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Definition

e Virtual memory is an OS subsystem that

automatically manages address spaces and the
movement of their pages up and down the
memory hierarchy.

e “Virtual”, a term borrowed from optics (“virtual
image”)*, refers to the simulation of a RAM large
enough to hold the entire address space.

*virtual: you can see it but it is not there
transparent: you cannot see it, but it is there
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History

e VM invented in 1959 at University of Manchester
to solve the “overlay problem”.

— On early machines programmers had to program their
own up and down operations.

— Ups and downs were called overlays. Manual overlays
were time consuming and error prone.

— Automation would improve programmer productivity
by 2x or 3x or more.

© 2022, Peter J. Denning



e Their innovations:
— Distinction between address and location

— Address space: the virtual memory to be simulated
with a smaller RAM, looks contiguous to the CPU

— Pages and frames
— Mapping of pages to frames
— Page fault and associated interrupt

— Replacement algorithms
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Widespread initial enthusiasm
Performance issues quickly cast a dark cloud

Classic 1966 study by Les Belady at IBM clarified many
performance issues of page replacement
— Use bits

— Early evidence of locality

In 1966 Denning at MIT invented working set model
— Analytic theory

— Exploited locality to be near optimal

— Prevented thrashing

— Approximations adopted into all OSs
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Addressing

e Basic data elements stored in memory are bytes (8-bits).
e Each byte is stored in a physical memory location.

— RAM: registers

— Disk, CD: patches of magnetic or optical surface

e Addresses: bit-strings that identify bytes.

— Virtual address: generated by the CPU to designate a specific data byte in a
contiguous sequence of bytes called Address Space. Example: A CPU with 16-
bit addresses can access any item in the contiguous range 0, 1, 2, ..., 216-1.

— Physical address: designates specific location of a byte in RAM, also numbered
in a contiguous sequence. Example: A RAM with 32-bit addresses can access
any location in the contiguous range 0, 1, 2, ..., 232-1.
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e Address map: Correspondence between virtual

addresses and locations established dynamically
at run time.

e Binding: process of specifying a location for an
address.
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Why Address Spaces?

e Associated uniquely with a process. Contains all the data
of the process. Implements the OS guarantee that
processes have private, nonoverlapping memories.

e Address space appears to the process as a single RAM all
its own.

e The OS simulates the address space using the available
RAM by

— Mapping addresses to locations
— Moving data up and down hierarchy automatically
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Location Independence
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Page 4 was in frame
15 and was moved
down to DISK.
When it was brought
back, frame 15 was
no longer available
and page 4 went
into frame 14
instead. This is
invisible to the CPU.
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Logical Partition
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The address spaces of the two CPUs are

mapped to different frames of RAM. No frame
is use by both at the same time. The maps
keep them separate.
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Addressing with pages

frames:
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12,13,14,15
4*512 = 2048
addresses in
CPU page space l400
ot forh (page- This byte has
no, offset
CPU asks for ) RAM address
linear address x 400 (11, 400)
= 2448 This byte has
paging address
Page size is 512 (4, 400)
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page table entry 4
says page in frame 11

This byte has RAM
address (11, 400)

CPU l4oo

CPU asks for
address 2448 l 400

This byte has
address (4, 400)
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Some pages are not loaded
into RAM. A presence bit P
in the page table tells which
pages are loaded. Here,
pages 2 and 4 are present;
page 3 is missing.

CPU
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How is the Map Constructed?

e Objective: convert CPU virtual address to RAM
frame address

— CPU address (i,x) where i is 3-bit page number (there
are 8 pages) and x is 9-bit line number (there are 512
bytes on a page)

— RAM address (j,x) where j is 4-bit frame number (there
are 16 frames)

— Here, address space is smaller than RAM. Often
address space is larger.
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Page PTlal
Table a = address space number

Format i = page number

P = presence bit

A = access code

U = used bit

M = modified bit

f = frame number
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How Big is Page Table?

e Consider example where CPU has 16-bit addresses,
RAM 32-bit, and page is 1024 bytes (219).
— Need 10 bits for the line number, thus 22 bits for frame
number (232/210 = 222)

— Can fit the P,M,U, and A bits into 1 byte and the frame
number into 3 bytes

— Page table is 4x21¢ = 218 pytes. Tiny fraction of RAM,
which is 232 bytes.
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How is it all put together?

e Next series of pictures shows how all these
components are assembled into a working

virtual memory system with lightning-fast
address mapping.
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CPU generates address (i,x)
Objective: map to (f,x) in memory
PT for CPU’s address space in kernel area of RAM

Copy of entire address space in file on disk (the
“swap file” or “cache file”) -- (Master Copy
Principle) -- OS keeps master copy up to date as
process writes into some of its pages.
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MMU hardware substitutes
frame bits (from PT) for page
number bits (from MAR). If
P=0 for page i, MMU signals
with the page fault interrupt
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TLB is a small set of high speed registers that can
be searched in parallel with page number as key.
Entries show the page-frame association from the
PT. A hit enables MMU to bypass PT lookup and
complete the translation within 3% of time if the
whole PT was in the CPU.
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Translation Look Aside Buffer (TLB) is cache of most recent address
paths as (i,f) pairs

Bypass a PT lookup if a “hit” occurs.
Hit ratio h. Miss ratio (1-h).
Average mapping time:

— T=h*TLB + (1-h)*RAM

— Easy to get below 1.03*RAM with a few hundred TLB entries (3%
mapping cost)
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Conclusions

e Separating address from location brings powerful
benefits including partitioning and relocation.

e Bind addresses to locations with a map that can
be changed dynamically.

e Paging map illustrates that mapping function can
be built into CPU, where it is very fast and
completely invisible to users.
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