
Deadlocks

P. J. Denning

© 2022, P. J. Denning

2

Deadlocks

• By using locks to avoid race conditions, we create
a new problem: circular waiting on locks.

• Consider ATM example
• Transaction is program that performs a specific

function on the database (e.g., making a deposit
or withdrawal).

• Transaction includes locking the records to
prevent races while updating them.

© 2022, P. J. Denning

3

Transfer(X,A,B)
lock(A)
lock(B)
A = A-X
B = B+X
UNLOCK(B)
UNLOCK(A)
EXIT

Account Transfer Example

Transaction to transfer X dollars from account A to B.

© 2022, P. J. Denning

4

B:

Transfer(100,Acct1,Acct2)
lock(Acct1)
lock(Acct2)
. . .

What happens if Bob and Alice try this at the same time?

B: Transfer(100,Acct1,Acct2)
A: Transfer(200,Acct2,Acct1)

A:

Transfer(200,Acct2,Acct1)
lock(Acct2)
lock(Acct1)
. . .

DEADLOCK!

B A

© 2022, P. J. Denning

5

Conditions for Deadlock
• General conditions

– Many concurrent tasks -- processes, threads, transactions
– Tasks require resources to make progress, wait if unavailable
– System has resources of different types (CPU, memory pages, disk

sectors, files, records, locks, semaphores, etc.)
– Each task holds some resources

• Necessary conditions
– Tasks must wait for resources to be allocated
– While task holds resource, it is not available for others

• Deadlock = circular wait among tasks.

© 2022, P. J. Denning

6

Two kinds of deadlock

• Signals (consumable resources)
– Each task waiting for signal from another
– Can't back out

• Units (reusable resources)
– Each task waiting for another to release a resource unit
– Can back out by aborting tasks and freeing up their

resources

© 2022, P. J. Denning

7

Signal Deadlock

P1: ...
wait(a)
wait(b)
use objects a and b
signal(b)
signal(a)
...

P2: ...
wait(b)
wait(a)
use objects a and b
signal(a)
signal(b)
...

Initially, semaphores a and b are both 1.
Deadlock if P1 and P2 complete their
first waits before either attempts their
second wait. See ATM account transfer example.

© 2022, P. J. Denning

8

1 2

resources

processes

a

execution:
P1 wait(a) -- pass – hold a
P1 wait(b) -- pass – hold b
P2 wait(a) -- wait for a

P1 releases a and b, allowing
P2 to continueb

process holds
a resource

process requests
a resource

LEGEND

Resource use graph

© 2022, P. J. Denning

9

1 2

resources

processes

a

execution:
P1 wait(a) -- pass – hold a
P2 wait(b) -- pass – hold b
P1 wait(b) -- wait for a
P2 wait(a) -- wait for b

Notice the circular wait:
P1-b-P2-a-P1

The cycle shows a deadlock

b

© 2022, P. J. Denning

10

T: transaction(a,b)
wait(a)
wait(b)
use objects a and b
signal(b)
signal(a)
return

Deadlock may result if P1 calls T(X,Y) and P2 calls T(Y,X)
at the same time. Now there are two conflicting tasks
running in parallel, risking deadlock.

But no deadlock possible if both say T(X,Y) at same time.

May not be easy to test for signal deadlocks:

© 2022, P. J. Denning

11

Two Phase Locking

T: transaction(a,b,c)
if lock(a) then goto T
if lock(b) then {unlock(a); goto T}
if lock(c) then {unlock(a,b); goto T}
update records a,b,c
unlock(a,b,c)
return

Database systems use two-phase protocol:
get all locks before updating; back out but do not wait.

Operation lock(r) returns lock value and sets lock
(like TSL hardware instruction)

© 2022, P. J. Denning

12

Two-phase protocol may have long
busy-waiting period during times
of heavy contention for shared records.

Can reduce waiting probability by inserting
random delay before looping back after
finding locked records.

© 2022, P. J. Denning

13

Resource Deadlocks

• Circular waits arising from waiting for new resources to be
granted while holding other resources.

• Can be “backed out of” by aborting one or more of the
deadlock processes and releasing their resources back to
system pools.

© 2022, P. J. Denning

14

Banking Example

• Bank gives Alice credit limit $100 and Bob $200.
Loan pool is $250.

• Alice asks for $90, bank grants. (Pool = $160)
• Bob asks for $160, bank grants. (Pool = $0)
• Alice asks for $10, waits.
• Bob asks for $10, waits.
• Back out by getting either one to fully repay their loan

© 2022, P. J. Denning

15

Buffer Pool Example

• OS has a buffer pool used by processes when they
want to send messages

• Can get a deadlock if a set of processes are all
waiting for a buffer and they collectively hold all
the buffers

© 2022, P. J. Denning

16

Kitchen Example

• Kitchen has two resources, burner and beater
• Chef has two tasks, make stew and pudding
• Stew recipe: start beating after placing on burner,

continue beating for a few minutes after
removing from burner.

