
Interprocess	Communication	
Peter	J.	Denning	
May	2019	
	
	

When	you	launch	a	program,	the	OS	creates	a	process	for	you	that	encapsulates	your	
program	and	data	in	its	own	address	space.		The	OS	ensures	the	new	address	space	
is	completely	isolated	from	all	other	processes.		As	you	have	seen,	the	OS	also	
provides	dozens	of	dæmons	--	service	processes	that	run	in	the	background	taking	
care	of	tasks	for	Internet,	printing,	graphics,	databases,	and	more.		To	cooperate,	
these	otherwise	isolated	processes	must	communicate.		To	do	that,	they	need	a	
message-exchange	medium	that	works	outside	their	individual	address	spaces.		To	
accomplish	this	the	OS	provides	interprocess	communication	(IPC),	the	means	for	
these	client	and	server	processes	to	make	their	requests	and	responses.		The	IPC	
level	allows	communications	between	processes	on	the	same	machine	or	across	the	
network.		All	the	kernel	levels	above	the	IPC	level	use	IPC	to	make	requests	of	
service	processes	on	local	or	remote	machines.	
A	special	case	occurs	when	a	group	of	processes	on	the	same	machine	want	to	share	
data.		Each	process’s	page	table	contains	a	page	pointing	to	a	single	shared	page	
frame.		Reading	or	writing	that	page	can	be	done	with	normal	virtual	memory	
operations.		The	content	of	that	page	is	visible	in	all	the	participating	processes.		
While	tempting	with	its	apparent	simplicity,	this	is	difficult	to	use	and	very	limiting	
to	the	messages	exchanged	within	the	process	group.		A	much	better	approach	is	to	
design	a	message	system	that	is	completely	outside	every	address	space,	making	it	
easier	to	guarantee	delivery	and	prevent	tampering.	

We	will	discuss	four	models	for	interprocess	communication.		The	shared	page	
model	allows	the	operating	system	to	let	processes	communicate	by	reading	and	
writing	a	page	shared	among	their	virtual	memories.		The	messages	model	assumes	
every	process	is	by	default	a	service	process	with	a	built-in	request	queue;	the	
process	takes	the	messages	one	at	a	time	and	responds	to	the	service	requests	they	
contain.		The	Internet	model	uses	the	Internet	protocol	stack	to	send	messages	to	
processes	on	any	host	machine	in	the	Internet.		The	remote	procedure	call	(RPC)	
model	is	similar	to	the	Internet	model	but	with	an	interface	that	appears	the	same	
as	a	local	procedure	call.	

	
Protected	Service	Processes	

Many	processes	in	the	operating	system	are	service	processes:	you	send	them	a	
request	and	they	respond	with	an	answer	after	performing	the	requested	service.		
This	is	such	a	common	pattern	we	have	a	name	for	it:	protected	service	process.		We	
add	the	stipulation	“protected”	because	the	data	and	hardware	resources	needed	to	
provide	the	service	are	confined	to	the	address	space	of	the	service	process	and	
cannot	be	accessed	without	making	a	request	of	the	service	process.		A	service	
process	has	an	input	queue	for	receiving	requests;	each	request	is	stamped	with	the	



process	ID	of	the	sender.		For	example,	a	disk	service	process	would	have	an	input	
queue	in	which	any	other	process	can	deposit	a	read	or	write	request;	the	disk	
service	takes	the	requests	one	at	a	time,	interacts	with	the	disk	itself,	and	responds	
to	the	sender	when	done.		A	process	needing	a	disk	transaction	cannot	access	the	
disk	device	driver	directly:	it	must	ask	the	disk	service	process	to	do	so.		This	
protects	against	hanging	the	system	due	to	improper	use	of	the	device	driver	
interface,	and	against	race	conditions	when	multiple	processes	make	disk	requests	
in	parallel.		The	protocol	for	interacting	with	a	service	process	contains	a	number	of	
interesting	synchronization	issues.	
	

