
Protected Service Processes

Peter J. Denning

© Copyright 2022, Peter J Denning

Protected Service Processes

• All processes have private address spaces
– Basis of security and privacy guarantees of an OS
– Supports reliability – for example, disk controller owns disk (and driver)

as private objects, inaccessible to other processes

• Service processes receive requests and make responses via a
message system outside their private address spaces

– For example, a process sends a read request message to disk controller
process, which responds by sending back the record

© Copyright 2022, Peter J. Denning 2

• Simple structure of service process used here:
– A service process operates in a cycle that begins with a “homing

position”, which is the only place it listens for incoming requests
– When a request arrives the process services it, sends reply, and

returns to homing position
– During its service it may make requests of other service processes

for subtasks; when this happens, it stops and waits for a response

• A process can only be waiting for one reply at a time
– Multiple incoming requests are possible
– They are queued and serviced one at a time
– Only one return reply is possible to a service process sub-request

© Copyright 2022, Peter J. Denning 3

• Every process has input queue to receive requests for service
– Pointer in inqueue slot of the process’s VM

• Inqueue is a linked list of message buffers, each holding a
request from an identified sender

– Queues and message buffers are stored in kernel space, not in the
private address spaces of processes

– Reply returned in same message buffer that contained the request

© Copyright 2022, Peter J. Denning 4

• This architecture is a “sandbox” that protects
– devices and other components from misuse
– low level protocols for using devices
– rest of system from service process errors and bugs

© Copyright 2022, Peter J. Denning 5

• Message queue structure
– message buffer mb = (sender, message)
– mq = CREATE_MQ() returns pointer mq to queue descriptor that

contains (head,tail) for the queue and a queue-length counting
semaphore; mq is placed in VM inqueue slot

© Copyright 2022, Peter J. Denning

inqueue

IN OUT

(head,tail)

semaphore

sender

message

virtual machine

mq
message

buffer
format

link

Guaranteed Return Policy: response returned in same
message buffer as request

– Simplifies responding
– Guarantees response goes to original sender
– Reduces chance of deadlock from running out of buffers

7© Copyright 2022, Peter J. Denning

Basic sender protocol

mb = SEND(s,p,m)

R = GET_REPLY(mb)

© Copyright 2022, Peter J. Denning

Basic receiver protocol

mb = GET_IN

REPLY(mb,R)

8

Policy implemented with the protocol below. SEND gets empty message buffer from OS pool,
sets mb.sender=p and mb.message=m, and links mb to the tail of inqueue[s]. GET_REPLY
goes to SLEEP until the receiver returns the response R = mb.message to that request.

In receiver, GET_IN does WAIT(mq[self].semaphore) and then returns a pointer to the mb
taken from its inqueue. It then processes the request in mb.message. When response R is
ready it uses REPLY to insert R into mb.message and then issues WAKEUP(mb.sender)

© Copyright 2022, Peter J. Denning

s
service process

device

…
prep request a
mb=SEND(s,p,a)
R=GET_REPLY(mb)
…

p
user process WAKEUP(s)

DCH

inqueue[p]

This example shows a user process p ready
to interact with a server process s that
controls a device. The device and its driver
are private to s. The Device Completion
Interrupt (DCH) signals that the device has
completed a previous request.

…
mb=GET_IN
start(driver,mb.message)
SLEEP
prep response R
REPLY(mb,R)
…

p
a

inqueue[s]

driver

9

© Copyright 2022, Peter J. Denning

device

…
prep request a
mb=SEND(s,p,a)
R=GET_REPLY(mb)
…

p
user process WAKEUP(s)

DCH

inqueue[p]

1

(1) The protocol begins with p generating a
request for s and inserting it into the
inqueue of s. The service process waits on
the inqueue[s] semaphore for a request to
arrive, then processes it.