• Pudding recipe: start beating before placing on
burner, stop beating a few minutes after placing
on burner.

© 2022, P. J. Denning

17

stew

pudding

burner beater

There are many joint progress paths from
the origin to 100% completion.

All paths have nondecreasing increments in
either direction.

© 2022, P. J. Denning

18

stew

pudding

burner beater

Some regions of progress space are infeasible
because they represent both tasks using the
same resource.

The red and blue boxes are infeasible.

© 2022, P. J. Denning

19

stew

pudding

burner beater

infeasible

The union of the red and blue infeasible
regions is a larger infeasible region.

© 2022, P. J. Denning

20

stew

pudding

burner beater

infeasible

Progress paths cannot enter infeasible
regions. They must circumvent.

© 2022, P. J. Denning

21

stew

pudding

burner beater

infeasible

unsafe

Any joint progress paths entering the unsafe
region cannot exit because backing up is not
possible. Deadlock at northeast corner.

© 2022, P. J. Denning

Philosophers Example

22

P comes to table
Wait(left-fork)
Wait(right-fork)
Eats
Release forks
Departs

Deadlock occurs if all
5 P’s come at once and do
their first wait together

How to prevent?

The DP problem is a stress
test for proposed methods
of preventing deadlock

© 2022, P. J. Denning

23

1 2

forks

Ps

a

DEADLOCK: each waiting for the next
to release a fork, but all forks are in use

b

3 4 5

c d e

© 2022, P. J. Denning

24

Deadlock condition

For each deadlocked task, the set of unfilled requests
is not covered by the sum of the available resources
plus all resources held by non-deadlocked tasks.

© 2022, P. J. Denning

Basic Detection Algorithm

25

Set D = {all tasks}

Set A = vector of resources available

Find task i in D such that A covers requests(i);
remove i from D and
add holdings(i) to A

Repeat until no more tasks qualify for removal

Then D is the set of deadlocked tasks.

That means this task i can
complete; therefore pretend
it finishes and releases all
resources it holds

Even thought simple,
running this algorithm every
time a deadlock is
threatened would be very
expensive

© 2022, P. J. Denning

26

Deadlock Coping Methods

• detection and recovery
• dynamic control of joint progress paths
• prior prevention -- negate the essential condition

of resource waiting -- no circular wait possible

© 2022, P. J. Denning

27

Detection and Recovery

• If deadlock suspected, apply basic algorithm
• If algorithm stops with nonempty set of tasks,

they are the deadlocked ones
• Abort the deadlocked tasks
• Very expensive

© 2022, P. J. Denning

28

Path Monitoring and Control

• Monitor joint progress path
• If a process’s next move would enter unsafe

region, block the move
• Finding a safe path is exhaustive search problem

requiring detailed information about future
process moves

• Beyond very expensive: intractable

© 2022, P. J. Denning

29

Prevention

• Design system so that the necessary
condition of resource waiting is impossible

• Grant all resources before starting task
– no additional requests allowed after start
– two phase locking works this way
– no deadlock because never wait

• Ordered resource protocol

© 2022, P. J. Denning

30

Ordered Resource Protocol

• ordered resource usage:
– resources in groups 1,2,3,...
– if task requests more, they must come from

higher numbered group than any in which task
holds resources

© 2022, P. J. Denning

1 2 N-1

resources

tasks N•••

1 2 3 N•••

If N tasks are in circular wait, we can number them
and the resources to get this diagram. Then task N
must be holding the resource needed by task N-1
and requesting the resource held by task 1. This
violates the protocol and is impossible.

31© 2022, P. J. Denning

Application to Transactions

• Program transactions to sort the incoming
account numbers in ascending order

• Now all requests and waits will follow the
ordering protocol

32© 2022, P. J. Denning

Application to Banking

• Protocol inapplicable if all the loan money is in
one pool … subsequent requests violate the
protocol

• However, it could work if pool were divided into
multiple subpools … get next increment from
next pool

• Can also set loan pool size to be larger than sum
of all lines of credit

33© 2022, P. J. Denning

Application to Buffers

• Ordered protocol inapplicable because
processes holding buffers can ask for more

• Can avoid running out of buffers by putting
a limit B on how many buffers a process can
hold; size the buffer pool at N*B buffers,
where N is the maximum number of
processes the system allows

34© 2022, P. J. Denning

Application to Kitchen

• Ordered protocol is inapplicable
• Each task requires the two resources in a

particular order … the orders conflict
• Must run the tasks in serially … completely

cook one dish before starting the other

35© 2022, P. J. Denning

Application to Philosophers

• Number forks 1,2,3,4,5
• Change acquisition protocol to

– lower numbered fork first, higher numbered second

• Philosophers 1-4 find lower on left, upper on right
• Philosopher 5 finds lower on right, upper on left
• Now no deadlock is possible

36© 2022, P. J. Denning