Protected	Service	Process	Protocol	
A	process	P	interacting	with	a	service	process	S	follows	the	protocol	outlined	in	the	
pseudo	code	below.		The	input	queue	of	S,	inqueue[S],	is	protected	by	two	
semaphores	

insem[S], initially 0 (queue length) 

mutex[S], initially 0 (mutual exclusion) 

The	count	of	S	is	the	number	of	entries	in	the	input	queue	inqueue[S].	The	
operations	for	manipulating	the	input	queue	when P	is	the	caller	are:	

insert(R,S) = append (P,R) to the end of inqueue[S] 

(P,R)=remove() = remove and return the first request of 
inqueue[self] 

The	pseudocodes	for	the	interaction	between	processes	P	and	S	are:	
P: loop { 

do some computation 
prepare service request R 
wait(mutex[S]) 
insert(R,S) 
signal(mutex[S]) 
signal(insem[S]) 
SLEEP 
} 

 
S:  loop { 

wait(insem[self]) 
wait(mutex[S]) 
(P,R)=remove() 
signal(mutex[S]) 
start device with parameters R 
SLEEP 
WAKEUP(P) 
} 

 
DCI: WAKEUP(S) 
     return 



The	user	process	P	sends	a	request	to	the	service	process	and	goes	to	sleep	until	the	
service	process	awakens	it.		Adding	the	request	to	the	input	queue	must	be	
protected	by	mutual	exclusion.	

The	service	process	S	waits	for	a	request	at	its	homing	position.		It	removes	the	
request	and	activates	the	service	device	with	parameters	R.		(Its	access	to	its	input	
queue	is	regulated	by	the	mutex	semaphore	to	prevent	racing	with	processes	
placing	requests.)		S then	goes	to	sleep	until	the	device	completion	interrupt	
awakens	it.	

The	service	device	is	activated	by	a	hardware	signal	transmitted	by	the	device	
driver	contained	in	S.		When	done	with	the	specified	transaction,	it	awakens	the	
service	process	by	sending	the	device	completion	interrupt.	

Once	S	is	awakened,	it	awakens	the	process	P,	which	can	then	continue.	

This	protocol	cannot	deadlock	because	the	processes	involved	wait	in	the	priority	
order	P, S, D;	no	circular	wait	is	possible.	
	

Messages	Model	

The	messages	model	standardizes	the	service	process	model	by	treating	every	
process	as	a	potential	service	process.		By	default	every	process	has	a	request	queue	
as	in	the	protected	service	process	pattern	discussed	above.		A	user	process	calls	on	
a	service	process	by	sending	it	a	request	message	as	above.		The	service	process	can	
prepare	a	response	to	the	caller	and	send	it	in	a	return	message	that	appears	in	the	
caller’s	input	queue.		This	interaction	with	messages	simulates	a	traditional	
procedure	call.	

The	operations	of	the	user	process	protocol	above	can	be	combined	into	a	“local	
service	process	call”	in	the	kernel	

B = LPC(S,A) 

which	means:	“send	request	message	A	to	S and return	its	response	B.”		This	model	
is	restricted	to	sending	and	receiving	messages	from	processes	on	the	same	system	
(managed	by	the	same	kernel).		To	send	and	receive	messages	with	remote	
processes,	the	Internet	or	RPC	model	must	be	used.	
	

Shared	Page	Model	
The	shared	page	model	allows	the	same	page	to	appear	in	multiple	address	spaces.		
This	is	accomplished	by	putting	a	pointer	to	the	shared	page-frame	in	each	of	the	
page	tables	referring	to	that	frame.		Those	page	table	entries	can	have	different	page	
numbers	in	each	address	space.		When	the	MMU	maps	a	reference	to	the	shared	
page,	it	accesses	the	shared	frame	of	memory.	



The	interface	to	the	kernel	for	shared	pages	reveals	the	complexity	inherent	in	this	
model.		First	of	all,	the	OS	needs	to	know	exactly	which	processes	share	a	given	
page;	otherwise	it	cannot	inform	them	if	the	contents	of	the	shared	frame	move	to	a	
different	memory	location	or	are	paged	out	from	inactivity.		To	do	this,	a	parent	
process	sets	up	the	group	of	child	processes	with	a	kernel	call	

g=CREATE_GROUP(P1,P2,…,Pn) 

	where	g is	a	group	code	and	P1,P2,…,Pn		are	the	members;	the	OS	also	sets	aside	a	
page	frame	f of	memory	for	the	group’s	shared	page	and	a	mutual	exclusion	
semaphore s	to	be	used	by	group	processes	reading	or	writing	the	shared	page.		
Then	each	member	can	request	a	shared	page	with	the	kernel	call	
s=JOIN_GROUP(i,g),	which	asks	the	OS	to	make	the	caller’s	page	table	entry	i point	
to	f	and	return	the	name	of	the	group’s	mutual-exclusion	semaphore	s.		After	all	the	
group	members	have	set	up	their	pointers	to	the	shared	page	in	this	way,	they	can	
now	share	data	by	reading	and	writing	it	in	the	shared	page	as	if	it	were	like	any	
other	page	it	its	address	space.	

