
Working Set Management

Peter J. Denning

© 2022, Peter J. Denning

Multiprogramming

• The “singleton memory” perspective is easy to think
about but does not represent multiprogramming, the
common configuration
– Multiple jobs (processes) loaded into non-overlapping regions of

RAM at the same time
– Regions may differ in size
– Regions may vary in size over time

• Multiprogramming enables a CPU assigned to a stopped
process to switch rapidly to another, keeping it busy
during the long wait times of other jobs

© 2022 Peter J. Denning 2

Multiprogrammed Memory Principle

© 2022 Peter J. Denning 3

P1

DISK

up down

hit

miss

System is multiple CPUs accessing a single RAM of
fixed size M pages. The virtual memory partitions
RAM into disjoint sets of frames, one for each loaded
job. Region sizes can be different and vary over time.
Total number of jobs N (the multiprogramming level)
can vary over time.

P2 P3 … PN

M pages

CPUs

Partitioning

• Multiprogramming: Partition the main memory among N jobs
– N is the multiprogramming level (MPL)

• How to partition?
– Equal size regions = 1/N of the RAM?
– Unequal but fixed size regions?
– Variable size regions?

4© 2022 Peter J. Denning

Can fixed-space replacement policies be
generalized for multiprogramming?

Yes: with fixed partition or global policy

5© 2022 Peter J. Denning

Fixed Partition

• When a job is loaded into RAM, it gets a fixed size region
that does not change size during its execution

• The chosen replacement policy is applied individually in
each region
– Each job operates under the singleton memory principle in its

own m-page region

• How to choose region size?
– Very hard: choose m that minimizes space-time Y of job
– Space-time law says that throughput X = m/Y
– See Module 4.5, last five slides

© 2022 Peter J. Denning 6

Global Variable Partition

• Lump all pages of all jobs together in one pool (usually the
M pages of RAM) and apply policy to the pool

– FIFO: All pages in a single FIFO list

– LRU: All pages in a single LRU stack

– CLOCK: All pages around the single clock perimeter

7© 2022 Peter J. Denning

• Global replacement tends to perform much worse than
when the policy is applied separately to jobs:

– Scheduling order of jobs distorts page use statistics.

– If the load N is too high, the process at front of RL has lost
some or all its page since last time slice.

For example, the LRU page is more likely to belong to the process at
the front of the ready list, due to the round-robin scheduling of the N
processes loaded.

– This forces “page stealing” – satisfying a page fault by
taking a page from another process

– Page stealing is likely to cascade and induce thrashing.

8© 2022 Peter J. Denning

What is thrashing?

9© 2022 Peter J. Denning

Thrashing

• Sudden collapse of system throughput when MPL is too high

• X: symbol for system throughput (jobs/sec)

• CPU is engine driving all processes forward

• X = (max CPU speed (job/sec)) x (CPU utilization)

© 2022 Peter J. Denning 10

MPL (N)

X
jobs/sec

CPU max limit

expected
throughput

actual throughput

N*

Thrashing is unexpected, sudden drop in
system throughput with increased
multiprogramming level.

Our intuition expects X to asymptotically
approach its max, the raw CPU speed, as
increasing load pushes CPU utilization
toward 100%.

Thrashing occurs when MPL so large that
global paging algorithm steals pages
from other jobs to satisfy a page fault.
When a job get its next time slice, some
of its key pages are missing, causing an
instant page fault and queueing it at the
DISK.

When this happens to all the jobs,
almost all are queued at the DISK. The
system slows to DISK speed and the CPU
is mostly idle.

The onset (N*) is unpredictable. Loading
a single new job to RAM can trigger it
the sudden collapse. If N is close to N*,
a job that suddenly generates a burst of
page faults can trigger it.

11© 2022 Peter J. Denning

© 2022 Peter J. Denning 12

How do we prevent thrashing?

• It’s complicated because multiprogramming raises many
new questions

– Fixed or variable partition?

– What replacement policy?

– Control MPL to prevent overload and avoid thrashing?

• What to do?

© 2022 Peter J. Denning 13

Mindshift Needed
• Singleton memory view sees the available memory (m

pages) as an external constraint and tries to maintain the
memory contents for least paging. Globalizing fixed-
memory policies is not productive.

• Experimental studies show
– LRU tends to give fewest faults but has high overhead
– FIFO has low overhead but high faults
– Hybrid CLOCK close to LRU in faults, FIFO in overhead
– But all are significantly worse than MIN

• Near optimal performance seems unattainable for this
view

© 2022 Peter J. Denning 14

Supply-Demand Thinking

• What if, instead, we knew the intrinsic memory demand
of a process? The pages it needs to operate efficiently?

• Let’s call that its working set.

• Jobs demand memory for their working sets. The OS
virtual memory supplies memory to contain the working
sets.

© 2022 Peter J. Denning 15

If we know each job’s working set

– Partition memory to give each job its working set

– Allow partition and MPL to vary as working sets vary

– Never steal a page from another working set

– System would be efficient and could not thrash

16© 2022 Peter J. Denning

Working set policy

• A WS memory policy is ideal for variable partition multiprogramming.

