
Virtual Memory

Peter J. Denning

Definition

• Virtual memory is an OS subsystem that
automatically manages address spaces and the
movement of their pages up and down the
memory hierarchy.

• “Virtual”, a term borrowed from optics (“virtual
image”)*, refers to the simulation of a RAM large
enough to hold the entire address space.

© 2022, Peter J. Denning

*virtual: you can see it but it is not there
transparent: you cannot see it, but it is there

2

History

• VM invented in 1959 at University of Manchester
to solve the “overlay problem”.
– On early machines programmers had to program their

own up and down operations.
– Ups and downs were called overlays. Manual overlays

were time consuming and error prone.
– Automation would improve programmer productivity

by 2x or 3x or more.

© 2022, Peter J. Denning 3

• Their innovations:
– Distinction between address and location
– Address space: the virtual memory to be simulated

with a smaller RAM, looks contiguous to the CPU
– Pages and frames
– Mapping of pages to frames
– Page fault and associated interrupt
– Replacement algorithms

© 2022, Peter J. Denning 4

• Widespread initial enthusiasm
• Performance issues quickly cast a dark cloud
• Classic 1966 study by Les Belady at IBM clarified many

performance issues of page replacement
– Use bits
– Early evidence of locality

• In 1966 Denning at MIT invented working set model
– Analytic theory
– Exploited locality to be near optimal
– Prevented thrashing
– Approximations adopted into all OSs

© 2022, Peter J. Denning 5

© 2022, Peter J. Denning

Addressing
• Basic data elements stored in memory are bytes (8-bits).
• Each byte is stored in a physical memory location.

– RAM: registers

– Disk, CD: patches of magnetic or optical surface

• Addresses: bit-strings that identify bytes.
– Virtual address: generated by the CPU to designate a specific data byte in a

contiguous sequence of bytes called Address Space. Example: A CPU with 16-
bit addresses can access any item in the contiguous range 0, 1, 2, …, 216-1.

– Physical address: designates specific location of a byte in RAM, also numbered
in a contiguous sequence. Example: A RAM with 32-bit addresses can access
any location in the contiguous range 0, 1, 2, …, 232-1.

6

© 2022, Peter J. Denning

• Address map: Correspondence between virtual
addresses and locations established dynamically
at run time.

• Binding: process of specifying a location for an
address.

7

Why Address Spaces?

• Associated uniquely with a process. Contains all the data
of the process. Implements the OS guarantee that
processes have private, nonoverlapping memories.

• Address space appears to the process as a single RAM all
its own.

• The OS simulates the address space using the available
RAM by
– Mapping addresses to locations
– Moving data up and down hierarchy automatically

© 2022, Peter J. Denning 8

© 2022, Peter J. Denning

address
space

8 pages

16 frames

RAM

map

Basic Idea of Mapping

order within
RAM not

important;
can rearrange
at any time.

CPU

9

© 2022, Peter J. Denning

map

CPU

downup

Location Independence

Page 4 was in frame
15 and was moved
down to DISK.
When it was brought
back, frame 15 was
no longer available
and page 4 went
into frame 14
instead. This is
invisible to the CPU.

10

© 2022, Peter J. Denning

map

CPU

map

CPU

Logical Partition

The address spaces of the two CPUs are
mapped to different frames of RAM. No frame
is use by both at the same time. The maps
keep them separate.

11

© 2022, Peter J. Denning

pages:
0,1,2,3,4,5,6,7

CPU

400

400

This byte has
RAM address
(11, 400)

CPU asks for
linear address x
= 2448

Page size is 512

frames:
0,1,2,3,
4,5,6,7,
8,9,10,11,
12,13,14,15

This byte has
paging address
(4, 400)

addresses in
page space
of form (page-
no, offset)

4*512 = 2048

Addressing with pages

12

© 2022, Peter J. Denning

CPU

400

400

This byte has RAM
address (11, 400)

CPU asks for
address 2448

This byte has
address (4, 400)

4 11

page table entry 4
says page in frame 11

13

© 2022, Peter J. Denning

CPU

Some pages are not loaded
into RAM. A presence bit P
in the page table tells which
pages are loaded. Here,
pages 2 and 4 are present;
page 3 is missing.