The	OS	must	provide	a	way	for	any	child	to	leave	the	group,	for	example,	
EXIT_GROUP(g) 

which	deletes	the	calling	process	from	the	group	and	removes	the	link	from	its	page	
table	to	the	shared	frame.		Similarly,	the	parent	can	dissolve	the	whole	group	and	
release	its	shared	page	and	semaphore	to	the	OS	with	

DISSOLVE_GROUP(g) 

Once	this	is	all	set	up,	the	dynamics	of	using	the	shared	page	can	be	quite	tricky	and	
confusing	to	users.		The	first	issue	is	preventing	race	conditions	as	different,	
concurrent	processes	read	and	write	the	shared	page.		The	mutual	exclusion	
semaphore	is	the	main	tool.		A	process	accessing	the	share	paged	locks	it	first	and	
releases	the	lock	when	done.		Obviously	this	creates	a	potential	performance	
bottleneck	if	the	lock	can	be	set	for	a	significant	period	of	time.	
The	second	issue	concerns	keeping	all	the	processes	in	the	group	properly	informed	
if	the	OS	decides	to	relocate	the	shared	page	to	a	new	frame	or	delete	it	entirely	
from	main	memory.		To	properly	execute	any	manipulation	of	the	location	of	the	
shared	page,	the	OS	must	access	each	page	table	in	the	group	and	update	the	frame	
pointer	in	the	entry	pointing	to	the	shared	page.		All	the	processes	in	the	group	must	
be	suspended	until	that	update	is	completed.		This	could	incur	a	significant	
overhead	and	performance	penalty	for	the	group.	

A	third	issue	concerns	overflows	on	the	shared	page.		What	happens	if	a	process	
tries	to	copy	N	bytes	into	the	shared	page	when	N	is	larger	than	the	page	size?		Here	
the	behavior	becomes	indeterminate	and	depends	on	details	of	how	the	operating	
system	and	memory	hardware	work.		One	possible	behavior	is	that	the	process	
copies	the	excess	bytes	into	the	next	page	of	the	address	space.		In	that	case	only	the	
first	segment	of	bytes	will	appear	on	the	shared	page;	other	processes	in	the	group	
will	not	see	the	remaining	bytes.		Another	possible	behavior	is	that	the	memory	
hardware	takes	over	the	writing	of	a	sequence	of	bytes,	placing	the	overflow	in	the	
next	frame	of	memory.		Unfortunately,	that	frame	is	not	shared.		The	overflow	bytes	



overwrite	another	process’s	page,	causing	that	process	to	crash	or	to	receive	leaked	
information.		Both	these	cases	are	unacceptable	.		The	first	does	not	share	all	the	
bytes	among	the	group,	as	claimed	by	the	page	sharing	protocol.		The	second	
overwrites	data	in	another	address	space,	violating	the	guarantee	that	address	
spaces	are	isolated	and	cannot	leak	information	from	one	to	another.	

Because	of	these	difficulties,	the	shared	page	model	is	not	widely	used.		It	was	used	
in	operating	systems	in	the	1980s	and	1990s	under	the	guise	of	“multithreading	
packages”,	but	it	fell	out	of	use	because	it	caused	many	problems	and	was	difficult	to	
work	with.	
	