• The policy grants each job its WS, and allows the MPL to rise only
until memory is full of WSs.

• This implies some of memory is FREE – not assigned to any WS

• Minimizes page faults by tracking working sets

• No page stealing (fault in one job never steals page from another job)

• Cannot thrash

17© 2022 Peter J. Denning

• Miss when r(t) not in WS; add FREE page to WS
– If FREE empty, use LRU page in WS

• Evict when page not in WS, return to FREE
• Misses and evictions need not coincide
• If job quits, all its WS pages go to FREE
• Scheduler only loads new job if its WS<FREE

W1 W2 W3 ••• WK FREE

miss

evict

18© 2022 Peter J. Denning

CPU

DISK

I/O

WS controller
admit new job only
when FREE space

sufficient for its WS

WS Policy: Load-Controlled Scheduling

waiting jobs

active jobs
(part of MPL)

FREE = Memory - sum(WS[i])

19© 2022 Peter J. Denning

Submitted jobs, P

jobs/sec

CPU saturation limit

load-controlled
throughput

throughput
without load
control

P = waiting + activeWS automatically adjusts
number of active jobs to
get maximum throughput

20© 2022 Peter J. Denning

© 2022 Peter J. Denning 21

How do we know this works?

How do we know jobs have working sets?

How do we measure them?

Principle of Locality

• Discovered at same time WS invented (1966) as a way to
explain why WS should work

• It says that jobs tend to use the same subsets of its
address space over extended periods of time
– locality set: the subset in use
– phase: the time interval for use of the same locality set
– transitions: job switches to new locality sets

• Ideally, WS = locality set
– little or no paging during phase
– most paging generated by transitions

© 2022 Peter J. Denning 22

© 2022 Peter J. Denning 23

The page reference map is a tool for
visualizing the locality behavior of a job

Page reference map of Firefox browser
(from Adrian McMenamin)

24© 2022 Peter J. Denning

• Page reference map us a bitmap showing which pages of
address space are used at different times during a job’s
execution
– Vertical (y-axis) enumerates pages

– Horizontal (x-axis) is time measured in sample intervals

• The vertical column of pixels at each time t indicates
which pages are used in sample interval t, shown in colors

• In the Firefox browser on a Linux system
– Page size 4096 bytes
– Sample window size 376,706 memory accesses (approx. 3.8x105)

25© 2022 Peter J. Denning

What we see in page reference maps

• Locality sets: pages used repeatedly in successive
sample intervals
– Locality sets are small subsets of address space
– 5 sets in the example, each 15% to 30% of address space

• Phases: intervals where locality set does not change
– 5 phases in the example
– 50 to 220 sample intervals each

• Transitions: abrupt changes of locality set
– 5 transitions in the example

• We NEVER see random page reference maps

26© 2022 Peter J. Denning

Notations for locality

• Executing processes reference their memory objects with
phase-transition behavior:

locality set holding time
(of phase)

• Minor overlaps (abrupt changes) between successive
locality sets

27© 2022 Peter J. Denning

What locality is not

• Unequal overall page reference frequencies

• Statistically independent references

• Slow drifts
– As in textbook “temporal” and “spatial” locality

28© 2022 Peter J. Denning

Working Set Precise Definition

• A measure of current locality set of a job

• The working set at time t is the set of pages observed in a backward
looking window of fixed length T

• Notation W(t,T)

• In McMenamin map, T is pixel size (= 376,706 memory references)

• W(t,T) is the column of colored pixels at time t, where t counts pixels

29© 2022 Peter J. Denning

© 2022 Peter J. Denning 30

timeX X X X X X X X X X X X X X X X X X

page references
one per time unit
(“memory tick”)

current time t

T references

contents are W(t,T),
the working set at
time t with window T

Working Set Lease

• The window size can be called a “lease”

– Each page has its own lease

– When page loaded, its lease is set to T

– A lease ticks down to 0 with each passing memory cycle

– When page accessed, its lease resets to T

– When a lease expires, the page is removed

31© 2022 Peter J. Denning

refs: 1 2 3 4 1 2 5 1 2 3 4 5

window size 6

WS = pages 1, 2, 4, 5

W(t,T)

W(9,6) = {1,2,4,5}

WS "sees" a subset of the pages
through its window and adjusts
memory allocation to match.

A page fault will occur at t=10
because page 3 is not in the
working set W(9,6).

time t=9

32© 2022 Peter J. Denning

Example

1 2 3 4 1 2 5 1 2 3 4 5

In real time, a page swap delay is inserted
between t=9 and t=10 because of the page fault.

WS analysis does not include page swap delays.
Can estimate total swap delays as product of
number of faults and average swap delay.

1 2 3 4 1 2 5 1 2 3 4 5page swap time

33© 2022 Peter J. Denning

What window (lease) size?

