
Stack Algorithm Analytics

Peter J. Denning

© Copyright 2022, Peter J. Denning

Analytics

How to compute fault functions fast?

© Copyright 2022, Peter J. Denning 2

Analytics

• The simulation methods illustrated above are useful for finding the
F(m) functions, but they are computationally intensive because they
must be repeated for each value of m.

• The simulations show that the memory contents of LRU and MIN
satisfy the inclusion property. When we increase m by 1, we add a
row to the diagram without changing any of the rows already there.

• Can we exploit this for a simpler computational method?

• Yes. The F(m) functions of replacement policies with the inclusion
property can be computed in a single pass over the address trace.

© Copyright 2022, Peter J. Denning 3

Inclusion Property

• At all times, the contents of m-page memory are a subset
of the contents of (m+1)-page memory

“Adding a page to the memory allocation never makes things worse.”

© Copyright 2022, Peter J. Denning 4

Stack Algorithms

• The pages of the program can, at each moment of time,
be organized into a single ordered list such that the first m
pages on the list are the contents of the m-page memory.

• Satisfies the inclusion property: the first m pages are a
subset of the first m+1 pages.

• The list is called “the stack”. The stack represents the
layers of inclusion as memory grows.

© Copyright 2022, Peter J. Denning 5

LRU Stack

S(t)

i

LRU stack lists all the pages of
the program at time t in order
of most to least recently used,
from top to bottom.

The current page r(t)=i is
always on top. (Why?
Because the referenced page
is always the most recent and
is always in memory.)

The first m pages in the stack
are the contents of the LRU
memory at time t. (Why?
Because the policy always
removes the least recently
used, leaving only the m most
recently used.)

1

2

3

m

M

© Copyright 2022, Peter J. Denning 6

S(t-1) S(t)

i

i Look at the dynamics. If page
i is referenced at time t, we
can update the previous stack
by moving i from its position
to the top and pushing all the
intervening pages down by 1
position. That preserves the
LRU order of the stack.

© Copyright 2022, Peter J. Denning 7

S(t-1) S(t)

i

i

Draw a horizonal red line
slicing the stack at memory
size m. All the pages above
the line are in memory.

Notice that if the red line for
m is above the referenced
position, a page crosses the
red line upward into the
memory and a page crosses
downward out of the
memory. The upward moving
page is the one brought by
the page fault. The
downward moving page is the
LRU page among those in the
m-page memory allocation.

m

© Copyright 2022, Peter J. Denning 8

S(t-1) S(t)

i

i If the memory size m is below
the referenced position, no
pages move up or down across
the red line. This is because no
page fault occurs for the
referenced page, which is
already in memory.

The pages below the referenced
position are not reordered
because their positions relative
to page i are unchanged.

m

© Copyright 2022, Peter J. Denning 9

S(t-1) S(t)

i

i

d(t)

r(t)=i

Stack distance d(t) is the
position of r(t) in the
previous stack.

d(t) can be as small 1 (for
repeated reference) or as
large as M.

From previous pictures we
see that there is a page
fault only when d(t)>m

Therefore the number of
times d(t)>m is the total
number of faults, F(m)

First references are special:
treat them as distance =
infinity because there is no
finite size memory that
avoids the faults

stack
distance

Stack distance

© Copyright 2022, Peter J. Denning 10

• How to count stack distances?

– Counter c(k) counts number of times d(t)=k, for k=1,2,…,M

– Define counter c(M+1) to catch all the first references, which
have distances = infinity

– Data collection: initially all counters 0; simulate the LRU stacks; at
time t if d(t)=k, add 1 to counter c(k).

– Then the number of times d(t)>m is simply the sum of the
counters bigger than m

© Copyright 2022, Peter J. Denning 11

1 2 3 4 1 2 5 1 2 3 4 5
1 2 3 4 1 2 5 1 2 3 4 5

1 2 3 4 1 2 5 1 2 3 4
1 2 3 4 1 2 5 1 2 3

1 2 3 4 4 4 5 1 2
3 3 3 4 5 1

x x x x 4 4 x 3 3 5 5 5

r(t):

stacks:

d(t):

k c(k) F(k)
1 0 12
2 0 12
3 2 10
4 2 8
5 3 5
x 5

In one pass track
the LRU stack and
its distances.