…
mb=GET_IN
start(driver,mb.message)
SLEEP
prep response R
REPLY(mb,R)
…

p
a

inqueue[s]

driver

s
service process

10

© Copyright 2022, Peter J. Denning

…
mb=GET_IN
start(driver,mb.message)
SLEEP
prep response R
REPLY(mb,R)
…

p
a

inqueue[s]

device

…
prep request a
mb=SEND(s,p,a)
R=GET_REPLY(mb)
…

p
user process WAKEUP(s)

DCH

inqueue[p]

1

(2) After the service process removes a
message buffer from its inqueue, it calls the
driver with the arguments in that buffer
specifying the details of the device request.

driver

2

s
service process

11

© Copyright 2022, Peter J. Denning

inqueue[s]

device

…
prep request a
mb=SEND(s,p,a)
R=GET_REPLY(mb)
…

p
user process WAKEUP(s)

DCH

inqueue[p]

1

3

(3) The driver sends a start signal (plus
arguments) to the device, which begins
processing the specified transaction.

…
mb=GET_IN
start(driver,mb.message)
SLEEP
prep response R
REPLY(mb,R)
…

driver

2

p
a

s
service process

12

© Copyright 2022, Peter J. Denning

inqueue[s]

device

…
prep request a
mb=SEND(s,p,a)
R=GET_REPLY(mb)
…

p
user process WAKEUP(s)

DCH

inqueue[p]

1

4

(4) When the device finishes the transaction,
it triggers the device completion interrupt,
which invokes the handler DCH.

3

…
mb=GET_IN
start(driver,mb.message)
SLEEP
prep response R
REPLY(mb,R)
…

driver

2

p
a

s
service process

13

© Copyright 2022, Peter J. Denning

inqueue[s]

device

…
prep request a
mb=SEND(s,p,a)
R=GET_REPLY(mb)
…

p
user process WAKEUP(s)

DCH

inqueue[p]

1

4

5

(5) The handler wakes up the service
process, which had gone to sleep while the
device was working. The service process
prepares its response to p and sends its
reply to p, in the same message buffer.

…
mb=GET_IN
start(driver,mb.message)
SLEEP
prep response R
REPLY(mb,R)
…

driver

2

3

p
a

s
service process

14

© Copyright 2022, Peter J. Denning

…
prep request a
mb=SEND(s,p,a)
R=GET_REPLY(mb)
…

p
user process

inqueue[p]

1

(6) The service process awakens the user
process, which had gone to sleep while
awaiting response from GET_REPLY. The
response is mb.message .

6

inqueue[s]

device

WAKEUP(s)

DCH

4

5

…
mb=GET_IN
start(driver,mb.message)
SLEEP
prep response R
REPLY(mb,R)
…

driver

2

3

p
a

s
service process

15

Messages Model

• The instructions on the client side (in process p) can
be grouped together behind a common interface

• The server protocol already provides for the server
to return a response

• Looks like a procedure call on a protected
procedure on the same machine
– Protected means called procedure is in a separate

process with its own address space

• Let’s call it PPC = protected procedure call
© Copyright 2022, Peter J. Denning 16

© Copyright 2022, Peter J. Denning

…
R = PPC(s,a)
…

p
user process

inqueue[p]

prep request a
mb=SEND(s,p,a)
R=GET_REPLY(mb)
return R

This is similar to the remote
procedure call (RPC). RPC differs by
sending messages across the network
to a remote server (and OS) to call
the procedure on that server. RPC is
discussed in a separate chapter.

17

© Copyright 2022, Peter J. Denning

s
service process

…
mb=GET_IN
start(driver,mb.message)
SLEEP
prep response R
REPLY(mb,R)
…

18

Two Possible Message Deadlocks

• Service processes in a request loop
– Arrange all services processes in a tree hierarchy and

allow only downward-request-upward-reply (same
principle as in kernel)

• Service process chain waiting for buffer pool empty
– Make buffer pool larger than the maximum number of

service processes
Scenario for message pool deadlock: pool size is K, and in the process tree is a path
of downward calls longer than K. Each call invokes a new sleep and when there are
no more buffers the last caller waits on an empty pool. All the processes that could
return a buffer to the pool are asleep.

© Copyright 2022, Peter J. Denning 19