4 11
3
2

P

51
0
1

14

How is the Map Constructed?

• Objective: convert CPU virtual address to RAM
frame address
– CPU address (i,x) where i is 3-bit page number (there

are 8 pages) and x is 9-bit line number (there are 512
bytes on a page)

– RAM address (j,x) where j is 4-bit frame number (there
are 16 frames)

– Here, address space is smaller than RAM. Often
address space is larger.

© 2022, Peter J. Denning 15

© 2022, Peter J. Denning

page no i line no x

3 9

frame no f line no x

PT

94

page table

address
generated
by CPU

address
recognized
by RAM

virtual
address

real
address

map

16

© 2022, Peter J. Denning

PT[a]

P fi MA U

a = address space number

i = page number

P = presence bit

A = access code

U = used bit

M = modified bit

f = frame number

Page
Table
Format

17

How Big is Page Table?

• Consider example where CPU has 16-bit addresses,
RAM 32-bit, and page is 1024 bytes (210).
– Need 10 bits for the line number, thus 22 bits for frame

number (232/210 = 222)
– Can fit the P,M,U, and A bits into 1 byte and the frame

number into 3 bytes
– Page table is 4x216 = 218 bytes. Tiny fraction of RAM,

which is 232 bytes.

© 2022, Peter J. Denning 18

How is it all put together?

• Next series of pictures shows how all these
components are assembled into a working
virtual memory system with lightning-fast
address mapping.

© 2022, Peter J. Denning 19

© 2022, Peter J. Denning

aspace

CPU RAM

(i,x)MAR

i

PT[a]

f

x

downup

f

20

© 2022, Peter J. Denning

• CPU generates address (i,x)
• Objective: map to (f,x) in memory
• PT for CPU’s address space in kernel area of RAM
• Copy of entire address space in file on disk (the
“swap file” or “cache file”) -- (Master Copy
Principle) -- OS keeps master copy up to date as
process writes into some of its pages.

21

© 2022, Peter J. Denning

aspace

CPU RAM

i

MMU

PT[a]

f

x
(f,x)

page
fault

downup

(i,x)MAR

f

MMU hardware substitutes
frame bits (from PT) for page
number bits (from MAR). If
P=0 for page i, MMU signals
with the page fault interrupt

22

© 2022, Peter J. Denning

aspace

CPU RAM

i

MMU

PT[a]

TLB

(i,f)

f

x
(f,x)

page
fault

downup

(i,x)addr

TLB is a small set of high speed registers that can
be searched in parallel with page number as key.
Entries show the page-frame association from the
PT. A hit enables MMU to bypass PT lookup and
complete the translation within 3% of time if the
whole PT was in the CPU.

f

23

© 2022, Peter J. Denning

• Translation Look Aside Buffer (TLB) is cache of most recent address
paths as (i,f) pairs

• Bypass a PT lookup if a “hit” occurs.
• Hit ratio h. Miss ratio (1-h).
• Average mapping time:

– T = h*TLB + (1-h)*RAM
– Easy to get below 1.03*RAM with a few hundred TLB entries (3%

mapping cost)

24

© 2022, Peter J. Denning

dspace

CPU RAM

i

MMU

PT[a]

TLB

(i,f)

f

x
(f,x)

page
fault

downup

PFH

(i,x)addr

f

25

© 2022, Peter J. Denning

Conclusions

• Separating address from location brings powerful
benefits including partitioning and relocation.

• Bind addresses to locations with a map that can
be changed dynamically.

• Paging map illustrates that mapping function can
be built into CPU, where it is very fast and
completely invisible to users.

26