On first references,
distance is infinite,
denoted by x.

Collect frequency histogram for
all possible stack distances, k.

c(k) = no. distances equal to k

F(k) = sum of the counts for
all distances larger than k.

© Copyright 2022, Peter J. Denning 12

General stack

• Now consider any replacement policy that operates from a priority
rule. A priority rule is a list of all M pages at each time t, that orders
the pages from most to least important at that time.

• If r(t) causes a page fault, use the priority rule to select the least
important page for replacement.

• The diagram to follow shows the dynamics of a stack update when
there is a priority rule. It is more complicated than LRU.

© Copyright 2022, Peter J. Denning 13

• Referenced page moves to top because it is always in memory, including
when m=1.

• Any page below the current distance does not move because there is no
fault in any of those memory sizes.

• Pages in between move down or stay put, but cannot move up because
an up move would represent a page-in for a non referenced page.

• A page moves as far down as its priority permits – i.e., it settles in a
position whose page was lower priority.

© Copyright 2022, Peter J. Denning 14

S(t-1) S(t)

i

i

a

max(a,b)

min(a,b)

b

Referenced page always
moves to the top because
it must be in memory even
when m=1.

d(t)stack
distance

No page below the one at
position d(t) moves. Why?
There is no page fault if
m>d(t) and therefore no up
or down at those memory
sizes.

Only two pages compete
for each slot: the one
already there and the one
moving down. Most
important takes the slot,
least important moves
down.

© Copyright 2022, Peter J. Denning 15

S(t-1) S(t)

i

i

a

max(a,b)

min(a,b)

b

d(t)stack
distance

Of the two previous top
pages a and b, the lesser
important min(a,b) moves
down because it will be
replaced from the m=2
memory. The more
important max(a,b)
remains.

© Copyright 2022, Peter J. Denning 16

S(t-1) S(t)

i

i

a

max(a,b)

min(a,b)

b

For position k<d(t), a is the
least important page in
memory of size k-1. If it is
less important than the
page b at position k, it
continues to move down,
otherwise it stays at
position k and b moves
down.

d(t)stack
distance

© Copyright 2022, Peter J. Denning 17

• LRU is a stack algorithm; its priority rule at time t organizes the pages
by increasing backward distance.

• MIN (optimal) is a stack algorithm; its priority rule at time t organizes
the pages by increasing forward distance.

• Even the RAND (random) policy is a stack algorithm; its priority rule at
time t is a random permutation of the pages.

© Copyright 2022, Peter J. Denning 18

MIN example
1 2 3 4 1 2 5 1 2 3 4 5
1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 1 1 5 5 5 5 4
2 2 2 4 2 2 1 1 1 1

3 3 3 3 3 3 2 2 2
4 4 4 4 3 3

x x x x 2 3 x 2 3 4 5 2

r(t):

stacks:

d(t):

This diagram shows the
behavior of MIN on the
example address trace.

After its last reference,
treat page as least
important among those in
memory (future reference
time infinite). It no longer
influences MIN.

Highlight shows example of an update to MIN stack.

r(7)=5 is first reference, thus d(7)=x, 5 goes in position 1

Now (2,1) compete for position 2; 1 wins because it is sooner in future, 2 loses

Now (2,4) compete for position 3; 2 wins, 4 loses

Now (4,3) compete for position 4; 3 wins, 4 loses

Now 4 goes into position 5, which was previously unoccupied
© Copyright 2022, Peter J. Denning 19

1 2 3 4 1 2 5 1 2 3 4 5
1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 1 1 5 5 5 5 4
2 2 2 4 2 2 1 1 1 1

3 3 3 3 3 3 2 2 2
4 4 4 4 3 3

x x x x 2 3 x 2 3 4 5 2

r(t):

stacks:

d(t):

Highlight shows example of an update to MIN stack.

r(9)=2 is not first reference, thus 2 goes in position 1

Now (1,5) compete for position 2; 5 wins, 1 loses

Now 1 goes into position 3, which 2 just vacated

© Copyright 2022, Peter J. Denning 20

Trajectory-Based MIN Distance Calculation
There is another way to do this, based on tracking trajectories of pages in
the MIN stack

Red shows a trajectory of page 1 prior to its first reuse

Blue shows a trajectory of page 2 prior to its first reuse

Trajectory is a stack path between successive references to a page. At
each step the page stays in the same position or moves lower; never up.
Page moves up only when it is reused.

