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Analytics

How to compute fault functions fast?
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Analytics

• The simulation methods illustrated above are useful for finding the 
F(m) functions, but they are computationally intensive because they 
must be repeated for each value of m.

• The simulations show that the memory contents of LRU and MIN 
satisfy the inclusion property.  When we increase m by 1, we add a 
row to the diagram without changing any of the rows already there.

• Can we exploit this for a simpler computational method?

• Yes.  The F(m) functions of replacement policies with the inclusion 
property can be computed in a single pass over the address trace.
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Inclusion Property

• At all times, the contents of m-page memory are a subset 
of the contents of (m+1)-page memory

“Adding a page to the memory allocation never makes things worse.”
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Stack Algorithms

• The pages of the program can, at each moment of time, 
be organized into a single ordered list such that the first m 
pages on the list are the contents of the m-page memory.

• Satisfies the inclusion property: the first m pages are a 
subset of the first m+1 pages.

• The list is called “the stack”.  The stack represents the 
layers of inclusion as memory grows.
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LRU Stack

S(t)

i

LRU stack lists all the pages of 
the program at time t in order 
of most to least recently used, 
from top to bottom.

The current page r(t)=i is 
always on top.  (Why?  
Because the referenced page 
is always the most recent and 
is always in memory.)

The first m pages in the stack 
are the contents of the LRU 
memory at time t.  (Why?  
Because the policy always 
removes the  least recently 
used, leaving only the m most 
recently used.)

1

2

3

m

M
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S(t-1) S(t)

i

i Look at the dynamics.  If page 
i is referenced at time t, we 
can update the previous stack 
by moving i from its position 
to the top and pushing all the 
intervening pages down by 1 
position.  That preserves the 
LRU order of the stack.
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S(t-1) S(t)

i

i

Draw a horizonal red line 
slicing the stack at memory 
size m.  All the pages above 
the line are in memory.  

Notice that if the red line for 
m is above the referenced 
position, a page crosses the 
red line upward into the 
memory and a page crosses 
downward out of the 
memory.  The upward moving 
page is the one brought by 
the page fault.  The 
downward moving page is the 
LRU page among those in the 
m-page memory allocation.

m
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S(t-1) S(t)

i

i If the memory size m is below 
the referenced position, no 
pages move up or down across 
the red line.  This is because no 
page fault occurs for the 
referenced page, which is 
already in memory.

The pages below the referenced 
position are not reordered 
because their positions relative 
to page i are unchanged.

m
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S(t-1) S(t)

i

i

d(t)

r(t)=i

Stack distance d(t) is the 
position of r(t) in the 
previous stack.

d(t) can be as small 1 (for 
repeated reference) or as 
large as M.

From previous pictures we 
see that there is a page 
fault only when d(t)>m

Therefore the number of 
times d(t)>m is the total 
number of faults, F(m)

First references are special: 
treat them as distance = 
infinity because there is no 
finite size memory that 
avoids the faults

stack
distance

Stack distance
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• How to count stack distances?

– Counter c(k) counts number of times d(t)=k, for k=1,2,…,M

– Define counter c(M+1) to catch all the first references, which 
have distances = infinity

– Data collection: initially all counters 0; simulate the LRU stacks; at 
time t if d(t)=k, add 1 to counter c(k).

– Then the number of times d(t)>m is simply the sum of the 
counters bigger than m
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1  2  3  4  1  2  5  1  2  3  4  5
1  2  3  4  1  2  5  1  2  3  4  5

1  2  3  4  1  2  5  1  2  3  4
1  2  3  4  1  2  5  1  2  3

1  2  3  4  4  4  5  1  2
3  3  3  4  5  1

x  x  x  x  4  4  x  3  3  5  5  5

r(t):

stacks:

d(t):

k  c(k)  F(k)
1    0    12
2    0    12
3    2    10
4    2     8
5    3     5
x    5

In one pass track
the LRU stack and
its distances.

On first references,
distance is infinite,
denoted by x.

