Virtual Memory

Peter J. Denning



Definition

e Virtual memory is an OS subsystem that

automatically manages address spaces and the
movement of their pages up and down the
memory hierarchy.

e “Virtual”, a term borrowed from optics (“virtual
image”)*, refers to the simulation of a RAM large
enough to hold the entire address space.

*virtual: you can see it but it is not there
transparent: you cannot see it, but it is there

© 2022, Peter J. Denning 2



History

e VM invented in 1959 at University of Manchester
to solve the “overlay problem”.

— On early machines programmers had to program their
own up and down operations.

— Ups and downs were called overlays. Manual overlays
were time consuming and error prone.

— Automation would improve programmer productivity
by 2x or 3x or more.

© 2022, Peter J. Denning



e Their innovations:
— Distinction between address and location

— Address space: the virtual memory to be simulated
with a smaller RAM, looks contiguous to the CPU

— Pages and frames
— Mapping of pages to frames
— Page fault and associated interrupt

— Replacement algorithms

© 2022, Peter J. Denning



Widespread initial enthusiasm
Performance issues quickly cast a dark cloud

Classic 1966 study by Les Belady at IBM clarified many
performance issues of page replacement
— Use bits

— Early evidence of locality

In 1966 Denning at MIT invented working set model
— Analytic theory

— Exploited locality to be near optimal

— Prevented thrashing

— Approximations adopted into all OSs

© 2022, Peter J. Denning



Addressing

e Basic data elements stored in memory are bytes (8-bits).
e Each byte is stored in a physical memory location.

— RAM: registers

— Disk, CD: patches of magnetic or optical surface

e Addresses: bit-strings that identify bytes.

— Virtual address: generated by the CPU to designate a specific data byte in a
contiguous sequence of bytes called Address Space. Example: A CPU with 16-
bit addresses can access any item in the contiguous range 0, 1, 2, ..., 216-1.

— Physical address: designates specific location of a byte in RAM, also numbered
in a contiguous sequence. Example: A RAM with 32-bit addresses can access
any location in the contiguous range 0, 1, 2, ..., 232-1.

© 2022, Peter J. Denning 6



e Address map: Correspondence between virtual

addresses and locations established dynamically
at run time.

e Binding: process of specifying a location for an
address.

© 2022, Peter J. Denning



Why Address Spaces?

e Associated uniquely with a process. Contains all the data
of the process. Implements the OS guarantee that
processes have private, nonoverlapping memories.

e Address space appears to the process as a single RAM all
its own.

e The OS simulates the address space using the available
RAM by

— Mapping addresses to locations
— Moving data up and down hierarchy automatically

© 2022, Peter J. Denning



CPU

8 pages

Basic Idea of Mapping

address
space
RAM
~ map
| > /v

[

T

Zé\»

\

NN

© 2022, Peter J. Denning

16 frames

order within
RAM not
important;
can rearrange
at any time.



Location Independence

map

CPU

Zé

\

NN

© 2022, Peter J. Denning

N

up /down

Page 4 was in frame
15 and was moved
down to DISK.
When it was brought
back, frame 15 was
no longer available
and page 4 went
into frame 14
instead. This is
invisible to the CPU.

10



Logical Partition

map map |

CPU

CPU

A\

e
!

\

The address spaces of the two CPUs are

mapped to different frames of RAM. No frame
is use by both at the same time. The maps
keep them separate.

© 2022, Peter J. Denning

11




Addressing with pages

frames:
sages. 01,23,
: 475’6’7!
0,1,2,3,4,5,6,7 8.9 1011
12,13,14,15
4*512 = 2048
addresses in
CPU page space l400
ot forh (page- This byte has
no, offset
CPU asks for ) RAM address
linear address x 400 (11, 400)
= 2448 This byte has
paging address
Page size is 512 (4, 400)

© 2022, Peter J. Denning 12



page table entry 4
says page in frame 11

This byte has RAM
address (11, 400)

CPU l4oo

CPU asks for
address 2448 l 400

This byte has
address (4, 400)

© 2022, Peter J. Denning 13



11

Some pages are not loaded
into RAM. A presence bit P
in the page table tells which
pages are loaded. Here,
pages 2 and 4 are present;
page 3 is missing.

CPU

© 2022, Peter J. Denning

14



How is the Map Constructed?

e Objective: convert CPU virtual address to RAM
frame address

— CPU address (i,x) where i is 3-bit page number (there
are 8 pages) and x is 9-bit line number (there are 512
bytes on a page)

— RAM address (j,x) where j is 4-bit frame number (there
are 16 frames)

— Here, address space is smaller than RAM. Often
address space is larger.

© 2022, Peter J. Denning 15



3

9
page no | Iine no X
page table
frame no f line no x
4 9

© 2022, Peter J. Denning

address
generated
by CPU

address
recognized
by RAM

virtual
address

real
address

16



Page PTlal
Table a = address space number

Format i = page number

P = presence bit

A = access code

U = used bit

M = modified bit

f = frame number

© 2022, Peter J. Denning 17



How Big is Page Table?

e Consider example where CPU has 16-bit addresses,
RAM 32-bit, and page is 1024 bytes (219).
— Need 10 bits for the line number, thus 22 bits for frame
number (232/210 = 222)

— Can fit the P,M,U, and A bits into 1 byte and the frame
number into 3 bytes

— Page table is 4x21¢ = 218 pytes. Tiny fraction of RAM,
which is 232 bytes.

© 2022, Peter J. Denning 18



How is it all put together?

e Next series of pictures shows how all these
components are assembled into a working

virtual memory system with lightning-fast
address mapping.

© 2022, Peter J. Denning 19



CPU

RAM

space| g PTla]

£
MAR | (i,x)

lx
f
up down
N
© 2022, Peter J. Denning ~_ 20




CPU generates address (i,x)
Objective: map to (f,x) in memory
PT for CPU’s address space in kernel area of RAM

Copy of entire address space in file on disk (the
“swap file” or “cache file”) -- (Master Copy
Principle) -- OS keeps master copy up to date as
process writes into some of its pages.

© 2022, Peter J. Denning

21



CPU

space a3
MAR | (i,x)
: (f,x)
MMU
page
fault

MMU hardware substitutes
frame bits (from PT) for page
number bits (from MAR). If
P=0 for page i, MMU signals
with the page fault interrupt

© 2022, Peter J. Denning

RAM

PT[a]

up down

22




CPU

space a

addr | (i,X)

MMU

RAM

PT[a]

(f.x)

TLB /

(i.f)

page
fault

TLB is a small set of high speed registers that can
be searched in parallel with page number as key.
Entries show the page-frame association from the
PT. A hit enables MMU to bypass PT lookup and
complete the translation within 3% of time if the
whole PT was in the CPU.

© 2022, Peter J. Denning

up down




Translation Look Aside Buffer (TLB) is cache of most recent address
paths as (i,f) pairs

Bypass a PT lookup if a “hit” occurs.
Hit ratio h. Miss ratio (1-h).
Average mapping time:

— T=h*TLB + (1-h)*RAM

— Easy to get below 1.03*RAM with a few hundred TLB entries (3%
mapping cost)

© 2022, Peter J. Denning

24



CPU

RAM

PT[a]

space d
addr (SX)
(f.x)
MMU
page
fault
TLB
N
(ih) PFH

© 2022, Peter J. Denning




Conclusions

e Separating address from location brings powerful
benefits including partitioning and relocation.

e Bind addresses to locations with a map that can
be changed dynamically.

e Paging map illustrates that mapping function can
be built into CPU, where it is very fast and
completely invisible to users.

© 2022, Peter J. Denning 26