1 2 3 4 1 2 5 1 2 3 4 5
1 2 3 4 1 2 5 1 2 3 4 5

1 1 1 4 1 1 5 5 5 5 4
2 2 2 4 2 2 1 1 1 1

3 3 3 3 3 3 2 2 2
4 4 4 4 3 3

x x x x 2 3 x 2 3 4 5 2

r(t):

stacks:

d(t):

© Copyright 2022, Peter J. Denning 21

Algorithm for trajectories:

Write entire address trace into row 1. Rest of tableau is blank.

For each t consider r(t)=p

If this is first reference to p do nothing

Otherwise, go back to prior reference to p, and for each time up to t

Copy p to next column in highest blank position without moving p up

Position of p at t-1 is d(t)

If prior reference is at time t’, algorithm places p at its proper position in columns
t’+1 through t-1.

Let’s illustrate and then we’ll prove it works.

© Copyright 2022, Peter J. Denning 22

1 2 3 4 1 2 5 1 2 3 4 5

x x x x

1 2 3 4 1 2 5 1 2 3 4 5
1 1 1

x x x x 2

1 2 3 4 1 2 5 1 2 3 4 5
1 1 1

2 2 2

x x x x 2 3

Start by copying address trace
into stack position 1. The five
rows of tableau are the stack
positions. Rest of tableau is
blank. Distances at the bottom.
First four distances are x (infinite)

t=4:

Prior reference to p=1 at time 1.
Build trajectory from time 2 to
time 4. Copy p=1 into highest
blank space of column 2
(position 2). Repeat for
columns 3 and 4. Its position at
t=4 is the stack distance d(5)=2.

t=5:

Copy p=2 into highest blank
space of column 3 (position 3).
Repeat for columns 4 and 5. Its
position at t=5 is the stack
distance d(6)=3.t=6:

© Copyright 2022, Peter J. Denning 23

Page 5 is first reference. It’s
distance is d(7)=x. No finite
trajectory to record.

Page 1 prior reference at time 5.
Copy p=1 into highest blank
space of next column. Repeat.
At time 7 its position is 2, giving
d(8)=2.

Page2 prior reference at time 6.
Copy p=2 into first vacant
position 3 of next column. Note
skip past position 2, which is
already occupied. Repeat. At
time 8 its position is 3, giving
d(9)=3.

1 2 3 4 1 2 5 1 2 3 4 5
1 1 1

2 2 2

x x x x 2 3 xt=7:

1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1

2 2 2

x x x x 2 3 x 2t=8:

1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1

2 2 2 2 2

x x x x 2 3 x 2 3t=9:

© Copyright 2022, Peter J. Denning 24

Page 3 prior reference at time 3.
At time 4 page 3 drops to
position 4, the highest vacant.
It propagates at position 4 to
time 9. Thus d(10)=4.

Page 4 prior reference at time 4.
At time 5 page 4 drops to
position 2, the highest vacant.
Then to position 3, then to
position 5. Propagates at
position 5 to time 10. Thus
d(11)=5.

Page 5 prior reference at time 7.
Copy p=5 into first vacant
position 2 of next column.
Repeat. At time 11 its position
is 2, giving d(12)=2.

THAT’S IT. Trajectories all filled
in. Blank spots don’t matter for
the distances.

t=11:

t=12:

1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 1 1

2 2 2 2 2
3 3 3 3 3 3

x x x x 2 3 x 2 3 4t=10:

1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 4 1 1

2 2 2 4 2 2
3 3 3 3 3 3

4 4 4 4
x x x x 2 3 x 2 3 4 5

1 2 3 4 1 2 5 1 2 3 4 5
1 1 1 4 1 1 5 5 5 5

2 2 2 4 2 2
3 3 3 3 3 3

4 4 4 4
x x x x 2 3 x 2 3 4 5 2

© Copyright 2022, Peter J. Denning 25

Why Trajectory Algorithm Works
NOTATION: Notation D(p,t) is the position of page p in the stack at time t. Because no page
can move up stack unless referenced, D(p,t-1)≤D(p,t) except when r(t)=p in which case
D(p,t)=1. A trajectory is the sequence of positions D(p,u) where t’<u<t, and t’ and t are two
successive uses of the page p. Let T(t) be the trajectory for the page p=r(t).

