
CS3070	–	Exploration	5		--	Memory	Management	
8/6/20	
	
	

Memory	is	as	important	to	computing	as	processing	on	the	CPU.		It	appears	in	many	
forms	in	our	systems:	

1. Registers	–	These	directly	feed	the	instruction	pipelines	of	the	CPU.		They	are	
the	fastest	addressable	memory	in	the	entire	system	and	they	operate	at	the	
same	clock	speed	as	the	rest	of	the	CPU.	

2. Cache	--	The	caches	keep	recently	used	data	and	instructions	close	to	the	CPU	
so	that	the	CPU	can	reuse	data	rapidly	rather	than	at	the	much	slower	main	
memory	speed.		Referred	to	by	level,	L1	(level	1)	is	the	fastest	and	most	
expensive,	positioned	“closest”	to	the	CPU	registers.		Levels	L2	and	L3	are	
progressively	cheaper,	larger,	and	farther	away.		Cache	is	generally	
completely	automatic;	system	and	application	programmers	generally	ignore	
its	existence	–	it	just	makes	the	machine	faster	without	special	handling.	

3. Main	Memory	(RAM)	--	the	very	fast	memory	holding	program	code	and	data	
accessed	by	the	CPU.		Main	memory	is	usually	volatile,	meaning	that	its	
contents	disappear	if	the	power	goes	off.	

4. Secondary	Memory	(Disk	or	SSD)	--	Slower	memory	that	holds	any	data.		CPU	
cannot	access	secondary	memory	directly;	it	must	first	copy	the	data	into	
main	memory.		Secondary	memory	is	persistent	and	will	not	erase	data	until	
explicitly	ordered	to	do	so.		Though	slower,	it	is	considerably	less	expensive	
than	main	memory.	

5. Cloud	--	storage	servers	distributed	and	replicated	across	the	network	hold	
many	digital	objects	outside	a	local	computer	that	can	be	moved	to	the	local	
computer	when	needed.	

These	technologies	are	organized	into	a	memory	hierarchy	with	the	fastest	(and	
most	expensive	at	the	top	closest	to	CPU)	and	the	slowest	(and	least	expensive)	at	
the	bottom.		Memory	hierarchy	is	unavoidable	because	of	significant	differences	
between	speed	and	costs	of	various	technologies.		The	OS	keeps	track	of	where	data	
are	in	the	hierarchy	and	arranges	for	them	to	move	up	(when	needed)	or	down	
(when	no	longer	needed).			The	performance	of	the	system	depends	critically	on	
how	well	the	OS	manages	the	contents	of	the	memory	hierarchy.	

Virtual	memory	is	an	important	part	of	the	hierarchy.		It	simulates	a	main	
memory	sufficiently	large	to	hold	all	the	code	and	data	of	a	process,	even	if	the	
simulated	main	memory	is	smaller	than	the	physically	installed	RAM.			The	
simulated	main	memory	is	called	the	address	space	of	a	process.		From	now	on	we	
will	use	the	term	main	memory	for	the	physically	installed	RAM	of	the	machine.		The	
address	space	is	divided	into	equal	size	pages	and	RAM	into	frames	that	hold	pages.		
As	it	executes	programs,	the	CPU	generates	linear	addresses,	which	can	be	seen	as	
offsets	from	the	start	of	the	address	space.	A	memory	mapping	unit	(MMU)	in	the	



CPU	converts	the	linear	addresses	into	page-line	pairs,	finds	the	frame	holding	the	
page,	and	generates	the	physical	address	within	that	frame.		If	the	MMU	encounters	
a	page	number	not	in	RAM,	it	generates	a	page	fault	interrupt	that	requests	the	OS	to	
load	the	missing	page.		The	MMU	contains	a	small	cache,	translation-lookaside	
buffer	(TLB),	that	bypasses	page	table	lookups	for	recent	page-frame	pairs.	

The	performance	of	virtual	memory	is	very	sensitive	to	the	replacement	policy.		
This	policy	that	decides	which	page	to	evict	from	main	memory.		Every	eviction	
becomes	a	future	page	fault	when	the	missing	page	is	referenced	again.		Therefore,	
we	seek	replacement	policies	that	minimize	total	page	faults.		Because	the	latency	of	
the	secondary	memory	is	so	high	–	for	example,	disks	are	106	slower	than	RAM	–	
poor	replacements	can	quickly	accumulate	huge	delays	for	processes.	

With	multiple	concurrent	processes,	the	OS	partitions	the	memory	among	the	
active	processes.		There	are	two	ways	to	partition.		In	a	fixed	partition	each	process	
gets	a	fixed	amount	of	memory.		The	replacement	policy	synchronizes	evictions	with	
page	faults	–	each	fault	triggers	an	eviction	–	so	that	the	fixed	space	stays	full.		
Policies	commonly	used	for	fixed	allocation	are	FIFO	(first	in	first	out),	LRU	(least	
recently	used),	and	MIN	(minimum	possible,	that	is,	optimal).	

In	a	variable	partition,	each	process	gets	a	space	that	varies	over	time.		Fixed	
space	policies	can	be	extended	to	variable	allocation	by	“globalizing”	them.		For	
example,	the	global	LRU	evicts	the	page	in	main	memory	that	has	not	been	used	for	
the	longest	time.		Thus	a	page	fault	in	one	process	can	evict	a	page	from	another	
process.		This	is	called	“stealing	a	page”.		If	too	many	processes	are	active	at	once,	
they	all	steal	from	each	other	so	often	that	the	policy	introduces	a	catastrophic	
collapse	of	processing	efficiency	called	thrashing.	

A	variable	space	policy	that	avoids	thrashing	is	called	working	set.		A	working	set	
measures	the	demand	of	a	process	for	memory,	independent	of	what	any	other	
process	is	doing.		It	does	this	with	a	parameter	T,	called	window	size:	whenever	a	
page	of	the	working	set	has	not	been	used	among	the	last	T	memory	accesses,	it	is	
automatically	evicted.		Because	evictions	do	not	need	to	be	synchronized	with	faults,	
the	working	set	varies	in	size,	rising	and	falling	in	accord	with	the	process’s	demand	
for	memory	space.		In	a	working	set	partition,	the	portion	of	memory	not	in	any	
working	set	is	called	free	memory.		A	page	fault	takes	a	page	from	the	free	space	and	
assigns	it	to	the	working	set;	an	eviction	takes	a	page	from	the	working	set	and	
returns	it	to	free	space.		Because	processes	cannot	steal	from	each	other’s	working	
sets,	this	form	of	partitioning	cannot	thrash.	

A	working	set	partition	is	often	close	to	optimal	because	of	the	principle	of	
locality:	processes	refer	to	small	subsets	of	their	address	space	over	extended	
intervals.		These	small	subsets	(locality	sets)	are	strikingly	apparent	in	empirical	
reference	maps	(McMenamin).		The	ideal	policy	(perfectly	optimal)	would	set	
working	sets	exactly	equal	to	locality	sets.		The	window	T	usually	does	an	excellent	
job	of	discriminating	between	pages	in	current	locality	set	because	they	are	used	
more	often	than	T,	and	pages	outside,	which	are	used	less	often	than	T.		Thus,	the	
working	set	is	a	close	approximation	of	the	optimum.	


