copyright 2022, Peter J Denning



Address space overlap

e Default isolation: processes have their own
private address spaces

— Impossible for one to access pages of another

e Easy channel between address spaces:
share a page frame

e More clumsy and difficult than it sounds

© 2022, Peter J. Denning



Specifications

e Process group (2 or more)

— Typically set up by a parent of the processes in
the group

e One shared page (frame) associated with
the group

e Each process assigns a page to point to
shared frame; need not be the same page
in each process

© 2022, Peter J. Denning



page
tables of

group g

shared
page

g = CREATE_GROUP(P1,P2,P3,...,Pn)

Pn

© 2019, Peter J. Denning



page
tables of

group g

shared
page

g = CREATE_GROUP(P1,P2,P3,...,Pn)

Pn

© 2019, Peter J. Denning

s = JOIN_GROUP(i,g)

A 4

Each Pi assigns
own page number.
All the pages point
to same frame f.
All VM addressing
unchanged




page
tables of

group g

shared
page

g = CREATE_GROUP(P1,P2,P3,...,Pn)

Pn

i s = JOIN_GROUP(i,g)

A 4
Code in each Pi locks
access to shared page:

WAIT(s)
use page
SIGNAL(s)

© 2019, Peter J. Denning 6



Undoing

e EXIT GROUP(i,g)
— By a process
— Removes PT entry |

— If last to exit, delete semaphore

e DISSOLVE_GROUP(g)

— By creator
— Only if all members have exited

© 2022, Peter J. Denning



Undoing

e EXIT GROUP(i,g)

— By a process
— Removes PT entry |

Lots of questions if
events are not “clean”,
for example, a process
guits without exiting
the group.

— If last to exit, delete semaphore

e DISSOLVE_GROUP(g)

— By creator
— Only if all members have exited

© 2022, Peter J. Denning



Relocation problem

e What if OS decides to use a different frame for shared page?

— Page not in use by any member of group: paged out. Reclaimed into
different frame by a page fault from process in the group.

— Entire group is suspended by the parent, resumed later.

e Relocation slow and expensive

— Must maintain list of page numbers used by processes for their
shared pages, so that their frame fields can be updated when the

shared frame changes
— Must suspend all processes in the group during relocation update

© 2022, Peter J. Denning



Relocation problem - 2

e Could theoretically be solved by a level of indirection

Replace the shared page with a descriptor pointing to the shared
frame

Update is fast because only the descriptor is updated

Must add bit to PT entries indicating that frame field points to
descriptor not frame

Must modify the MMU hardware for additional level of indirection on
some frame accesses

e Not attractive

© 2022, Peter J. Denning 10



page
tables of

group g

descriptor

© 2019, Peter J. Denning

v

shared
page

11



Overflow problem

e What if process attempts to write (or read) more bytes than
the page size?
— E.g., process requests write 600 bytes to 512-byte shared page
— What happens to the 88 excess bytes?
e Virtual address (i,x) — page i line x
— Next sequential is (i,x+1) if x<511 or (i+1,0) if x=511

— Overflow bytes written into (or read from) next address space page,
which is not shared

© 2022, Peter J. Denning 12



Overflow problem -2

e |n some systems, the entire transfer is handed to DMA
hardware, which then overflows into next sequential frame,
which is not shared (a memory leak)

e No good solution

© 2022, Peter J. Denning 13



What then?

e Conclusion: Shared page model not a good
solution for interprocess communication

e |[nstead: Use simple message system to send
messages between processes

— Internet or RPC or both

e Messages can contain pointers to shared digital
objects

— Needs capability addressing — next OS level

© 2022, Peter J. Denning 14