Collect frequency histogram for
all possible stack distances, k.

c(k) = no. distances equal to k

F(k) = sum of the counts for
all distances larger than k.
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General stack

• Now consider any replacement policy that operates from a priority 
rule.  A priority rule is a list of all M pages at each time t, that orders 
the pages from most to least important at that time.

• If r(t) causes a page fault, use the priority rule to select the least 
important page for replacement.

• The diagram to follow shows the dynamics of a stack update when 
there is a priority rule.   It is more complicated than LRU.
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• Referenced page moves to top because it is always in memory, including 
when m=1.

• Any page below the current distance does not move because there is no 
fault in any of those memory sizes.

• Pages in between move down or stay put, but cannot move up because 
an up move would represent a page-in for a non referenced page.

• A page moves as far down as its priority permits – i.e., it settles in a 
position whose page was lower priority.
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S(t-1) S(t)

i

i

a

max(a,b)

min(a,b)

b

Referenced page always 
moves to the top because 
it must be in memory even 
when m=1.

d(t)stack
distance

No page below the one at 
position d(t) moves.  Why? 
There is no page fault if 
m>d(t) and therefore no up 
or down at those memory 
sizes.

Only two pages compete 
for each slot: the one 
already there and the one 
moving down.  Most 
important takes the slot, 
least important moves 
down.
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S(t-1) S(t)

i

i

a

max(a,b)

min(a,b)

b

d(t)stack
distance

Of the two previous top 
pages a and b, the lesser 
important min(a,b) moves 
down because it will be 
replaced from the m=2 
memory.  The more 
important max(a,b) 
remains.
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S(t-1) S(t)

i

i

a

max(a,b)

min(a,b)

b

For position k<d(t), a is the 
least important page in 
memory of size k-1.   If it is 
less important than the 
page b at position k, it 
continues to move down, 
otherwise it stays at 
position k and b moves 
down.

d(t)stack
distance
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• LRU is a stack algorithm; its priority rule at time t organizes the pages 
by increasing backward distance.

• MIN (optimal) is a stack algorithm; its priority rule at time t organizes 
the pages by increasing forward distance.

• Even the RAND (random) policy is a stack algorithm; its priority rule at 
time t is a random permutation of the pages.
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MIN example
1  2  3  4  1  2  5 1  2  3  4  5
1  2  3  4  1  2 5  1  2  3  4  5

1  1  1  4  1 1  5  5  5  5  4
2  2  2  4 2  2  1  1  1  1

3  3  3 3  3  3  2  2  2
4  4  4  4  3  3

x  x  x  x  2  3  x  2  3  4  5  2

r(t):

stacks:

d(t):

This diagram shows the 
behavior of MIN on the 
example address trace.

After its last reference, 
treat page as least 
important among those in 
memory (future reference 
time infinite). It no longer 
influences MIN.

Highlight shows example of an update to MIN stack.

r(7)=5 is first reference, thus d(7)=x, 5 goes in position 1

Now (2,1) compete for position 2; 1 wins because it is sooner in future, 2 loses

Now (2,4) compete for position 3; 2 wins, 4 loses

Now (4,3) compete for position 4; 3 wins, 4 loses

Now 4 goes into position 5, which was previously unoccupied
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1  2  3  4  1  2  5  1  2 3  4  5
1  2  3  4  1  2  5  1 2  3  4  5

1  1  1  4  1  1  5 5  5  5  4
2  2  2  4  2  2 1  1  1  1

3  3  3  3  3 3  2  2  2
4  4 4  4  3  3

x  x  x  x  2  3  x  2  3  4  5  2

r(t):

stacks:

d(t):

Highlight shows example of an update to MIN stack.

r(9)=2 is not first reference, thus 2 goes in position 1

Now (1,5) compete for position 2; 5 wins, 1 loses

Now 1 goes into position 3, which 2 just vacated
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Trajectory-Based MIN Distance Calculation
There is another way to do this, based on tracking trajectories of pages in 
the MIN stack

Red shows a trajectory of page 1 prior to its first reuse

Blue shows a trajectory of page 2 prior to its first reuse

Trajectory is a stack path between successive references to a page.  At 
each step the page stays in the same position or moves lower; never up.  
Page moves up only when it is reused.