• Let MSI be the size of the smallest sampling interval contained in a phase
that sees the entire locality set

• Minimal sampling intervals likely to be short compared to phase times

• Ideally T = MSI. Then nearly 100% hit ratio when window contained in a
phase; phase transitions are the main causes of page faults

• A wide range of window sizes gives the same WS contents

• Thus there is a single system-wide window size T that works for all jobs
(note T > MSI of every job)

• Can find it by “tuning” – adjust its value until throughput maximized then
leave it alone.

34© 2022 Peter J. Denning

Performance

• How does WS compare with other policies that do not
steal pages?
– For example, in a fixed partition page faults take from within the

same block

• Can WS maximize throughput?

© 2022 Peter J. Denning 35

Performance of thrashing

• Thrashing is caused by replacement taking pages from
other jobs’ locality sets.

• When its locality sets are loaded, a job does not page
during a phase.

• When its memory space is constrained to be less than
locality set, the job will page heavily.

© 2022 Peter J. Denning 36

• The effect on throughput is dramatic. To see this:
– Define memory efficiency E to be ratio of RAM access time to

effective access time in the presence of page faults.
– Then E = 1/(1+fD), where f is the fault rate and D the DISK/RAM

access ratio, typically 106. The expansion factor fD represents
CPU downtime while it waits for the disk to service a page fault.

– E is very sensitive to faults become of the large size of D.
– In the McMenamin example, suppose the pixel size 3.8*105

memory accesses is at the threshold of seeing the full locality set
in every pixel of a phase. Suppose that shrinking the window
slightly to 3.3*105 causes 1 fault per pixel. Then E = T/(T+D),
where T is pixel length. Filling in T and D, we get E=1/4.

– The small reduction of window thus causes CPU utilization to drop
from 1 to 1/4, a significant drop, resulting in throughput drop to
1/4 its previous value.

© 2022 Peter J. Denning 37

• This applies to any policy. For example, if LRU memory space
not sufficient to hold the locality set, LRU will page frequently.

• Global LRU can steal, eating the memory allocations of other
jobs and rendering them too small for their locality sets.

• WS detects the locality set correctly most of the time and thus
avoids driving CPU efficiency down.

• So “no stealing” is a necessary condition to avoid eating other
jobs’ locality sets, but it may not prevent thrashing if jobs’
locality sets are not loaded.

• To fully prevent thrashing, need also to detect and protect
locality sets.

© 2022 Peter J. Denning 38

• In the next module “Working Set Analytics” we will show fast
algorithms for measuring working set fault rate and mean size

• We will define VMIN, the optimal policy over all possible
memory allocation policies
– Same as WS but with forward window
– Page not seen in forward window: evict immediately
– WS=VMIN while T contained in phase
– Most paging from transitions

• Correlating with page reference map: WS within 1-3% of VMIN

© 2022 Peter J. Denning 39

© 2022 Peter J. Denning 40

The next three graphs illustrate what
the analytic methods produce for the
example address trace used earlier.

© 2022 Peter J. Denning 41

1 2 3 4 5
space (m)

15

10

5

0

faults

1 2

3

4

6

7

5

WS

The mean working set
sizes are points on the
space-axis. The
corresponding miss
counts are points on
the faults-axis.

Above window size 7
there is no change in
the WS size or fault
count

The numbers are the
window sizes that
generate the data
points.

MIN

© 2022 Peter J. Denning 42

1 2 3 4 5
space (m)

15

10

5

0

faults

1 2

3

4

6

7

5

WS

MIN data added to the graph.

Note that at one point (T=7)
WS generates a better operating
point than (fixed-space) MIN.

Reason: WS is not constrained to
a fixed size.

MIN

© 2022 Peter J. Denning 43

1 2 3 4 5
space (m)

15

10

5

0

faults

1 2

3

4

6

7

5

WS VMIN data added to the graph.

Confirm VMIN is better than MIN.

VMIN

1,2

3

4

5,6

7

© 2022 Peter J. Denning 44

The main goals of WS are achieved:

• Prevent thrashing

• Deliver near optimal system throughput

The fixed space policies, when generalized to
multiprogramming, are likely to thrash and
cannot deliver paging rates close to MIN

© 2022 Peter J. Denning 45

Can WS be implemented efficiently?

Yes.

WSClock
• Variation of CLOCK to include a WS window T.

• Each frame has a time stamp of last use.

• Scan the frames of a process in a cyclic order, repeating until select:

– If use bit U =1, set U=0, skip; otherwise if U=0

• if time since time stamp ≤ T, skip

• If time since time stamp > T, select

• Marginally more overhead than FIFO and performs comparable to WS
in multiprogram environment.

• Because WS so insensitive to T, can “tune” system by finding T that
maximizes throughput and leave it there

46© 2022 Peter J. Denning

WS can be used in shared caches by
associating a lease-register with each cache
frame

When the register reaches 0, the frame is
marked as free

(This “hardware implementation” was part of
the original WS proposal, but the chip
hardware could not support it.)

© 2022 Peter J. Denning 47

finis

48© 2022 Peter J. Denning