Inductive proof. Assume all trajectories correct prior to time t. Construct trajectory at time
t and show it is correct. Basis: D(p,1)=1 where p=r(1).

The trajectory T(t) covers times t’, …, t. Consider time u, t’<u<t. Suppose D(p,u)=j. If
position (j,u+1) is blank, no trajectory prior to time t has used that position. That means a
future trajectory for a page q may pass through that position. Page q must therefore
compete with p for position (j,u+1) and q loses because its future reuse time is later than t.
Therefore p correctly occupies position (j,u+1).

If position (j,u+1) is already occupied by page q, then then p and q must compete. Because
q belongs to a trajectory already in place, q is used between before t, which means it
precedes next reference to p, and thus wins. Therefore p must move down. The same
argument applies for each down until a blank is found, when previous case applies.

© Copyright 2022, Peter J. Denning 26

An Interesting Consequence
A consequence of the Trajectory algorithm is that MIN distances can be computed in
real time without actually seeing the future. As soon as we see p=r(t) there is enough
information in the tableau to fill in its correct trajectory and output the MIN stack
distance d(t).

Isn’t that amazing?

This does not mean we can implement MIN. MIN still needs to see the future to
determine the priorities of pages in memory.

Les Belady, inventor of MIN, got a patent for a device that could be part of the MMU of
the CPU, and would output the MIN fault count at each time t. He used a variation of
the algorithm discussed here. He envisioned that the device would allow operating
system engineers to know how far their actual paging algorithm is from the ideal. As
far as I know, IBM never built that circuit.

© Copyright 2022, Peter J. Denning 27

Advanced Topic:
What’s the right size memory allocation?

Use system throughput as measure of performance.

Footprint and system throughput

• Footprint of a process

– Space-time accumulated by a process

– Time measured in ticks (1 clock tick per memory access)

– Process charged 1 “page-tick” for each clock tick per page held
in memory

– A page-tick is unit of “rent” for holding memory space

– Real time footprint ≠ virtual time footprint because page fault
delays add to real time footprint but not virtual time footprint

© Copyright 2022, Peter J. Denning 29

M pages of
memoryarriving

jobs

C
completing

jobs

Observe system for T seconds:

Total space-time available = MT

Mean footprint per job Y = MT/C

System throughput X = C/T

Thus M = XY

Throughput maximum when
footprint minimum.

What memory allocation minimizes
a process’s footprint?

memory space time law

© Copyright 2022, Peter J. Denning 30

ESTIMATE OF FOOTPRINT

F(m) = k means k faults observed in observation period T with memory allocation m

footprint without page faults = mT

footprint of one page fault = mD (D = main-secondary access-time ratio, typically 106)

footprint for all page faults = mDF(m)

Let L(m) = lifetime = mean time between faults = T/F(m)

Therefore Y(m) = total footprint
= mT+mDF(m)
= mT+DmT/L(m))
= mT(1+D/L(m))

If D/L(m) much larger than 1 (typical), Y(m) = (TD)(m/L(m)), which is minimum
when L(m)/m is maximum.

This occurs when m is at the lifetime curve KNEE (next page).

© Copyright 2022, Peter J. Denning 31

memory space

lifetime

slope = L(m)/m

m

L(m)

Lifetime curve L(m) = mean virtual
time between page faults when
m pages of memory are allocated = T/F(m)

Empirically, lifetime curves have an S-shape.

Slope of line from origin to any point m on
curve is L(m)/m.

Knee, an inflection point, maximizes L(m)/m,
which is the same as minimizing mF(m).

Therefore: choose m near the knee. This
choice will minimize its footprint and
maximize system throughput.

Not easy to implement.

KNEE

© Copyright 2022, Peter J. Denning 32

finis

© Copyright 2022, Peter J. Denning 33