1  2  3  4  1  2  5  1  2 3  4  5
1 2 3  4  1 2 5  1 2  3  4  5

1 1 1 4  1  1  5 5  5  5  4
2 2 2 4  2  2 1  1  1  1

3  3  3  3  3 3  2  2  2
4  4 4  4  3  3

x  x  x  x  2  3  x  2  3  4  5  2

r(t):

stacks:

d(t):

© Copyright 2022, Peter J. Denning 21



Algorithm for trajectories:

Write entire address trace into row 1.  Rest of tableau is blank.

For each t consider r(t)=p

If this is first reference to p do nothing

Otherwise, go back to prior reference to p, and for each time up to t

Copy p to next column in highest blank position without moving p up

Position of p at t-1 is d(t)

If prior reference is at time t’, algorithm places p at its proper position in columns 
t’+1 through t-1.

Let’s illustrate and then we’ll prove it works.
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1  2  3  4  1  2  5  1  2  3  4  5

x  x  x  x

1 2  3  4  1 2  5  1  2  3  4  5
1  1  1

x  x  x  x  2

1  2 3  4  1  2 5  1  2  3  4  5
1  1  1

2  2  2

x  x  x  x  2  3

Start by copying address trace 
into stack position 1. The five 
rows of tableau are the stack 
positions. Rest of tableau is 
blank. Distances at the bottom. 
First four distances are x (infinite)

t=4:

Prior reference to p=1 at time 1.  
Build trajectory from time 2 to 
time 4.  Copy p=1 into highest 
blank space of column 2 
(position 2).  Repeat for 
columns 3 and 4.  Its position at 
t=4 is the stack distance d(5)=2.

t=5:

Copy p=2 into highest blank 
space of column 3 (position 3).  
Repeat for columns 4 and 5.  Its 
position at t=5 is the stack 
distance d(6)=3.t=6:
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Page 5 is first reference.  It’s 
distance is d(7)=x.   No finite 
trajectory to record.

Page 1 prior reference at time 5.  
Copy p=1 into highest blank 
space of next column.  Repeat.  
At time 7 its position is 2, giving 
d(8)=2.

Page2 prior reference at time 6.  
Copy p=2 into first vacant 
position 3 of next column.  Note 
skip past position 2, which is 
already occupied.  Repeat.  At 
time 8 its position is 3, giving 
d(9)=3.

1  2  3  4  1  2  5 1  2  3  4  5
1  1  1

2  2  2

x  x  x  x  2  3  xt=7:

1  2  3  4  1 2  5  1 2  3  4  5
1  1  1     1  1

2  2  2

x  x  x  x  2  3  x  2t=8:

1  2  3  4  1  2 5  1  2 3  4  5
1  1  1     1  1

2  2  2     2  2

x  x  x  x  2  3  x  2  3t=9:
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Page 3 prior reference at time 3.  
At time 4 page 3 drops to 
position 4, the highest vacant.  
It propagates at position 4 to 
time 9.  Thus d(10)=4.

Page 4 prior reference at time 4.  
At time 5 page 4 drops to 
position 2, the highest vacant. 
Then to position 3, then to 
position 5. Propagates at 
position 5 to time 10.  Thus 
d(11)=5.

Page 5 prior reference at time 7.  
Copy p=5 into first vacant 
position 2 of next column.  
Repeat.  At time 11 its position 
is 2, giving d(12)=2.

THAT’S IT.  Trajectories all filled 
in.  Blank spots don’t matter for 
the distances.

t=11:

t=12:

1  2  3 4  1  2  5  1  2  3 4  5
1  1  1     1  1

2  2  2     2  2 
3  3  3  3  3  3

x  x  x  x  2  3  x  2  3  4t=10:

1  2  3  4 1  2  5  1  2  3  4 5
1  1  1  4 1  1

2  2  2  4 2  2 
3  3  3  3  3  3

4  4  4  4                  
x  x  x  x  2  3  x  2  3  4  5

1  2  3  4  1  2  5 1  2  3  4  5
1  1  1  4  1  1  5  5  5  5

2  2  2  4  2  2 
3  3  3  3  3  3

4  4  4  4                  
x  x  x  x  2  3  x  2  3  4  5  2
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Why Trajectory Algorithm Works
NOTATION: Notation D(p,t) is the position of page p in the stack at time t.  Because no page 
can move up stack unless referenced, D(p,t-1)≤D(p,t) except when r(t)=p in which case 
D(p,t)=1.  A trajectory is the sequence of positions D(p,u) where t’<u<t, and t’ and t are two 
successive uses of the page p.  Let T(t) be the trajectory for the page p=r(t).