Internet	Model	
The	standard	protocols	of	the	Internet	are	used	to	send	messages	to	a	remote	
process	and	receive	responses	in	return.		We	will	not	cover	the	details	of	theTCP/IP	
stack	here;	you	can	learn	about	them	in	a	networks	course.		We	will	discuss	the	
interface	and	some	of	the	design	issues	that	the	model	must	deal	with.		Most	OS	have	
a	TCP/IP	stack	interface	in	them	but	use	an	RPC	model	to	hide	it	from	everyone	
except	skilled	systems	programmers.	
The	basic	network	protocols	use	a	datagram	model	for	message	passing.		A	
datagram	is	a	single	packet	sent	to	the	remote	host;	the	datagram	contains	a	
complete	specification	of	a	request	for	a	specific	service.			The	remote	host	has	a	
network	listener	service	process	that	receives	datagrams	and	routes	each	one	to	the	
input	queue	of	the	service	process	for	the	request	encoded	in	the	datagram.		When	
the	service	is	done,	it	transmits	its	response	to	the	sender	in	another	datagram.	

Here	is	a	simplified	view	of	how	the	user	can	interface	with	communication	
according	to	this	model.		Suppose	process	P1 on	host	with	IP	address	A1 wants	to	
send	message	m1	to	process	P2	on	host	with	IP	address	A2.		Here	P1 acts	as	client	
and	P2 as	server.		Both	P1	and	P2	are	set	up	as	service	processes.		The	notation	
A2/P2	means	service	process	P2 on	host	A2.		(In	network	jargon,	the	combination	
A2/P2	is	called	a	socket.)		The	sender	issues	a	kernel	call	SEND_DG(m1, A2/P2),	
which	sends	a	datagram	(A1/P1, m1, A2/P2)	to	represent	the	message	“socket	
A1/P1	has	a	message	m1	for	socket	A2/P2.”		On	host	A2,	a	listener	process	receives	the	
datagram	and	routes	it	to	the	input	queue	of	local	process	P2.		P2 performs	the	task	
requested	in	m1,	encodes	its	response	into	message	m2,	and	uses	the	kernel	call	
SEND_DG(m2, A1/P1)	to	respond.			The	return	socket,	A1/P1,	was	specified	as	the	
source	in	the	first	datagram.	
	

RPC	Model	
The	remote	procedure	call	is	an	interface	for	the	Internet	model	that	looks	like	a	
local	procedure	call.		That	means	that	you	can	interface	to	local	and	remote	
processes	with	the	same	interface	that	appears	in	your	programming	languages.	



Many	OSs	support	remote	procedure	call	(RPC)	as	part	of	their	general	IPC	systems.		
RPC	allows	a	process	to	make	a	standard	procedure	call,	which	is	then	implemented	
with	a	message	exchange	with	the	service	process,	which	might	be	on	a	remote	host.		
When	translating	a	procedure	call,	the	compiler	inserts	code	called	a	“stub”.		The	
stub	determines	whether	the	called	procedure	is	local	or	remote.		If	local,	it	uses	the	
LPC	to	call	it.		If	remote,	it	uses	RPC.		The	RPC	protocol	encodes	the	parameters	into	
a	datagram,	which	it	sends	to	a	socket	of	the	remote	procedure.		The	remote	
procedure	sends	a	return	datagram	to	the	caller.		You	can	read	about	RPC	in	more	
detail	from	online	sources.	
The	implementation	of	RPC	is	much	more	complex	than	a	regular	local	procedure	
call	because	of	all	the	synchronization	issues	across	the	Internet.		An	RPC	name	
service	must	be	available	to	get	a	socket	number	for	a	remote	process	given	its	
name.		A	standard	method	is	needed	to	encode	parameters	into	the	datagrams.		The	
protocols	for	message	exchange	must	be	capable	of	dealing	with	lost	datagram	
packets,	by	using	time-outs	and	resends;	they	use	the	TCP/IP	system,	which	already	
includes	this.		On	receipt	at	the	host	of	the	remote	procedure,	the	incoming	
datagrams	are	routed	to	the	input	queues	of	their	service	processes.	
	

Summary	
IPC	is	an	interprocess	communication	system	by	which	processes	with	distinct,	
nonoverlapping	address	spaces	can	exchange	messages.		The	most	common	way	to	
organize	this	is	with	service	processes.		A	service	process	has	an	input	queue	that	
receives	all	requests	for	its	service.		Requests	are	stamped	with	the	sender’s	
identification	so	that	the	service	can	respond	properly.		The	model	of	a	service	
process	is	incorporated	into	the	message	model,	the	Internet	model,	and	the	RPC	
model.	

The	shared	page	model	is	not	much	used	because	it	is	clumsy	and	error	prone.	