Inductive proof.   Assume all trajectories correct prior to time t.  Construct trajectory at time 
t and show it is correct.  Basis: D(p,1)=1 where p=r(1).

The trajectory T(t) covers times t’, …, t.  Consider time u, t’<u<t.  Suppose D(p,u)=j.  If 
position (j,u+1) is blank, no trajectory prior to time t has used that position.  That means a 
future trajectory for a page q may pass through that position. Page q must therefore 
compete with p for position (j,u+1) and q loses because its future reuse time is later than t.  
Therefore p correctly occupies position (j,u+1).

If position (j,u+1) is already occupied by page q, then then p and q must compete.  Because 
q belongs to a trajectory already in place, q is used between before t, which means it 
precedes next reference to p, and thus wins.   Therefore p must move down.   The same 
argument applies for each down until a blank is found, when previous case applies.
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An Interesting Consequence
A consequence of the Trajectory algorithm is that MIN distances can be computed in 
real time without actually seeing the future.   As soon as we see p=r(t) there is enough 
information in the tableau to fill in its correct trajectory and output the MIN stack 
distance d(t).

Isn’t that amazing?

This does not mean we can implement MIN.  MIN still needs to see the future to 
determine the priorities of pages in memory.

Les Belady, inventor of MIN, got a patent for a device that could be part of the MMU of 
the CPU, and would output the MIN fault count at each time t.  He used a variation of 
the algorithm discussed here.  He envisioned that the device would allow operating 
system engineers to know how far their actual paging algorithm is from the ideal.  As 
far as I know, IBM never built that circuit.
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Advanced Topic:
What’s the right size memory allocation?

Use system throughput as measure of performance.



Footprint and system throughput

• Footprint of a process

– Space-time accumulated by a process

– Time measured in ticks (1 clock tick per memory access)

– Process charged 1 “page-tick” for each clock tick per page held 
in memory

– A page-tick is unit of “rent” for holding memory space

– Real time footprint ≠ virtual time footprint because page fault 
delays add to real time footprint but not virtual time footprint
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M pages of
memoryarriving

jobs

C
completing

jobs

Observe system for T seconds:

Total space-time available = MT

Mean footprint per job Y = MT/C

System throughput X = C/T

Thus M = XY

Throughput maximum when
footprint minimum.

What memory allocation minimizes
a process’s footprint?

memory space time law
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ESTIMATE OF FOOTPRINT

F(m) = k means k faults observed in observation period T with memory allocation m

footprint without page faults = mT

footprint of one page fault = mD (D = main-secondary access-time ratio, typically 106)

footprint for all page faults = mDF(m)

Let L(m) = lifetime  = mean time between faults = T/F(m)

Therefore Y(m) = total footprint
= mT+mDF(m)
= mT+DmT/L(m))
= mT(1+D/L(m))

If D/L(m) much larger than 1 (typical), Y(m) = (TD)(m/L(m)), which is minimum
when L(m)/m is maximum.

This occurs when m is at the lifetime curve KNEE (next page).
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memory space

lifetime

slope = L(m)/m

m

L(m)

Lifetime curve L(m) = mean virtual
time between page faults when
m pages of memory are allocated = T/F(m)

Empirically, lifetime curves have an S-shape.

Slope of line from origin to any point m on 
curve is L(m)/m.

Knee, an inflection point, maximizes L(m)/m, 
which is the same as minimizing mF(m).

Therefore: choose m near the knee.  This 
choice will minimize its footprint and 
maximize system throughput.

Not easy to implement.

KNEE
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finis
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